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ABSTRACT

End-to-end automatic speech recognition (ASR) has simpli-
fied the traditional ASR system building pipeline by elim-
inating the need to have multiple components and also the
requirement for expert linguistic knowledge for creating pro-
nunciation dictionaries. Therefore, end-to-end ASR fits well
when building systems for new domains. However, one major
drawback of end-to-end ASR is that, it is necessary to have a
larger amount of labeled speech in comparison to traditional
methods. Therefore, in this paper, we explore domain adapta-
tion approaches for end-to-end ASR in low-resource settings.
We show that joint domain identification and speech recog-
nition by inserting a symbol for domain at the beginning of
the label sequence, factorized hidden layer adaptation and a
domain-specific gating mechanism improve the performance
for a low-resource target domain. Furthermore, we also show
the robustness of proposed adaptation methods to an unseen
domain, when only 3 hours of untranscribed data is available
with improvements reporting upto 8.7% relative.

Index Terms— ASR, end to end speech recognition, do-
main adaptation

1. INTRODUCTION

The recent success in machine learning relies on the availabil-
ity of training data in large quantities. All machine learning
techniques, including deep learning-based methods, are sus-
ceptible to performance degradation due to the training and
testing mismatch. Therefore, when building automatic speech
recognition (ASR) systems, it is necessary to find transcribed
data from the real domain. However, it is expensive and time-
consuming to transcribe large amount of speech training data
for a new domain. To mitigate this issue, domain adapta-
tion techniques have been proposed to bootstrap the training
of a system for a new domain using a well-trained system
[1, 2, 3, 4, 5].

Most of the domain adaptation techniques are evaluated
In the context of hybrid deep neural network (DNN) / hid-
den Markov model (HMM)-based systems [1, 4, 5]. Another
approach is unsupervised augmentation of data for the target

domain as done using Variational autoencoder based method
in [3]. In [2], domain adaptation is investigated for end-to-
end acoustic models for distant speech recognition. However,
their approach can only be used when a parallel corpus is
available between source and target domains.

End-to-end ASR provides a simplified and elegant system
building pipeline by optimizing a single model instead of the
traditional way of building separate acoustic, language and
pronunciation models. Thus, one of the most attractive advan-
tages of end-to-end ASR is that these systems do not rely on
expert linguistic knowledge for building pronunciation dic-
tionaries. Therefore, end-to-end ASR fits well when building
systems for new domains. However, one major drawback of
end-to-end ASR is that, it is necessary to have a larger amount
of labeled speech in comparison to hybrid DNN/HMM sys-
tems. This can be a restricting factor in terms of performance
when deploying end-to-end ASR systems for new domains.

Therefore, in this paper, we explore domain adaptation
approaches for end-to-end ASR systems in low-resource set-
tings. There are two main stream for end-to-end ASR sys-
tems. Namely; connectionist temporal classification (CTC)
[6, 7] and attention-based encoder-decoder mechanism [8, 9,
10, 11]. In this work we use the hybrid attention/CTC archi-
tecture [12]. This hybrid architecture achieved state-of-the-
art performances for Chinese and Japanese ASR benchmarks
[12]. We investigate joint domain identification and ASR,
factorized hidden layer adaptation (FHL) [13], cluster adap-
tive training (CAT) [14] and a domain-specific gating mecha-
nism [15] to improve the performance for a low-resource tar-
get domain. We evaluate the proposed techniques by build-
ing an end-to-end system for conversational Hong Kong Can-
tonese telephony speech when only 37 hours of training data
is available. Furthermore, we also investigate the robustness
in adapting to a new domain which is not seen during training,
when only 3 hours of untranscribed data is available.

The rest of the paper is organized as follows. Section
2 describes the domain adaptation approaches to end-to-end
speech recognition. In Section 3, we give the details of the ex-
perimental setup. Results are presented in Section 4. Finally,
we summarize our findings in Section 5.



2. DOMAIN ADAPTATION

The simplest approach for domain adaptation is to use the val-
idation data from the target domain to guide the training. In
addition, this section discusses multiple ways of optimizing
an end-to-end model for a low-resource target domain when
the model is also trained with out-of-domain data. Moreover,
we detail how to perform the unsupervised domain adapta-
tion for a new target domain when the adaptation data is very
limited.

2.1. Joint domain identification and speech recognition

The intuition behind this approach is to make the model ex-
plicitly identifies the domain for a given sequence. It is possi-
ble to achieve this through multi-task learning where the do-
main classification can be used as an auxiliary objective [16].
However, multi-task learning is not desirable as our end-to-
end model uses multi-task learning with hybrid attention/CTC
architecture. Therefore, in this work we propose to do do-
main identification by expanding the character dictionary us-
ing a set of special tags, each of which corresponds to the
domain. This explicit identification by augmented output tar-
gets has been used in multi-lingual machine translation [17],
multi-dialect end-to-end ASR [18], and also for language in-
dependent end-to-end speech recognition [19]. Furthermore,
this approach has shown to be effective when there is code-
switching [20].

In this work, we assume the domain information is always
available. This is a realistic assumption because the target
domain is known in advance and the out-of-domain data is
only used during training. Moreover, there is no switching of
domains in a sequence. So each utterance can be conditioned
on the correct domain.

For multi-dialect ASR, it is shown that having dialect
identification after speech recognition is more beneficial be-
cause that speech recognition is more fragile to the errors
incurred in dialect identification. Therefore, it was found that
having dialect identification at the end of the label sequence
is more beneficial [18]. Therefore, in this work we explore
domain identification at the start of the sequence as well as
at the end. A Cantonese example for the target domain is
given below (English translation : “Although I really don’t
understand”):

• original sequence :

“雖然我真係唔係好明”

• domain identification before speech recognition:

“[D]雖然我真係唔係好明”

• domain identification after speech recognition:

“雖然我真係唔係好明[D]”

where [D] is the domain-specific tag.

2.2. Domain information as input vectors

To make the model aware of the domain, it is possible to pass
the domain information as a feature to the model [21, 22, 23]
to learn domain dependent biases. In this work, we concate-
nate input to each encoder layer with our domain-specific fea-
ture. We explore multiple ways of generating the domain spe-
cific feature. First, we use 1-hot vectors for each domain.
Second, we investigate the passing of channel (whether it is
telephony speech or smartphone recorded speech) or the style
(conversational vs read) into the domain-specific feature. We
also investigate linearly transforming the domain-specific fea-
tures to a higher dimension before being concatenated with
the output of the layer below.

2.3. Domain-specific gating

In [15], language-specific gating is used to modulate the hid-
den representations of a multi-lingual end-to-end model. In
that work, outputs of each hidden layer are processed by a
set of language-dependent gates before being inputted to the
next layer. In this paper, we investigate the effectiveness of
domain-specific gating to improve the performance of the tar-
get domain.

The domain specific gating is computed using the domain-
specific vector (vd for domain d) and the current (i-th) layer
output (hi) as given below:

g(hi,vd) = σ(Ahi + Bvd + b), (1)

where A,B and b are trainable parameters and σ is the sig-
moid function. Then, domain-specific output (ĥi) for the cur-
rent layer is calculated as

ĥi = g(hi,vd)� hi (2)

Finally, ĥi and vd is concatenated before being presented to
the next layer.

2.4. Cluster adaptive training

Cluster adaptive training (CAT) [24] is used successfully for
DNN adaptation [24, 14, 25]. Therefore, this paper also in-
vestigates the effectiveness of CAT for domain adaptation.
Since we are dealing with domain adaptation in low-resource
settings, we cannot estimate different bidirectional Long
Short Term Memory with projections (BLSTMPs) for each
domain and use 1-hot domain vectors to switch between clus-
ters. Therefore, we propose to apply CAT to the projection
(W) of the BLSTMP layers as given below:

Wd = W +

|vd|∑
i=1

vd(i)B(i) (3)

where {B(1),B(2), ..,B(|vd|)} is the set of basis matrices
for clusters and vd is the 1-hot domain vector.



2.5. Factorized hidden layer adaptation

Factorized hidden layer (FHL) adaptation has been intro-
duced for acoustic model adaptation [13, 26, 27] and has
shown to outperform CAT [28]. Therefore, we also investi-
gate the effectiveness of FHL for domain adaptation. Since
we are constrained from the availability of the data for some
domains, we propose only to estimate the FHL basis matrices
for the projections of the BLSTMP layers of the encoder.

The major difference between CAT and FHL is that FHL
uses rank 1 basis matrices while CAT uses full-rank. There-
fore, from (3) and by constraining basis matrices (B(i)s) to
rank 1:

Wd = W +

|vd|∑
i=1

vd(i)γ(i)ψ
>(i)

= W + ΓVdΨ
>, (4)

where B(i) = γ(i)ψ>(i) and Vd is a diagonal matrix (Vd =
diag(vd)) and γ(i), ψ(i) are i-th column vectors for Γ, Ψ
respectively. Since, FHL uses rank 1 basis matrices, we first
have to increase the dimensionality of the domain vector by
estimating a non-linear projection during training as given be-
low:

v̂d = σ(Λvd) (5)

where σ is the sigmoid function and |v̂d| > |vd|. Then, this
new domain vector can be used to estimate the bases for FHL
basis matrices as given below:

Wd = W + ΓV̂dΨ
l> (6)

where V̂d = diag(v̂d).

2.6. Unsupervised adaptation

So far, we have detailed multiple approaches to train a model
for a target domain that utilizes data from other domains. In
this section, we briefly explain how these well-trained models
can be adapted to a new domain when only a limited amount
of untranscribed data is available. This falls into unsuper-
vised adaptation where the data from the new target domain
are transcribed using the trained model before the adaptation
is conducted.

One issue with the joint domain identification and speech
recognition approach is that it is not possible to introduce a
new symbol for the new domain without retraining the en-
tire model. Therefore, in this work we only perform the new
domain adaptation for models trained with other approaches.
When the model uses domain vectors as a bias, we propose to
estimate a shift to the current target domain’s vector using the
new target domain data while keeping all other parameters of
the model fixed. For the case of domain-specific gating, we

Table 1. Details of the in-domain corpus (D) and the out-of-
domain corpora (C1, C2) used in this work.

Corpus ID Details

D

Hong Kong Cantonese mixed with English
Conversational speech
Telephone channel (8 kHz, 16bit)
46 hours

C1

Guangdong Cantonese mixed with English
Read speech
Smartphone channel (16 kHz, 16bit)
300 hours

C2

Guangdong Cantonese (non-mixed)
Conversational speech
Smartphone channel (16 kHz, 16bit)
700 hours

propose to estimate parameters of the gating layers A,B and
b from (1) while keeping the other parameters fixed. For the
case of CAT and FHL, it is also possible to estimate the ba-
sis matrices ({B(1),B(2), ..,B(|vd|)}) instead of updating
the domain-specific interpolation vector (vd) when more than
two hours of data are available.

3. EXPERIMENTAL SETUP

Table 1 shows the corpora used in this work. The target do-
main (D) is Hong Kong (HK) Cantonese conversational tele-
phone speech. HK conversational speech is also mixed with
general English words. However, we only have 46 hours of
target domain data which is considerably low for end-to-end
speech recognition. We are using 80% of the data for training
and 10% each for validation and testing. In addition, out-of-
domain corpora C1 and C2 are used to improve the perfor-
mance for the target domain (D). For all the corpora, sim-
plified Chinese characters were converted to traditional Chi-
nese symbols. The speech of the domain D is up-sampled
from 8 kHz to 16 kHz. We extract 80 dimensional filterbank
features with 3 dimensional pitch features [29] using Kaldi
[30]. We also perform the speed perturbation for the training
data of target domain D [31]. All our models use the hy-
brid attention/connectionist temporal classification architec-
ture [32, 12]. All the models has a 4-layer BLSTMP encoder
network. The final softmax layer has 5475 dimensions. These
experiments are implemented with the Pytorch [33] backend
on top of Espnet [32, 12] implementation. All results are re-
ported on the test set of the target domain (D). Finally, for the
unsupervised adaptation experiments, we use a new target do-
main which is not seen during training. This domain only has
3 hours of noisy telephony speech with considerable amount
of overlapped speech.



Table 2. Word error rates (WER %) for baselines.

Model WER Corpus
Baseline (M1) 46.0 D

+ speed peturb. (M2) 42.6 Dsp

Table 3. WER % for models trained using various combina-
tions of out-of-domain data.

Model WER Corpus
M3 37.9 Dsp + C1
M4 35.6 Dsp + C2
M5 35.1 Dsp + C1 + C2

4. RESULTS

Table 2 shows the results for the baseline models that are
trained only using the target domain data. The baseline which
is trained only using the training set of the target domain
reports 46.0%. During speed perturbation, two additional
copies of the target domain training set is created by modi-
fying the speed to 0.9 and 1.1 times of the original rate. This
creates a 3-fold training set. As can be seen clearly, speed
perturbation significantly improves the performance. For the
rest of the experiments, this speed perturbed target domain
training set is used.

Next, we investigate the effect of adding out-of-domain
data as shown in Table 3. As mentioned before, in all these
experiments, the validation set only contains the target do-
main data. The inclusion of out-of-domain data significantly
improves the performance. The best performance is reported
when both C1 and C2 are included. Therefore, in rest of our
experiments, we use both out-of-domain training sets as well
as the speed perturbed target domain training set.

In Table 4 we present the results for joint domain identifi-
cation and speech recognition. As clearly seen, the best per-
formance is reported when the domain identification is per-
formed before speech recognition. This observation is con-
tradictory to the findings of joint dialect identification and
speech recognition results mentioned in [18]. In that work,
authors found that if the dialect identification is performed
before speech recognition, the errors in dialect identification
degrade the final ASR performance. This can be due to mul-
tiple reasons. First, dialect identification is much harder than
domain identification and more likely to negatively influence
speech recognition. Second, our model is trained to optimize
for the target domain whereas their model is to recognize
multiple dialects. Third, they get dialect information based
on the geographical locations of speakers which can be very
noisy. Finally, we are use the hybrid attention/CTC archi-
tecture whereas they employ a pure attention-based model,
which makes the model more sensitive to the previous predic-
tions. For the rest of the experiments, domain identification is

Table 4. WER % for Joint domain identification and speech
recognition.

Model WER Domain Identification
M6 34.0 Before SR
M7 34.5 After SR

Table 5. WER % for various models when the domain vector
is used as a bias to the encoder.

Model WER Domain Vector Dimension
M8 35.1 3
M9 34.4 7
M10 34.0 100 (7)
M11 34.2 400 (7)
M12 34.2 500 (7)

always performed before the speech recognition.
Next, we investigate the effect of feeding domain infor-

mation as an input feature. In the experiments listed in Ta-
ble 5, we feed domain information as a bias to the encoder.
We explore two different representations for domain vectors.
First, we create a 1-hot domain indicator for each domain
which gives us a 3-dimensional 1-hot vector. The result for
that is shown in the first row. As can be clearly seen, the 3-
dimensional 1-hot vector degrades the performance. Second,
we concatenate 3-dimensional domain vector with a channel
1-hot vector and a speech style 1-hot vector. Since we have
two channels (telephone and smartphone), and two speech
styles (conversational and read), the final domain vector is
7-dimensional. For clarity, 7-dimensional domain vectors for
each domain are listed below:

• D : [1, 0, 0, 1, 0, 1, 0]
• C1 : [0, 1, 0, 0, 1, 0, 1]
• C2 : [0, 0, 1, 0, 1, 0, 1].

As seen from the second row, the 7-dimensional do-
main vector outperforms the 3-dimensional domain vector.
However, still degrading the performance compared to joint
domain identification and speech recognition (M7). Fur-
thermore, we also investigate the effect of projecting the
7-dimensional domain vector to higher dimensions for im-
provement. This slightly improves the performance and 100
dimensional projections give us the best result. However, it
seems that joint domain identification and domain vector-
based bias is not complementary.

Table 6 shows the results for cluster adaptive training. As
mentioned in Section 2.4, due to the limited availability of
the target domain data, CAT is only performed on projections
of BLSTMP layers. We use 7-dimensional domain vectors
as interpolation vectors for clusters. As can be seen in the
results, CAT degrades the performance significantly. We be-
lieve this degradation is mainly due to the limited availability



Table 6. WER % for cluster adaptive training on the BLSTMP
projections.

Model WER Clustered Layer
M13 37.5 All
M14 34.2 1
M15 34.6 2
M16 34.2 3
M17 39.6 4

Table 7. WER % for FHL and domain-specific gating exper-
iments.

Model WER Details
M18 33.7 FHL
M19 33.7 Gating

of the target domain data as a full-rank basis matrix should be
estimated for each cluster.

Next, we present the results for FHL and domain-specific
gating experiments. For both cases, 7-dimensional domain
vectors are used. We can see that both approaches report
similar improvements. Therefore, for the new target domain
adaptation experiments, we only consider FHL and domain-
specific gating approaches.

Finally, we conduct experiments to evaluate these domain
adaptation approaches for a new domain that is not seen dur-
ing training. However, it is worth highlighting that this unseen
domain is a bit similar to the original target domain D. Ta-
ble 8 provides a comparison of these two different domains.
In Table 9, we analyze the performances of various domain
adaptation approaches to the new target domain. As can be
clearly seen, the performance of the baseline (M5) degrades
significantly when domain is changed (from 35.1% to 58.6%)
highlighting the differences between two target domains. In
addition, without any adaptation, FHL enjoys the best perfor-
mance for the new target domain (56.6%) . Next, we perform
unsupervised adaptation only using 3 hours of new target do-
main data as illustrated in Section 2.6. Both FHL (53.5%) and
domain-specific gating (53.7%) enjoys significant improve-
ments from unsupervised adaptation.

Fig. 1 shows WERs for the number of adaptation itera-
tions. This result indicates that 3 iterations over the adapta-
tion data are sufficient. More importantly, it also highlights
the robustness of both FHL and domain-specific gating since
no overfitting is observed with more adaptation iterations.

5. CONCLUSION

In this paper, we detailed domain adaptation approaches for
end-to-end speech recognition in low resource settings. We
found that addition of out-of-domain data, while guiding the

Table 8. Comparison of the new target domain with the orig-
inal target domain (D).

characteristics original target domain new target domain
language HK Cantonese HK Cantonese
channel telephone telephone

mixed with English yes yes
speaker overlaps low high

condition clean noisy
content general telecommunication

style conversational conversational

Table 9. WER % for various approaches on the new target
domain test data. The performance for the original target
domain (D) is given in brackets.

Model First Pass Second pass
Dsp + C1 + C2 (M5) 58.6 (35.1) -

Joint (M7) 58.0 (34.0) -
FHL (M18) 56.6 (33.7) 53.5

Gating (M19) 58.1 (33.7) 53.7

Fig. 1. WER (%) for number of unsupervised adaptation iter-
ations.

training with a validation set from the target domain is to be
beneficial.In addition, joint domain identification and speech
recognition reported improvements while performing the do-
main identification first gave us more gains. Moreover, fac-
torized hidden layer adaptation (FHL) and domain-specific
gating considerably improved the domain adaptation perfor-
mances whereas providing domain information as a bias and
cluster adaptive training (CAT) on the projections of encoder
layers were not effective. Finally, we showed that both FHL
and domain-specific gating are robust to unsupervised adap-
tation to a new domain when only 3 hours of untranscribed
data is available.
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