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Abstract

Eigenvoice speaker adaptation has been shown to be effective when only
a small amount of adaptation data is available. At the heart of the method
is principal component analysis (PCA) employed to find the most im-
portant eigenvoices. In this paper, we postulate that nonlinear PCA, in
particular kernel PCA, may be even more effective. One major challenge
is to map the feature-space eigenvoices back to the observation space so
that the state observation likelihoods can be computed during the estima-
tion of eigenvoice weights and subsequent decoding. Our solution is to
compute kernel PCA using composite kernels, and we will call our new
method kernel eigenvoice speaker adaptation. On the TIDIGITS corpus,
we found that compared with a speaker-independent model, our kernel
eigenvoice adaptation method can reduce the word error rate by 28–33%
while the standard eigenvoice approach can only match the performance
of the speaker-independent model.

1 Introduction

In recent years, there has been a lot of interest in the study of kernel methods [1]. The basic
idea is to map data in the input space X to a feature space via some nonlinear map ϕ, and
then apply a linear method there. It is now well known that the computational procedure
depends only on the inner products1 ϕ(xi)

′ϕ(xj) in the feature space (where xi,xj ∈
X ), which can be obtained efficiently from a suitable kernel function k(·, ·). Besides,
kernel methods have the important computational advantage that no nonlinear optimization
is involved. Thus, the use of kernels provides elegant nonlinear generalizations of many
existing linear algorithms. A well-known example in supervised learning is the support
vector machines (SVMs). In unsupervised learning, the kernel idea has also led to methods
such as kernel-based clustering algorithms and kernel principal component analysis [2].

In the field of automatic speech recognition, eigenvoice speaker adaptation [3] has drawn
some attention in recent years as it is found particularly useful when only a small amount
of adaptation speech is available; e.g. a few seconds. At the heart of the method is prin-
cipal component analysis (PCA) employed to find the most important eigenvoices. Then

1In this paper, vector/matrix transpose is denoted by the superscript ′.



a new speaker is represented as a linear combination of a few (most important) eigen-
voices and the eigenvoice weights are usually estimated by maximizing the likelihood of
the adaptation data. Conventionally, these eigenvoices are found by linear PCA. In this
paper, we investigate the use of nonlinear PCA to find the eigenvoices by kernel methods.
In effect, the nonlinear PCA problem is converted to a linear PCA problem in the high-
dimension feature space using the kernel trick. One of the major challenges is to map the
feature-space eigenvoices back to the observation space to compute the state observation
likelihood of adaptation data during the estimation of eigenvoice weights and likelihood of
test data during decoding. Our solution is to compute kernel PCA using composite kernels.
We will call our new method kernel eigenvoice speaker adaptation.

Kernel eigenvoice adaptation will have to deal with several parameter spaces. To avoid
confusion, we denote the several spaces as follows: the d1-dimensional observation space
as O; the d2-dimensional speaker (supervector) space as X ; and the d3-dimensional speaker
feature space as F . Notice that d1 � d2 � d3 in general.

The rest of this paper is organized as follows. Brief overviews on eigenvoice speaker
adaptation and kernel PCA are given in Sections 2 and 3. Sections 4 and 5 then describe
our proposed kernel eigenvoice method and its robust extension. Experimental results are
presented in Section 6, and the last section gives some concluding remarks.

2 Eigenvoice

In the standard eigenvoice approach [3], speech training data are collected from many
speakers with diverse characteristics. A set of speaker-dependent (SD) acoustic hidden
Markov models (HMMs) are trained from each speaker where each HMM state is modeled
as a mixture of Gaussian distributions. A speaker’s voice is then represented by a speaker
supervector that is composed by concatenating the mean vectors of all HMM Gaussian
distributions. For simplicity, we assume that each HMM state consists of one Gaussian
only. The extension to mixtures of Gaussians is straightforward. Thus, the ith speaker
supervector consists of R constituents, one from each Gaussian, and will be denoted by
xi = [x′

i1 . . .x′
iR]′ ∈ R

d2 . The similarity between any two speaker supervectors xi and xj

is measured by their dot product

x′
ixj =

R
∑

r=1

x′
irxjr . (1)

PCA is then performed on a set of training speaker supervectors and the resulting eigen-
vectors are called eigenvoices. To adapt to a new speaker, his/her supervector s is treated
as a linear combination of the first M eigenvoices {v1, . . . ,vM}, i.e., s = s(ev) =
∑M

m=1 wmvm where w = [w1, . . . , wM ]′ is the eigenvoice weight vector. Usually, only a
few eigenvoices (e.g., M < 10) are employed so that a little amount of adaptation speech
(e.g., a few seconds) will be required. Given the adaptation data ot, t = 1, . . . , T , the
eigenvoice weights are in turn estimated by maximizing the likelihood of the ot’s. Mathe-
matically, one finds w by maximizing the Q function: Q(w) = Qπ + Qa + Qb(w), where

Qπ =

R
∑

r=1

γ1(r) log(πr) , Qa =

R
∑

p,r=1

T−1
∑

t=1

ξt(p, r) log(apr) ,

and, Qb(w) =

R
∑

r=1

T
∑

t=1

γt(r) log(br(ot,w)) , (2)

and πr is the initial probability of state r; γt(r) is the posterior probability of observation
sequence being at state r at time t; ξt(p, r) is the posterior probability of observation se-
quence being at state p at time t and at state r at time t+1; br is the Gaussian pdf of the rth



state after re-estimation. Furthermore, Qb is related to the new speaker supervector s by

Qb(w) = −1

2

R
∑

r=1

T
∑

t=1

γt(r)
[

d1 log(2π) + log |Cr| + ‖ot − sr(w)‖2
Cr

]

, (3)

where ‖ot−sr(w)‖2
Cr

= (ot−sr(w))′C−1
r (ot−sr(w)) and Cr is the covariance matrix

of the Gaussian at state r.

3 Kernel PCA

In this paper, the computation of eigenvoices is generalized by performing kernel PCA
instead of linear PCA. In the following, let k(·, ·) be the kernel with associated mapping ϕ
which maps a pattern x in the speaker supervector space X to ϕ(x) in the speaker feature
space F . Given a set of N patterns (speaker supervectors) {x1, . . . ,xN}, denote the mean
of the ϕ-mapped feature vectors by ϕ̄ = 1

N

∑N

i=1 ϕ(xi), and the “centered” map by ϕ̃

(with ϕ̃(x) = ϕ(x) − ϕ̄). Eigendecomposition is performed on K̃, the centered version of
K = [k(xi,xj)]ij , as K̃ = UΛU′, where U = [α1, . . . , αN ] with αi = [αi1, . . . , αiN ]′,
and Λ = diag(λ1, . . . , λN ). Notice that K̃ is related to K by K̃ = HKH, where H =
I − 1

N
11′ is the centering matrix, I is the N × N identity matrix, and 1 = [1, . . . , 1]′, an

N -dimensional vector. The mth orthonormal eigenvector of the covariance matrix in the
feature space is then given by [2] as vm =

∑N

i=1
αmi√

λm

ϕ̃(xi) .

4 Kernel Eigenvoice

As seen from Eqn (3), the estimation of eigenvoice weights requires the evaluation of the
distance between adaptation data ot and Gaussian means of the new speaker in the obser-
vation space O. In the standard eigenvoice method, this is done by first breaking down
the adapted speaker supervector s to its R constituent Gaussians s1, . . . , sR. However, the
use of kernel PCA does not allow us to access each constituent Gaussians directly. To get
around the problem, we investigate the use of composite kernels.

4.1 Definition of the Composite Kernel

For the ith speaker supervector xi, we map each constituent xir separately via a kernel
kr(·, ·) to ϕr(xir), and then construct ϕ(xi) as ϕ(xi) = [ϕ1(xi1)

′, . . . , ϕR(xiR)′]′. Anal-
ogous to Eqn (1), the similarity between two speaker supervectors xi and xj in the com-
posite feature space is measured by

k(xi,xj) =

R
∑

r=1

kr(xir ,xjr) .

Note that if kr’s are valid Mercer kernels, so is k [1].

Using this composite kernel, we can then proceed with the usual kernel PCA on the set of
N training speaker supervectors and obtain αm’s, λm’s, and the orthonormal eigenvectors
vm’s (m = 1, . . . , M ) of the covariance matrix in the feature space F .

4.2 New Speaker in the Feature Space

In the following, we denote the supervector of a new speaker by s. Similar to the standard
eigenvoice approach, its ϕ̃-mapped speaker feature vector2 ϕ̃(kev)(s) is assumed to be a

2The notation for a new speaker in the feature space requires some explanation. If s exists, then
its centered image is ϕ̃

(kev)(s). However, since the pre-image of a speaker in the feature space may



linear combination of the first M eigenvectors, i.e.,

ϕ̃(kev)(s) =

M
∑

m=1

wmvm =

M
∑

m=1

N
∑

i=1

wmαmi√
λm

ϕ̃(xi). (4)

Its rth constituent is then given by

ϕ̃
(kev)
r (sr) =

M
∑

m=1

N
∑

i=1

wmαmi√
λm

ϕ̃r(xir) .

Hence, the similarity between ϕ
(kev)
r (sr) and ϕr(ot) is given by

k(kev)
r (sr,ot) ≡ ϕ(sr)

′ϕr(ot)

=

[(

M
∑

m=1

N
∑

i=1

wmαmi√
λm

ϕ̃r(xir)

)

+ ϕ̄r

]′

ϕr(ot)

=

[(

M
∑

m=1

N
∑

i=1

wmαmi√
λm

(ϕr(xir) − ϕ̄r)

)

+ ϕ̄r

]′

ϕr(ot)

=

M
∑

m=1

N
∑

i=1

wmαmi√
λm

(kr(xir ,ot) − ϕ̄′
rϕr(ot)) + ϕ̄′

rϕr(ot)

≡ A(r, t) +

M
∑

m=1

wm√
λm

B(m, r, t), (5)

where ϕ̄r = 1
N

∑N

i=1 ϕr(xir) is the rth part of ϕ̄,

A(r, t) = ϕ̄′
rϕr(ot) =

1

N

N
∑

j=1

kr(xjr ,ot),

and

B(m, r, t) =

(

N
∑

i=1

αmikr(xir ,ot)

)

− A(r, t)

(

N
∑

i=1

αmi

)

.

4.3 Maximum Likelihood Adaptation Using an Isotropic Kernel

On adaptation, we have to express ‖ot − sr‖2
Cr

of Eqn (3) as a function of w. Con-
sider using isotropic kernels for kr so that kr(xir ,xjr) = κ(‖xir − xjr‖Cr

). Then

k
(kev)
r (sr,ot) = κ(‖ot − sr‖2

Cr
), and if κ is invertible, ‖ot − sr‖2

Cr
will be a function of

k
(kev)
r (sr,ot), which in turn is a function of w by Eqn (5). In the sequel, we will use the

Gaussian kernel kr(xir ,xjr) = exp(−βr‖xir − xjr‖2
Cr

), and hence

‖ot − sr‖2
Cr

= − 1

βr

log k(kev)
r (sr,ot) = − 1

βr

log

(

A(r, t) +

M
∑

m=1

wm√
λm

B(m, r, t)

)

. (6)

Substituting Eqn (6) for the Qb function in Eqn (3), and differentiating with respect to each
eigenvoice weight, wj , j = 1, . . . , M , we obtain

∂Qb

∂wj
=

1

2
√

λj

R
∑

r=1

T
∑

t=1

γt(r)

βr

· B(j, r, t)

k
(kev)
r (sr,ot)

. (7)

not exist, its notation as ϕ̃
(kev)(s) is not exactly correct. However, the notation is adopted for its

intuitiveness and the readers are advised to infer the existence of s based on the context.



Since Qπ and Qa do not depend on w,
∂Q
∂wj

=
∂Qb

∂wj
.

4.4 Generalized EM Algorithm

Because of the nonlinear nature of kernel PCA, Eqn (6) is nonlinear in w and there is no
closed form solution for the optimal w. In this paper, we instead apply the generalized
EM algorithm (GEM) [4] to find the optimal weights. GEM is similar to standard EM
except for the maximization step: EM looks for w that maximizes the expected likelihood
of the E-step but GEM only requires a w that improves the likelihood. Many numerical
methods may be used to update w based on the derivatives of Q. In this paper, gradient
ascent is used to get w(n) from w(n − 1) based only on the first-order derivative as:

w(n) = w(n − 1) + η(n)Q′|w=w(n−1), where Q′ =
∂Qb

∂w
and η(n) is the learning rate

at the nth iteration. Methods such as the Newton’s method that uses the second-order
derivatives may also be used for faster convergence, at the expense of computing the more
costly Hessian in each iteration.

The initial value of w(0) can be important for numerical methods like gradient ascent. One
reasonable approach is to start with the eigenvoice weights of the supervector composed
from the speaker-independent model x(si). That is,

wm = v′
mϕ̃(x(si)) =

N
∑

i=1

αmi√
λm

ϕ̃(xi)
′ϕ̃(x(si)) =

N
∑

i=1

αmi√
λm

[ϕ(xi) − ϕ̄]′[ϕ(x(si)) − ϕ̄]

=

N
∑

i=1

αmi√
λm

[

k(xi,x
(si))+

1

N2

N
∑

p,q=1

k(xp,xq)−
1

N

N
∑

p=1

(

k(xi,xp)+k(x(si),xp)
)

]

.

(8)

5 Robust Kernel Eigenvoice

The success of the eigenvoice approach for fast speaker adaptation is due to two factors: (1)
a good collection of “diverse” speakers so that the whole speaker space is captured by the
eigenvoices; and (2) the number of adaptation parameters is reduced to a few eigenvoice
weights. However, since the amount of adaptation data is so little the adaptation perfor-
mance may vary widely. To get a more robust performance, we propose to interpolate the
kernel eigenvoice ϕ̃(kev)(s) obtained in Eqn (4) with the ϕ̃-mapped speaker-independent
(SI) supervector ϕ̃(x(si)) to obtain the final speaker adapted model ϕ̃(rkev)(s) as follows:

ϕ̃(rkev)(s) = w0ϕ̃(x(si)) + (1 − w0)ϕ̃
(kev)(s) , 0.0 ≤ w0 ≤ 1.0 , (9)

where ϕ̃(kev)(s) is found by Eqn (4). By replacing ϕ̃(kev)(s) by ϕ̃(rkev)(s) for the com-
putation of the kernel value of Eqn (5), and following the mathematical steps in Section 4,
one may derive the required gradients for the joint maximum-likelihood estimation of w0

and other eigenvoice weights in the GEM algorithm.

Notice that ϕ̃(rkev)(s) also contains components in ϕ̃(x(si)) from eigenvectors beyond the
M selected kernel eigenvoices for adaptation. Thus, robust KEV adaptation may have the
additional benefit of preserving the speaker-independent projections on the remaining less
important but robust eigenvoices in the final speaker-adapted model.



6 Experimental Evaluation

The proposed kernel eigenvoice adaptation method was evaluated on the TIDIGITS speech
corpus [5]. Its performance was compared with that of the speaker-independent model
and the standard eigenvoice adaptation method using only 3s, 5.5s, and 13s of adaptation
speech. If we exclude the leading and ending silence, the average duration of adaptation
speech is 2.1s, 4.1s, and 9.6s respectively.

6.1 TIDIGITS Corpus

The TIDIGITS corpus contains clean connected-digit utterances sampled at 20 kHz. It is
divided into a standard training set and a test set. There are 163 speakers (of both genders)
in each set, each pronouncing 77 utterances of one to seven digits (out of the eleven digits:
“0”, “1”, . . ., “9”, and “oh”.). The speaker characteristics is quite diverse with speakers
coming from 22 dialect regions of USA and their ages ranging from 6 to 70 years old.

In all the following experiments, only the training set was used to train the speaker-
independent (SI) HMMs and speaker-dependent (SD) HMMs from which the SI and SD
speaker supervectors were derived.

6.2 Acoustic Models

All training data were processed to extract 12 mel-frequency cepstral coefficients and the
normalized frame energy from each speech frame of 25 ms at every 10 ms. Each of the
eleven digit models was a strictly left-to-right HMM comprising 16 states and one Gaussian
with diagonal covariance per state. In addition, there were a 3-state “sil” model to capture
silence speech and a 1-state “sp” model to capture short pauses between digits. All HMMs
were trained by the EM algorithm. Thus, the dimension of the observation space d1 is 13
and that of the speaker supervector space d2 = 11× 16 × 13 = 2288.

Firstly, the SI models were trained. Then an SD model was trained for each individual
speaker by borrowing the variances and transition matrices from the corresponding SI mod-
els, and only the Gaussian means were estimated. Furthermore, the sil and sp models were
simply copied to the SD model.

6.3 Experiments

The following five models/systems were compared:

SI: speaker-independent model

EV: speaker-adapted model found by the standard eigenvoice adaptation method.

Robust-EV: speaker-adapted models found by our robust version of EV, which is the in-
terpolation between the SI supervector and the supervector found by EV. That is,

s(rev) = w0s
(si) + (1 − w0)s

(ev) , 0.0 ≤ w0 ≤ 1.0 .

KEV: speaker-adapted model found by our new kernel eigenvoice adaptation method as
described in Section 4.

Robust-KEV: speaker-adapted model found by our robust KEV as described in Section 5.

All adaptation results are the averages of 5-fold cross-validation taken over all 163 test
speaker data. The detailed results using different numbers of eigenvoices are shown in
Figure 1, while the best result for each model is shown in Table 1.



Table 1: Word recognition accuracies of SI model and the best adapted models found by
EV, robust EV, KEV, and robust KEV using 2.1s, 4.1s, and 9.6s of adaptation speech.

SYSTEM 2.1s 4.1s 9.6s
SI 96.25
EV 95.61 95.65 95.67

robust EV 96.26 96.26 96.27
KEV 96.85 97.05 97.05

robust KEV 97.28 97.44 97.50

From Table 1, we observe that the standard eigenvoice approach cannot obtain better perfor-
mance than the SI model3. On the other hand, using our kernel eigenvoice (KEV) method,
we obtain a word error rate (WER) reduction of 16.0%, 21.3%, and 21.3% with 2.1s, 4.1s,
and 9.6s of adaptation speech over the SI model. When the SI model is interpolated with
the KEV model in our robust KEV method, the WER reduction further improves to 27.5%,
31.7%, and 33.3% respectively. These best results are obtained with 7 to 8 eigenvoices. The
results show that nonlinear PCA using composite kernels can be more effective in finding
the eigenvoices.

From Figure 1, the KEV method can outperform the SI model even with only two eigen-
voices using only 2.1s of speech. Its performance then improves slightly with more eigen-
voices or more adaptation data. If we allow interpolation with the SI model as in robust
KEV, the saturation effect is even more pronounced: even with one eigenvoice, the adap-
tation performance is already better than that of SI model, and then the performance does
not change much with more eigenvoices or adaptation data. The results seem to suggest
that the requirement that the adapted speaker supervector is a weighted sum of few eigen-
voices is both the strength and weakness of the method: on the one hand, fast adaptation
becomes possible since the number of estimation parameters is small, but adaptation sat-
urates quickly because the constraint is so restrictive that all mean vectors of different
acoustic models have to undergo the same linear combination of the eigenvoices.

7 Conclusions

In this paper, we improve the standard eigenvoice speaker adaptation method using ker-
nel PCA with a composite kernel. In the TIDIGITS task, it is found that while the stan-
dard eigenvoice approach does not help, our kernel eigenvoice method may outperform the
speaker-independent model by about 28–33% (in terms of error rate improvement).

Right now the speed of recognition using the adapted model that resulted from our kernel
eigenvoice method is slower than that from the standard eigenvoice method because any
state observation likelihoods cannot be directly computed but through evaluating the kernel
values with all training speaker supervectors. One possible solution is to apply sparse
kernel PCA [6] so that computation of the first M principal components involves only M
(instead of N with M � N ) kernel functions. Another direction is to use compactly
supported kernels [7], in which the value of κ(‖xi − xj‖) vanishes when ‖xi − xj‖ is

3The word accuracy of our SI model is not as good as the best reported result on TIDIGITS which
is about 99.7%. The main reasons are that we used only 13-dimensional static cepstra and energy, and
each state was modelled by a single Gaussian with diagonal covariance. The use of this simple model
allowed us to run experiments with 5-fold cross-validation using very short adaptation speech. Right
now our approach requires computation of many kernel function values and is very computationally
expensive. As a first attempt on the approach, we feel that the use of this simple model is justified.
We are now working on its speed-up and its extension to HMM states of Gaussian mixtures.
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Figure 1: Word recognition accuracies of adapted models found by KEV and robust KEV
using different numbers of eigenvoices.

greater than a certain threshold. The kernel matrix then becomes sparse. Moreover, no
more computation is required when ‖xi − xj‖ is large.
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