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ABSTRACT

Visual Speech Recognition (VSR), also known as lip-reading,
requires accurate mouth tracking and alignment to achieve
high performance. Conventional approaches rely on complex
pipelines involving facial landmark detection, facial landmark
smoothing, affine transformation estimation and warping. In
this paper, we propose a streamlined solution: a fast Mouth
Alignment Network (MAN) that directly estimates affine
transformation parameters from a video of a talking face,
significantly simplifying the process. Our approach also in-
corporates a complementary Mouth Scoring Network (MSN)
that injects knowledge about adversarial perturbations into
the training process, further improving alignment quality.
Experiments on standard lip-reading benchmarks (LRS2 and
LRS3) demonstrate that our method maintains the perfor-
mance when integrated with state-of-the-art VSR systems,
including Auto-AVSR and USR, while substantially improv-
ing the alignment quality and computational efficiency.

Index Terms— lip-reading, visual speech recognition,
mouth alignment.

1. INTRODUCTION

Visual Speech Recognition (VSR) is a challenging task aimed
at recognizing spoken words from visual lip movements.
Since the mouth region-of-interest (ROI) contains most of
the information needed for VSR and processing entire high-
resolution frames is computationally inefficient, VSR mod-
els typically focus on small (e.g., 88x88) aligned mouth
ROIs. State-of-the-art VSR models, such as Auto-AVSR [1],
USR [2], Llama-AVSR [3] and VSP-LLM [4], rely on a
complex pipeline to obtain the mouth region, involving ex-
tracting facial landmarks per video frame, smoothing these
landmarks, and estimating affine transformation parameters
to warp the original frames into aligned mouth frames.

In this work, we aim to improve the efficiency and robust-
ness of mouth alignment pipeline. We propose a fast Mouth
Alignment Network (MAN) that directly predicts affine trans-
formation parameters from raw video frames. This approach
eliminates the conventional multi-step pipeline and avoids re-
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liance on facial landmark detection. MAN is initially trained
by distilling affine parameters estimated by the conventional
approach. To further refine the training process, we introduce
a Mouth Scoring Network (MSN) that injects knowledge of
adversarial perturbations into the training process. MSN pro-
duces a differentiable score for an aligned mouth video, which
is used to guide MAN in generating high-quality mouth align-
ment. MSN is trained in a self-supervised manner with con-
trastive loss between a preferred sample (i.e., one estimated
by the conventional pipeline) and a randomly perturbed non-
preferred sample, at the same time leveraging the knowledge
from pretrained lip encoder of the VSR model. This approach
allows MAN to learn from negative examples, improving its
ability to produce high-quality alignment parameters.

We demonstrate the effectiveness of our proposed method
by conducting experiments on the LRS2 and LRS3 datasets.
Our results show that the proposed MAN achieves a perfor-
mance comparable to that of the conventional pipeline when
integrated with state-of-the-art VSR models: Auto-AVSR [1]
and USR [2], while improving efficiency and alignment qual-
ity estimated by MSN. Our contributions are: 1. A novel
mouth alignment model that directly predicts affine trans-
formation parameters, eliminating facial landmark detection
and smoothing. 2. A fast mouth alignment network (MAN)
guided by a pretrained mouth scoring network (MSN) that
uses adversarial perturbations to improve alignment qual-
ity and detect poor alignment. 3. Extensive experiments on
LRS2/LRS3 with Auto-AVSR and USR systems, showing
comparable performance to conventional pipelines with im-
proved efficiency.

2. RELATED WORK

2.1. Conventional mouth alignment methods

State-of-the-art VSR methods, including Auto-AVSR [1],
USR [2], Llama-AVSR [3] and VSP-LLM [4], follow a
multi-step approach for lip region alignment. These methods
first detect facial landmarks using the FAN detector [5], then
apply temporal smoothing with an averaging window, and
finally compute affine transformations to align the lip region.
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Fig. 1. Conventional (top) and proposed (bottom) mouth
alignment pipelines for VSR. Both predict affine transforma-
tions to warp input frames into mouth frames.

As in fig. 1, this conventional alignment pipeline consists of
several sequential stages: face detection, landmark detection,
landmark smoothing, and affine transformation. This cascade
approach relies on manually designed components that lack
the robustness of end-to-end learned solutions. Moreover, the
Hour-Glass layer [6] in the FAN [5] landmark extractor was
specifically designed for precise landmark detection, which
is computationally inefficient for the mouth alignment where
only a few affine parameters are required to be predicted.

2.2. Spatial transformer networks

Our proposed mouth alignment network builds upon Spatial
Transformer Networks (STNs) [7], which directly predict
transformation parameters from input images and apply these
transformations to the input. STNs are designed to achieve
spatial invariance by learning optimal transformation param-
eters. This makes them particularly suited for tasks such as
mouth alignment in VSR. By leveraging STNs, our approach
benefits from end-to-end optimization, eliminating the need
for landmark detection in conventional pipelines. This results
in a more robust and efficient solution for mouth alignment in
visual speech recognition.

3. METHODOLOGY

3.1. Preliminary

State-of-the-art visual speech recognition (VSR) models [1,
8, 2] typically rely on a mouth alignment pipeline that es-
timates affine transformations based on facial landmarks.
As illustrated in fig. 1, given an input video with 7" RGB
frames {X;}L ; € RT>*HXWx3 the conventional pipeline
first employs a face alignment network (FAN) [5] to de-
tect 68 2D facial landmarks for each frame independently:
L7 = FAN(X,),L; € R%*2 These raw landmarks are
then temporally smoothed using a sliding window, producing
L{ € RY¥*2_ Subsequently, the smoothed landmarks are
used to compute an affine transformation that aligns the face
with a canonical face template L§ € R%*2. This estimation
is typically performed using the Least Median of Squares
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Fig. 2. Mouth alignment, scoring networks, and preference
modeling. Snowflakes indicate frozen weights.

(LMedS) method [9], producing a sequence of 3 x 3 affine
transformation matrices {A;} € RT*3*3. Once the affine
matrices are obtained, each mouth frame Y; can be extracted
by warping the affine matrices:

YI;:W(XtaAt>7 (1)

where W is the affine warp function. The warp function first
generates a sampling grid that maps the pixel coordinates of
the output image from the input image using the affine trans-
formation matrix A;. Then, the sampling grid is used to inter-
polate pixels from the input frame X to produce the aligned
mouth frame Y;.

3.2. MAN distillation

To eliminate the need for explicit facial landmark detection,
we propose a novel approach to directly produce the affine
transformation parameters using a Mouth Alignment Net-
work (MAN), as shown in the bottom of fig. 1. MAN is a
light-weight mouth alignment network which has the archi-
tecture as shown in fig. 2a. It consists of a visual frontend
and a temporal modeling module. The visual frontend is
a ResNet-18 [10] that extracts per-frame features indepen-
dently, while the temporal modeling module is a stack of two
full pre-activation residual blocks [11], with group normal-
ization [12] as the normalization layer and GELU [13] as
the activation layer, which captures temporal dependencies
across frames. The output of MAN is a sequence of affine
transformation parameters { A, }7_,.

MAN is initially trained by distilling from the conven-
tional mouth alignment pipeline by minimizing the L1 loss
between the predicted parameters and the affine transforma-
tion extracted from the conventional pipeline:

T
Ly=> ||A - Al )
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When distilling the conventional FAN-based pipeline, MAN
inevitably inherits any of alignment errors from it. To push



MAN beyond these inherited limitations, we add a quality-
aware training signal in the form of a differentiable score pro-
duced by a Mouth Scoring Network (MSN).

3.3. Mouth scoring network

MSN takes mouth video {Y;}Z_; as input and outputs align-
ment quality scores, higher the better. As shown in fig. 2b,
MSN uses a visual frontend (Conv3d stem with ResNet-18
trunk from Auto-AVSR [1]) followed by a temporal module
(two stacked residual blocks as in MAN). Formally, MSN out-
puts quality scores {s;} = S({Y }); for each frame based on
the full video sequence. Since ground-truth alignment qual-
ity labels are unavailable, we use preference modeling as de-
scribed below.

3.4. Preference pairs construction

To apply preference modeling, pairs of preferred (high-
quality) and non-preferred (degraded) samples are required.
Since generating superior examples is difficult, we create de-
graded versions by applying controlled perturbations to affine
transformation parameters, pairing original mouth frames
with their perturbed counterparts.

The perturbation process simulates alignment errors
through two methods: global perturbation applies a single
random matrix across all frames to simulate systematic er-
rors, while local perturbation modifies random frame subsets
with independent matrices to create temporal inconsistencies.
One pattern is randomly selected per training sample. We cor-
rupt FAN’s affine matrix using four transforms: translation P,
(shifting by d,, 6,), scaling P; (scaling by s, s,/), rotation P,
(rotating by ), or composite P. = P, P, P,. Parameters are
sampled from uniform distributions: 6,9, ~ U[—0.5,0.5],
Sz, 8y ~U[0.5,1.5],0 ~U[—7/2,7/2].

During training, two levels of perturbations are con-
structed. Starting with the original matrix A, a random
perturbation P} is first applied to obtain A} = P!A,, and
then a second random perturbation of the same type P? is
drawn to generate A2 = P2A!. Warping the input frames
X; with these two matrices yields two mouth video vari-
ants: the once-perturbed frame f’tl = W(Xs, Atl), and
the twice-perturbed sequence Y;> = W(X;, A?). We then
can construct three pairs of mouth videos ({Y;},{Y;'}),
({Y:},{Y;2}) and ({Y;'},{Y;?}). The preference pairs
({Y:},{¥;'}) and ({Y;}, {Y;?}) enable the preference model
to establish a clear decision boundary between clean and per-
turbed sequences. Meanwhile, the pair ({Y;'}, {¥;?}) trains
the model to quantify the magnitude of perturbation between
sequences that have undergone different levels of degradation.

3.5. Preference modeling

With the constructed preference pairs, we train MSN using a
preference loss. The goal is to ensure MSN assigns higher

quality scores to preferred mouth videos compared to their
less preferred (perturbed) counterparts. As shown in fig. 2c,
we utilize the Bradley-Terry model [14] to formalize this pref-
erence relationship. For any pair of mouth videos, {Y;*} and
{Y,%}, the probability that frame ¢ from video a is preferred
over frame ¢ from video b, given the context of both videos,
is modeled as:

p(V =Y [{Y LAY ) =o(sf — ), )

where {s{ }i_; = S({Y;"}) and {7}/, = S({Y}"}) are the
sequences of frame-wise quality scores produced by MSN S,
and o denotes the sigmoid function. MSN is trained by max-
imizing the likelihood of observing these preferences across
all relevant frames. This corresponds to minimizing the total
negative log-likelihood loss £, which aggregates the losses
from the three types of pairs:

Lo = FEYL AV D) + PV Y2 + F({Y ', {fff}i,
“)
where the preference loss for a generic pair ({Y,*}, {Y;%}) is
defined as:
b

PO () = BT

Here, m; € {0, 1} is a binary indicator that equals 1 if the ¢-th
frame in Y;b has been perturbed relative to Y,*, and O other-
wise. Under local perturbation the loss targets only those per-
turbed frames, whereas under global perturbation it considers
all frames.

3.6. MSN guidance

After pre-training the Mouth Scoring Network (MSN), we
freeze its parameters and utilize it to guide the training of
the Mouth Alignment Network (MAN). Let {A,}7 | be
the sequence of affine transformations predicted by MAN
for an input video {X;}.,. The corresponding mouth
video sequence is generated by warping: {¥;}7_,, where
Y, = W( Xy, At). We then use the frozen MSN to compute
frame-wise quality scores for this sequence and the original
mouth video sequence {Y;}7 ;:

(33 = S({Yi}), {s:Hi=S{¥}).  ©

To maximize the average quality score over all frames, we
define the guidance loss £, as:

T
1 .
L, = 7 ;:1 max(s; — §¢, 0). @)

Minimizing £, encourages MAN to generate mouth se-
quences that MSN deems to be of high quality. We stopped
optimizing §; once it gets higher than the score of the original
mouth video sequence s; to avoid over-optimization.
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Fig. 3. Accuracy of different scorers on the LRS3 test set.

4. EXPERIMENTS

4.1. Experimental setup
4.1.1. Datasets

Following the conventional VSR protocol as in [1], our eval-
uation employed two benchmark datasets: LRS2 [15] and
LRS3 [16]. The LRS2 dataset consists of 160 x 160 reso-
lution video samples from BBC television programs, and the
LRS3 dataset contains 224 x 224 resolution videos from TED
talks. For our training regime, we used both LRS2 and LRS3
datasets. We randomly split LRS3’s trainval set into 30,982
training samples and 1,000 validation samples since LRS3 has
no official validation set. For LRS2, we used the train split
containing 45,839 samples for training and the official vali-
dation set of 1,082 samples. We report results on both the
validation sets and official test splits, comprising 1,243 sam-
ples from LRS2 and 1,321 samples from LRS3. Both MAN
and MSN models were trained on the combined training set
and validated on the merged validation sets. The evaluation
was performed at 5,000 step intervals and we report the best
performance achieved in the combined validation set.

4.1.2. Training details

MSN was trained for 10k steps using the Adam [17] optimizer
with a learning rate of 2 x 10~* and a batch size of 8. For
MAN, we employed the Adam optimizer with an initial learn-
ing rate of 2 x 10~4, applying a step-wise decay that reduced
the rate by a factor of 0.1 every 10k steps. Training continued
for 30k steps with a batch size of 4. All experiments were
conducted on NVIDIA RTX 4090 GPU with 24GB memory.
We utilized the following two state-of-the-art VSR models to
test the trained MAN models: Auto-AVSR': We employed the
checkpoint trained on 3,448 hours of data, which achieved
19.1% WER on the LRS3 test set and 14.6% on the LRS2 test
set. USR?: We used the high-resource model trained on both
LRS3 and VoxCeleb2 [18] datasets, which achieved 22.3%
WER on the LRS3 test set. Both models were originally built
with the conventional FAN-based mouth alignment pipeline.
In our evaluation, we replace the FAN-based mouth alignment

'Auto-AVSR: https://github.com/mpc001/Visual_Speec
h_Recognition_for_Multiple_Languages.
2USR: https://github.com/ahaliassos/usr.

module with our proposed MAN-based method, while keep-
ing the rest of the VSR model unchanged.

4.2. MSN evaluation

We trained MSN using samples from the combined training
set. During training, input mouth videos were randomly per-
turbed either globally (affecting all frames) or locally (affect-
ing a randomly selected percentage of frames), each with a
50% chance by a random perturbation type. To evaluate the
trained MSN’s performance, we designed an artificial pertur-
bation test. This test assesses the ability of MSN to assign a
higher score to the preferred sample (the video processed by
the conventional pipeline) compared to a randomly perturbed
version of the same video. Accuracy is computed as the per-
centage of preference frame pairs where the preferred sample
receives a higher score than its perturbed counterpart.

The evaluation used a test set derived from LRS3. For
each sample, we applied four perturbation types (composite,
rotation, scaling, and translation) at six variants: five local
perturbation rates (1 — 100% of frames) plus one global appli-
cation. Results in fig. 3 show the scorer with pretrained Auto-
AVSR encoder consistently outperforms the from-scratch ver-
sion?, indicating the pretrained encoder better captures mouth
alignment differences.

60 Spearman p =-0.18 Spearman p =-0.29

0 50 100 150 0 50 100 150
WER (%) WER (%)

Fig. 4. MSN scores and WERs of Auto-AVSR on LRS3 test
samples with WER > 0% (673/1,321 samples). FS: from
scratch; PT: frozen pretrained encoder. Dashed lines show
medians.

In fig. 4, we plot MSN scores and the WERs of the Auto-
AVSR model on the LRS3 test set with mouth aligned by the
conventional FAN-based pipeline. MSN with the pretrained
encoder exhibits a stronger Spearman correlation with WER
on samples having WER > 0% (-0.29) compared to the one

3The from-scratch model randomly initialized encoder parameters and
trained them with MSN, rather than using frozen Auto-AVSR weights.
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trained from scratch (-0.18). This indicates that the pretrained
encoder is more sensitive to the quality of mouth alignment
and can better capture the relationship between mouth align-
ment quality and VSR performance. Moreover, the Lowess
curve in fig. 4 shows that the negative correlation between
MSN score and WER is more pronounced when the WER is
high (> 50%), suggesting that a certain amount of samples
with poor WER is associated with a low MSN score.

4.3. MAN evaluation

After MSN training, we trained MAN using two strategies:
(1) with only £;; and (2) with £; and MSN guidance loss L.
We evaluated alignment performance by integrating the STN's
with different VSR networks and compared against conven-
tional FAN-based alignment. Results in table 1 show MAN
trained with both £; and £ consistently outperforms the £;-
only version in MSN scores, achieving better WERS in five of
eight cases with only one worse result. This demonstrates that
the proposed guidance loss enhances alignment performance,
achieving comparable results to FAN-based methods, while
L1-only training shows slightly degraded performance.

Table 1. MSN score and WER (%) on LRS2 and LRS3. MSN
scores are produced by model with the pretrained Auto-AVSR
encoder, i.e., MSN (PT). Highlights show change w.r.t. the
reproduced FAN baseline (bold: better, gray: worse).

Data | Method MSN (PT) T | Auto-AVSR USR
WER (%) | | WER (%) |
| | Val Test | Val ~Test | Val Test
FAN [5] (reported) 14.6

FAN [5] (reproduced) | 34.1 33.5 | 23.3 142 | 37.0 304

LRS2
MAN (£,) 335 329 | 238 145 | 37.1 307
MAN (L1 + L) 34.1 335 | 237 145 | 37.1 304
FAN [5] (reported) - - - 19.1 - 22.3
LRS3 FAN [5] (reproduced) | 352 34.0 | 10.0 192 | 42 220
MAN (£1) 349 338 10.1 19.5 4.2 224
MAN (£, + L) 355 344 | 102 192 | 41 223

4.4. Efficiency analysis

As shown in table 2, while both models have comparable pa-
rameter counts, MAN demonstrates dramatically improved
computational efficiency with only 1.8 GMac per frame com-
pared to FAN’s 14.0 GMac, which is a 7.7 x reduction in com-
putational complexity. This translates to significantly faster
inference, with MAN processing frames in 5.9ms compared
to FAN’s 49.4ms, representing an 8.4 x speed improvement.

4.5. Qualitative study

In table 3, we present a qualitative comparison of sam-
ples with low MSN scores from the LRS3 test set. The
FAN landmarks used in the conventional mouth alignment

Table 2. Efficiency metrics on NVIDIA RTX 4090 GPU. In-
ference times are averaged over 1,000 runs of a 1-second clip
at 25 FPS.

Metric | FAN[5] MAN (Ours)
Parameters (M) 12.1 12.0
Flops per frame (GMac) 14.0 1.8
Inference time (ms) 494 +0.8 59+04

pipeline were obtained from the Auto-AVSR*. The sam-
ples show that the MSN score positively correlates with
the mouth alignment quality, with a more stable mouth
alignment leading to a higher score. The proposed MAN
addresses severe misalignment issues, improving the perfor-
mance of both VSR models. This is particularly evident in the
cases of ROgFmb30TLo/00007 and ROgFmb30TLo/00005,
where WER improvements are substantial. Besides, MAN
also effectively resolves subtle alignment issues, as seen in
CgNx9Bgacll/00002, even when these misalignments are
not severe enough to negatively impact WER in the baseline
system.

Table 3. Qualitative comparison of representative utterances
from the LRS3 test set. Five frames, evenly sampled across
time, are shown from each video sequence.

MSN (PT) t

WER (%) |

D Method Frames - T
Auto-AVSR USR

ROgFmb30TL0/00007 FAN <729 100.0 87.5

el MAN 34.7 315 50
ROgFmb30TLo/00005 FAN 19.7 375 375

— MAN 353 0 25
CgNx9Bgac11/00002 FAN 215 0 0

- MAN 34.7 0 0

5. CONCLUSION

In summary, we replace the multistage landmark pipeline
used in visual speech recognition with a compact Mouth
Alignment Network (MAN) that directly regresses affine pa-
rameters from raw frames and is refined by a self-supervised
Mouth Scoring Network (MSN). When plugged into state-of-
the-art VSR models (Auto-AVSR, USR) on LRS2 and LRS3,
MAN matches their word-error rates while cutting per-frame
computation by roughly an order of magnitude, and it reliably
corrects failure cases that defeat landmark-based alignment,

4FAN landmarks: https://github.com/mpc001l/Visual_S
peech_Recognition_for_Multiple_Languages?tab=readm
e-ov-file#autoavsr-models
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improving the alignment quality measured by MSN. These
results demonstrate that end-to-end, quality-guided mouth
alignment can deliver both efficiency and robustness, paving
the way for fast lip-reading systems and offering a template
for learned alignment in other vision tasks.
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