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Abstract— Most contemporary laboratory recognizers re-
quire too much memory to run, and are too slow for
mass applications. One major cause of the problem is
the large parameter space of their acoustic models. In
this paper, we propose a new acoustic modeling methodol-
ogy which we call subspace distribution clustering hidden Markov
modeling (SDCHMM) with the aim at achieving much more
compact acoustic models. The theory of SDCHMM is
based on tying continuous density hidden Markov mod-
els (CDHMDMs) at a new finer sub-phonetic unit, namely the
subspace distribution. SDCHMMs can be converted from
CDHMDMSs by projecting the distributions of the CDHMMSs
onto orthogonal subspaces, and then tying similar sub-
space distributions over all states and all acoustic models
in each subspace. By exploiting the combinatorial effect of
subspace distribution encoding, all original full-space dis-
tributions can be represented by combinations of a small
number of subspace distribution prototypes. Consequently,
there is a great reduction in the number of model parame-
ters, and thus substantial savings in memory and computa-
tion. This renders SDCHMM very attractive in the prac-
tical implementation of acoustic models. Evaluation on the
ATIS (Airline Travel Information System) task shows that
in comparison to its parent CDHMM system, a converted
SDCHMM system achieves 7- to 18-fold reduction in mem-
ory requirement for acoustic models, and runs 30-60% faster
without any loss of recognition accuracy.

Keywords— Hidden Markov modelling, subspace distribu-
tion, distribution clustering.

I. INTRODUCTION

HE high computational cost of many state-of-the-art

automatic speech recognizers is a major impediment
to their deployment in mass applications. A significant
challenge is to adjust these recognizers so that they may
be run on more affordable machines of lower processing
power and smaller memory size without losing accuracy.
Techniques exist to reduce memory requirement alone, for
example, by using simpler but less accurate models, or
through data compression [1]. There are also techniques to
speed up computation alone: for example, by simply exer-
cising more vigorous pruning schemes, by computing state
likelihoods only from a small subset of the most relevant
state probability density distributions [2], [3], [4], [5], [6],
or by fast-match techniques [7]. However, these techniques
are usually done at the expense of recognition accuracy;
in the case of computation speedup, more memory is usu-
ally required. One of the most effective way to achieve all
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the three seemingly conflicting goals — faster recognition
speed, smaller memory footprint, and high accuracy — is
to reduce the number of parameters in the acoustic mod-
els. In general, a smaller model parameter space has the
following advantages:
« smaller memory requirement
« faster recognition
¢ requiring fewer training data
« requiring fewer data for speaker or environment adapta-
tion.

In this paper, we propose a more efficient acoustic mod-
eling methodology to arrive at a more compact recognizer.

A. Subspace Distribution Tying

The most common approach to reducing the num-
ber of parameters in acoustic models is parameter ty-
ing: Similar structures are discovered among the acous-
tic models, and they are then tied together to share
the same value. With the (limited) amount of train-
ing data on hand, parameter tying allows more complex
acoustic models to be estimated reliably while the num-
ber of model parameters will not grow unchecked. In
the past, the technique of parameter tying has been ap-
plied successfully at various granularities: Phones (context-
independent phones [8], generalized biphones/triphones
[9]), states (tied-state HMM [10], [11]), observation dis-
tributions (tied-mixture/semi-continuous HMM [12], [13],
[14]), and feature parameters [15] have all been tied. The
technology trend is to tie acoustic models at finer and finer
details so as to maintain good resolution among models as
much as possible. In this paper, we propose to push the
technique to an even finer sub-phonetic unit — subspace
distributions — in the context of hidden Markov modeling.
Subspace distributions are the projections of the full-space
distributions of an HMM in lower dimensional spaces. The
hypothesis is that speech sounds are more alike in some
acoustic subspaces than in the full acoustic space. We call
our novel HMM formulation “subspace distribution cluster-
ing hidden Markov modeling” (SDCHMM).

Subspace distribution clustering hidden Markov mod-
els (SDCHMMSs) can be derived from already existing con-
tinuous density hidden Markov models (CDHMMs) with-
out requiring any extra training data nor re-training. The
distributions of CDHMMSs are projected onto orthogonal
subspaces (or streams!), and similar subspace distributions
are then tied into a small number of distribution prototypes
over all states and all acoustic models in each subspace. By

n this paper, the two terms, “subspace” and “stream” are used
interchangeably to mean a feature space of dimension smaller than
that of the full feature space.



exploiting the combinatorial effect of subspace distribution
encoding, all original full-space distributions can be closely
approximated by some combinations of a small number of
subspace distribution prototypes. Consequently, there is
a great reduction in the number of model parameters, and
thus substantial savings in memory and computation. This
renders SDCHMM very attractive in practical implemen-
tation of acoustic models.

From the perspective of quantization, one may con-
sider SDCHMM as an approximation to the highly accu-
rate CDHMM, achieving great data compression by sub-
space distribution quantization. From the perspective
of hidden Markov modeling, SDCHMM unifies the the-
ory of CDHMM which employs full-space state probabil-
ity density distributions and the feature-parameter-tying
HMM [16], [15] which is generated by scalar quantization
of the distributions. SDCHMM combines the accuracy
of CDHMM with the compactness of feature-parameter-
tying HMM. In this aspect, it is interesting to compare this
work with a similar approach called “split vector quantiza-
tion” [17], [18] that has been successfully applied to high-
quality, low-bit rate speech coding for years. In speech cod-
ing, it is known that (full) vector quantization (VQ) results
in smaller quantization distortion than scalar quantization
at any given bit rate [19]. However, to attain the required
high quality in practical telecommunication, full VQ suffers
from training, memory, and computation problems much
like those of our current complex speech recognizers. Split
VQ overcomes the complexity problem of full VQ by split-
ting the speech vectors into sub-vectors of lower dimensions
and quantizing the sub-vectors in their subspaces.

The organization of this paper is as follows. In Section II,
we present the theory of SDCHMM. Section IIT describes
an implementation method in which SDCHMMs are con-
verted from CDHMMs through a simple Gaussian cluster-
ing algorithm. A coherent definition of the streams are
also proposed. The conversion method is evaluated in Sec-
tion IV on the ATIS task. The effect of different numbers of
streams and different amounts of tying will be studied and
evaluated on three metrics: accuracy, computation time,
and memory requirement. In Section V, we compare the
SDCHMM with two similar HMM methodologies. Finally,
we draw our conclusions in Section VI.

II. SuBsPACE DISTRIBUTION CLUSTERING HIDDEN
MARKOV MODEL

A. Theory of SDCHMM

The theory of SDCHMM is derived from that of the con-
tinuous density hidden Markov model (CDHMM). Let us
first consider a set of CDHMMSs (possibly with tied states)
in which state-observation distributions are estimated as
mixture Gaussian densities with M components and diag-
onal covariances. Using the following notations (where, as
usual, bold-faced quantities represent vectors):

0 : an observation vector of dimension D
P(O) : state output probability given O
cm @ weight of the m-th mixture component
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W,, : mean vector of the m-th component
2
o

2, @ variance vector of the m-th component
N () : Gaussian pdf

the state observation probability is given by

M M
PC‘DHMM(O) = Zcm N(O;um,ail), Zcmzl. (1)
m=1 m=1

The key observation is that a Gaussian with diagonal co-
variance can be expressed as a product of subspace Gaus-
sians where the subspaces (or streams) are orthogonal and
together span the original full feature vector space. For-
mally, let us denote the full vector space of dimension D
by R” with an orthonormal basis, which are composed of
the column vectors of the D x D identity matrix. RP is de-
composed into K orthogonal subspaces R of dimension
di, 1 <k < K, with the following conditions:

Condition 1:

K
> dy=D (2)
k=1
Condition 2:
RENRY =0, 1<i#j<K. (3)

Condition 3: The basis of each subspace is composed
of a subset of the basis vectors of the

full vector space.

Each of the original full-space Gaussians is projected
onto each of the K subspaces to obtain K subspace Gaus-
sians of dimension dy, 1 < k < K, with diagonal covari-
ances. That is, Equation (1) can be rewritten as

M K
PCDHMM(O) = Z Cm (H N(Ok: “mk:agnk)> (4)

m=1 k=1

where Oy, ®,,., and o-%lk are the projection of the observa-
tion O, and mean and variance vectors of the m-th mixture
component onto the k-th subspace respectively.

For each stream, we treat the subspace Gaussians as the
basic modeling unit, and tie them across all states of all
CDHMM acoustic models. Hence, the state observation
probability in Equation (4) is modified as

M K
PSDCHMM(O) = Z Cm (H Ntiﬁd(OkQ Nmk:aizk)> . (5)
m=1

k=1

The ensuing HMM will be called the subspace distribu-
tion clustering hidden Markov model (SDCHMM). Figure 1
shows an extension of various HMM tying schemes to in-
clude SDCHMMs. There are 4 streams in the example.
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Fig. 1: Subspace distribution clustering hidden Markov models with 4 streams
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A.1 Generalization

The foregoing SDCHMM formulation can be generalized
to any mixture density insofar as the component pdf F(O)
can be expressed as a product of subspace pdf’s of the same
functional form. That is,

K

FO) =[] 7O , (6)

k=1

provided that the three conditions on the subspaces men-
tioned above are satisfied. An obvious candidate for this
functional is a Gaussian pdf with block-diagonal covari-
ance.

While Gaussians with block-diagonal covariances or
other pdf functionals appear intriguing, they have not
been widely studied (except, e.g., [20]) in automatic speech
recognition. To keep our focus on the main issue of SD-
CHMM in this paper, we investigate only SDCHMMs based
on CDHMMs with mixture Gaussian densities and diago-
nal covariances.

B. Distribution Clustering

In practice, the proposed SDCHMM as in Equation (5)
can be obtained by clustering or quantizing the subspace
Gaussians of CDHMMSs in each stream. That is, to derive
K-stream SDCHMMSs from a set of CDHMMSs in which
there are originally a total of N full-space Gaussian distri-
butions, the subspace Gaussians in each stream are clus-
tered into a small set of L subspace Gaussian prototypes

Nquantized(ok; s U?k)’

1<I<L, 1<k<K

where L <« N. Each original subspace Gaussian is then
“approximated” by its nearest subspace Gaussian proto-

type
N(OM Kk Ufnk) ~ NquantiZEd(Ok; Higs UZQk)

with [ being given by

l= in dist
alrgmm is

a<L (N(Ok;umkaa?nk):

NquantiZEd(Ok;uqkaagk)) (7)

where dist(-) measures the distance between two Gaussian
distributions.

In this respect, SDCHMMs can be considered as an ap-
proximation to the conventional CDHMMs.

C. Why Are SDCHMMs Good?

If the subspace distributions are properly clustered, all
original full-space distributions can be represented by some
combinations of a small number of subspace distribution
prototypes with small quantization errors. The combina-
torial effect of subspace distribution encoding can be very
powerful: For instance, a 20-stream SDCHMM system with
as few as 2 subspace distribution prototypes per stream
can represent 220 = 1,048, 576 different full-space distribu-
tions. Of course, in reality, more prototypes are required
to ensure small quantization errors. This can be achieved
with more streams or more prototypes per stream.

SDCHMMs are also computationally efficient because if
a small number of the subspace Gaussians are shared by a



large number of full-space Gaussian components, all these
subspace Gaussian log likelihoods can be pre-computed
once and only once at the beginning of every frame, and
their values are stored in lookup tables. During Viterbi de-
coding [21] of a K-stream SDCHMM system, the log likeli-
hood of a Gaussian component of a state can be computed
as the summation of K pre-computed subspace Gaussian
log likelihoods and the log mixture weight.

III. MoODEL CONVERSION FROM CONTINUOUS DENSITY
HMMs

The formulation of the subspace distribution clustering
hidden Markov model as of Equation (5) of Section II sug-
gests that SDCHMMSs may be implemented in the following
two steps as shown in Figure 2:

1. Train continuous density hidden Markov models for all
the phonetic units (possibly with tied states), wherein state
observation distributions are estimated as mixture Gaus-
sian densities with diagonal covariances.

2. Convert the CDHMMs to SDCHMMs by tying the sub-
space Gaussians in each stream.

speech
training data

|

CDHMM
Training

Y

continuous density
HMM

\i

Subspace
Distribution
Clustering

subspace distribution
clustering HMM

Fig. 2: Conversion of CDHMMs to SDCHMMs
figure

stream

definition >

Since the training of CDHMMs is well covered in the
literature [22], [23], we will not repeat it here. Instead,
we assume that a set of (well-trained) CDHMMs is given,
and we focus only on the conversion of the CDHMM:s to
SDCHMMs.

Tying of subspace Gaussians consists of splitting the full
speech feature vector space into disjoint subspaces, project-
ing mixture Gaussians of CDHMMSs onto these subspaces,
and then clustering the subspace Gaussians into a small
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number of Gaussian prototypes in each subspace. In the
following, we describe various stream definitions and dis-
tribution clustering algorithms to tie subspace Gaussians.
They will be evaluated in the next Section.

A. Issue I: Stream Definition

To derive K-stream SDCHMDMs, we first have to par-
tition the feature set QP with D features into K disjoint
feature subsets Q% with dj features, 1 < k < K. Formally,
let 772 be such a partition, then

K
PR = {Qdk iy dy =D and QN = VJ} (8)

k=1

where 1 < k # j < K.

The partition 772 is optimal if subsequent tying of sub-
space Gaussians in the feature subspaces of the parti-
tion results in minimal total quantization error for a pre-
determined number of prototypes and clustering algorithm.
In general, the clustering problem cannot be solved analyti-
cally, and is tackled numerically using iterative procedures.
Since the total number of possible partitions is usually very
large, it is not feasible to determine the optimal partition
by numerically computing the quantization errors due to
all possible candidates. Thus some heuristic approach has
to be used to obtain a reasonable partition.

A.1 Common Streams

Our speech input comprises 39 features: 12 MFCCs,
normalized power, and their first- and second-order time
derivatives. By putting conceptually similar features to-
gether in a stream like the commonly-used streams in
discrete HMM and semi-continuous HMM), the following
“common” definitions of streams are explored:

1-stream definition:

| 12MFCC + 12AMFCC + 12A°MFCC + e + Ae + A%e

4-stream definition:

12MFCC
12AMFCC

12A2MFCC
e+ Ae+ AZe

13—stream definition:

12 % MFCC + AMFCC + A2MFCC
e+ Ae+ A2e

39—stream definition: each 1-dimensional feature is put
into one stream.

Note that 1-stream SDCHMMSs are identical with the
original CDHMMs, and 39-stream SDCHMNMs are the same
as feature-parameter-tying HMMs.
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A.2 Correlated-Feature Streams

We adopt the heuristic that correlated features, by def-
inition, should tend to cluster in a similar manner, and
require each stream to have the most correlated features.
Intuitively this criterion should result in smaller distortions
for the clustered subspace Gaussians. This definition has
the additional benefit of providing a single coherent defini-
tion for any arbitrary number of streams of any dimension.
Note that, although the features are assumed uncorrelated
locally within each Gaussian distribution (with diagonal
covariance), during clustering of the subspace Gaussians,
it is the global feature correlation that matters.

I. Multiple Correlation Measure

The correlation p;; between two variables is commonly
measured by Pearson’s moment product correlation coeffi-
cient

Oij

pij = 9)

UiO'j ’
where 0; and o; are the standard deviations of the i-th
and j-th variables respectively, and o;; is the square root
of their covariance. Nevertheless, multiple correlation mea-
sures among three or more variables are less studied. In the
statistics literature, multiple correlation is usually reduced
to a binary correlation [24]. However, this is inappropriate
in our context where a multiple correlation measure that
emphasizes mutual correlations among all variables at the
same time is more desirable. In this paper, we propose a
new definition of a multiple correlation coefficient R defined
as

def

R = 1 — determinant of correlation

matrix of the variables.

That is, the multiple correlation coefficient R among k
variables is,

1 p12 p13 P1k

p21 1 pos P2k
R=1_1pPa p32 1 P3k (10)

Pkt Pr2 Pr3 e 1

In the case when there are only two variables, R equals
the square of the moment product correlation coefficient.
It can also easily be shown that R has the following de-
sirable properties of a correlation measure:
e 0K<R<I1
o when all variables are correlated, i.e. Vi, j, p;j =1,R =1
o when all variables are uncorrelated, i.e. Vi,j, p;; =
0,R=0.

I1. Derivation of Streams

Practically, we apply a greedy algorithm [25] to obtain
streams in which the features are most correlated, as de-
picted in Algorithm 1. Tt is simple to modify the algorithm
in cases when the number of features D is not a multiple of
the number of streams K. Since the streams are restricted
to have the same dimension, the computation of multiple

TABLE I: ATIS: 20 correlated-feature streams
table

[ STREAM [ FEATURES |

1 Ci, AACl
2 Ca, AACQ
3 C3, AAC3
4 Cy4, AAC4
5 Cs, AAC5
6 Cg, AAC@
7 Cr, AAC7
8 cg, AACg
9 Co, AACQ
10 C10, AACH)
11 Ci1, AACH
12 C12, AAClg
13 Acy, Acy
14 ACQ, ACﬁ
15 AC3, AC{,
16 Acy, e

17 ACg, ACQ
18 Aclo, ACH
19 Ae, AAe
20 Aclg

correlation coefficients involves only determinants of any
n X n matrices obtained by deleting any (D — n) rows and
the corresponding columns from the D x D feature corre-
lation matrix — which needs to be computed once. As a
result, the algorithm is efficient.

Algorithm 1. Selection of the most correlated-feature streams
(of the same dimension)

Goal: Given D features, define K n-dimensional streams
with D = nkK.

Step 1. Compute the multiple correlation coefficient
among any set of n features according to Equation (10).
(There are totally C'(D,n) coefficients.)

Step 2. Sort the multiple correlation coefficients in de-
scending order, each tagged by an n-feature tuple indicat-
ing the features it computes from.

Step 3. Starting from the top, an n-feature tuple is moved
from the sorted list to the “solution list” if none of its
features already appear in any feature tuples of the solution
list.

Step 4. Repeat Step 3 until all features appear in the so-
lution list.

Step 5. The feature tuples in the “solution list” are the
K-stream definition.

Table I shows the definition of 20 correlated-feature
streams generated by Algorithm 1 using 1,000 utterances
from the ATIS training corpus. From the definition,
MFCC and A2MFCC are found mostly correlated.



B. Issue II: Subspace Gaussian Clustering

Two very different clustering schemes are investigated: A
bottom-up agglomerative clustering algorithm and a top-
down modified k-means (MKM) clustering algorithm.

B.1 Agglomerative Gaussian Clustering Algorithm

The ensemble merging algorithm for state tying described
in [26] can be applied without modification to cluster sub-
space Gaussians in each stream instead of HMM states. It
is a bottom-up agglomerative clustering scheme in which
two subspace Gaussians are merged if they result in mini-
mum increase in distortion (scatter). To avoid an otherwise
O(n?®) complexity, the algorithm introduces the heuristic
that at each iteration, the Gaussian corresponding to the
smallest training ensemble must be merged. As a result,
the algorithm has a complexity of O(n?).

B.2 Modified k-means Gaussian Clustering Algorithm

Algorithm 2 shows a novel O(JLn) modified k-means
clustering algorithm which derives L subspace Gaussian
prototypes from n Gaussians, in J iterations without using
any heuristics. With JL < n for large acoustic models, the
linearity in n implies improved efficiency (over the ensemble
merging algorithm).

Algorithm 2:
rithm

Goal: To derive K-stream SDCHMMs with L subspace
Gaussian prototypes per stream.

Step 1. Initialization: First train a 1-stream Gaussian mix-
ture model with L components. Project each of the L
Gaussian components onto the K subspaces according to
the given K-stream specification. The resultant KL sub-
space Gaussians will be used as initial subspace Gaussian
prototypes.

Step 2. Similarly project each Gaussian pdf in the original
CDHMDMs onto the K subspaces.

Step 3. For each stream, repeat Step 4 & 5 until some con-
vergence criterion is met.

Step 4. Membership: Associate each subspace Gaussian of
CDHMMSs with its nearest prototype as determined by
their Bhattacharyya distance.

Step 5. Update: Merge all subspace Gaussians which share
the same nearest prototype to become the new subspace
Gaussian prototypes.

Modified k-means Gaussians clustering algo-

To compute the distance between two Gaussians during
distribution clustering, we adopt the classification-based
Bhattacharyya distance, which is defined as

248,17
Dot = 1y = )" [ZE22] " (y — )

DIED I
1 2

+ 2 In 11
RV YN (11)
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where, p; and X;, ¢ = 1,2, are the means and covariances of
the two Gaussians [27]. The Bhattacharyya distance has
been used in several speech-related tasks [28], [29], [30],
leading to good results. The Bhattacharyya distance cap-
tures both the first- and the second-order statistics, and
is expected to give better clustering results than the Eu-
clidean distortion measure employed in the Agglomerative
Gaussian Clustering Algorithm, which makes use of only
the first-order statistics.

To initiate the iterative k-means clustering procedure for
the conversion of CDHMMs to K-stream SDCHMMs with
L subspace Gaussian prototypes per stream, we first train
a Gaussian mixture model with L components using 1,000
ATIS training utterances. The L Gaussians are split into
L subspace Gaussians for each stream, which are then used
as seeds for clustering. If no training data is available, one
may, for example, randomly pick L subspace Gaussians
from the CDHMMs to start the clustering procedure.

IV. EvVALUATION OF SDCHMM
A. The ATIS task

The Air Travel Information System (ATIS) [31] is a
medium-vocabulary, spontaneous, and goal-directed speech
recognition task. An ATIS system allows users to speak
naturally to inquire about air travel information stored as
a relational database which is derived from the American
Official Airline Guide. To date, the ATIS corpora contain
nearly 25,000 utterances with a vocabulary size of 1,536
words. The query database includes information on 23,457
air flights for 46 cities and 52 airports in the United States
and Canada. A set of 981 utterances were set aside for the
1994 ARPA-ATIS evaluation.

B. The Baseline CDHMM Recognizer

Our baseline system consists of AT&T’s ATIS recognizer
used in the 1994 ARPA-ATIS evaluation [32]. The con-
figurations, testing conditions, and performance of both
the context-independent (CI) and context-dependent (CD)
baseline systems are described in Table II.

The recognizer frontend is based on mel-frequency cep-
stral analysis of input speech sampled at 16kHz. At every
10ms, 31 mel-frequency energy components are computed
from a filter bank by performing an FFT on a frame of 20ms
of speech. The energies are converted to 12 mel-frequency
cepstral coefficients (MFCCs) by cosine transform. Cep-
stral mean subtraction is then performed using the average
MFCCs per utterance. Finally a speech feature vector for
one frame is composed from 39 components: 12 MFCCs
and normalized power, and their first- and second-order
time derivatives computed as follows:

z[t] = normalized MFCC or power
Azft] = 2z[t+2]+z[t +1] — 2]t — 1] — 22[t — 2]
AAz[t] = Azt +1] - Az[t—-1].

C. Ewaluation

All components of the baseline recognizers are kept in-
tact, except that their acoustic models are converted from
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TABLE II: ATIS: Testing conditions and performance of the baseline CI/CD systems

table

CONDITION/PERFORMANCE [ CI SYSTEM

[ CD SYSTEM

#Test Sentences

981 (1994 ARPA-ATIS evaluation set)

Vocabulary

1,536 words

Language Model

word-sequence bigram (perplexity & 20)

#Training Utterances

~12,000 ATIS

~20,000 ATIS + ~8,000 WSJ

#HMMs 48 9,769

#States 142 3,916 (tied)
Max. #Mixtures per State 16 20

#Gaussians (39-dimensional) | 2,254 76,154
#Acoustic Parameters 178,066 6,016,166

Search one-pass Viterbi beam search
Lexical Structure lexical tree linear lexicon
Beam-Width 100 170

CPU 150MHz MIPS R4400 | 195MHZ MIPS R10000
Word Error Rate 9.4% 5.2%

Time (x real-time) 1.93 7.06

HMM Memory Usage 0.71MB 24MB

CDHMMs to SDCHMMs. The testing conditions are ex-
actly the same as those described in Table II. All subspace
Gaussian log-likelihoods are pre-computed at the begin-
ning of each frame, and their values are stored in tables in
contiguous memory?. In addition, for implementation and
system simplicity, all streams are tied to the same number
of subspace Gaussian prototypes in all our SDCHMMs.

C.1 I. Stream Definitions and Clustering Algorithms

With the two types of stream definitions of Section III-
A and the two clustering algorithms of Section ITI-B, four
different combinations of stream definitions and clustering
algorithms are tested using 13 streams:

« common stream definition 4+ ensemble merging

o common stream definition + modified k-means Gaussian
clustering

o correlated-feature stream definition 4+ ensemble merging
o correlated-feature stream definition + modified k-means
Gaussian clustering.

Thirteen streams are chosen because both the common
stream definition and the correlated-feature stream defini-
tion readily apply. Each stream consists of exactly three
features, and is tied to 8-256 subspace Gaussian proto-
types. Each of the ensuing 13-stream SDCHMM systems
is then tested on the 1994 ATIS evaluation dataset.

Figure 3(a) and (b) show incremental improvements in
recognition performance when correlated-feature streams
and/or the modified k-means Gaussian clustering algo-
rithm are used. The incremental improvement due to either
correlated-feature streams or the modified k-means Gaus-

2We have also tried to compute the subspace Gaussian log-
likelihoods on the fly during decoding, but unless when there are
more than 512 prototypes per stream, pre-computation of the log-
likelihoods always entails faster recognition.

sian clustering algorithm alone is similar in the case of CI
models. In the case of CD models, most of the gain in
accuracy comes from the modified k-means Gaussian clus-
tering algorithm. Nonetheless, the improvements are ob-
served with both CI and CD models at almost all levels of
quantization — various numbers of subspace Gaussian pro-
totypes. This shows that by bringing more knowledge into
play — correlation in the correlated-feature stream defini-
tion and second-order statistics in the modified k-means
Gaussian clustering algorithm, better subspace Gaussian
tying is achieved.

Henceforth, all experiments are run with SDCHMMs de-
rived using the modified k-means Gaussian clustering al-
gorithm with correlated-feature streams except for the 4-
streem SDCHMMSs which are derived with the common
4-stream definition.

C.2 II. Recognition Accuracy

The baseline CI(CD) CDHMMs are converted to
CI(CD) SDCHMMs with 8-256 (2-256) subspace Gaussian
prototypes per stream. One, 4, 13, 20, and 39 streams are
tried. Figure 4 shows their recognition accuracies in terms
of word error rate (WER).

In general, WER decreases with more streams and more
prototypes as expected, since more streams of smaller di-
mensions should result in smaller distortions when the sub-
space Gaussians are quantized, and more prototypes should
give smaller quantization errors. For example, 39-stream
CD SDCHMMs obtain the best WER of 5.0% with 16
subspace Gaussian prototypes, while 20-stream CD SDCH-
MMs require 64 prototypes, and 13-stream CD SDCHMMs
reach their best WER of 5.2% with at least 128 prototypes.
The best CI SDCHMMSs (with 20 streams and 128 proto-
types, or 39 streams and 32 prototypes) compare well with
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Fig. 3: ATIS: Recognition accuracy of 13-stream figure
SDCHMMs with various stream definitions
and clustering schemes

the baseline CI CDHMMSs (9.5% vs. 9.4%), and the best
CD SDCHMMs (with 20 streams and 64 prototypes, or 39
streams and 16 prototypes) actually outperform the base-
line CD CDHMMs (5.0% vs. 5.2%). This suggests that
some of the original CD CDHMMs may not be well trained,
and subspace Gaussian tying may help improve these poor
models by interpolating them with the better-trained mod-
els, or by pooling together more training data for them.

C.3 II. Recognition Speed

The corresponding total recognition times of the SD-
CHMM systems of Figure 4 are presented in Figure 5 rel-
ative to real-time performance. The relationships between
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Fig. 4. ATIS: Effect of number of streams and sub- figure
space Gaussian prototypes on SDCHMM
recognition accuracy (the best systems of
Table Il are marked with squares)

recognition speed and the number of prototypes are gener-
ally parabolas that curve upwards. The longer recognition
time at the two ends of the parabolic curves are due to two
very different effects:

« More prototypes simply require more computation for
the subspace Gaussian log-likelihoods.

o Fewer prototypes lead to poorer SDCHMMs (due to
larger quantization errors) with less discriminating power
and more active states during a Viterbi search (using the
same beam-width), and thus more computation.

The CD SDCHMM system is quite insensitive to the first
effect when compared with the CI SDCHMM system. It is
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C.4 Summary of Best Results

From the discussion above, there is a trade-off between
recognition accuracy and recognition speed by adjusting
the number of streams and the number of prototypes. By
overlaying Figure 5 onto Figure 4, the best SDCHMM
recognition systems with various numbers of streams are
determined and summarized in Table III.

TABLE IIl: ATIS:  Summary of the best re-
sults(K = #streams, n = gtsubspace
Gaussian prototypes per stream, Cl = con-
text independent, CD = context dependent,
WER = word error rate (%), TIME
is relative to that of the baseline system,
PR = parameter reduction, and MS = mem-
ory savings. For PR, figures in parentheses
take into account the mappings of subspace

Gaussians to the full-space Gaussians. For
MS, 1-byte mappings are assumed.)
table
< | Cl/CD | K | n | WER | TIME | PR | MS |
e CI | 1| 2254 | 94 | 1.00 1 1
e —— 20-stream
o 0 —— S9stream CI 13| 256 9.7 0.72 | 8(3.5) | 6.1
B CI 20 | 128 9.5 0.70 | 15(3.1) | 7.6
?Hg o, CI 39 32 9.5 0.70 | 38 (1.9) | 6.7
s CD 1 | 76154 5.2 1.00 1 1
E CD 4 256 5.8 0.42 | 63 (15) | 35
:% 777777777777777 baseline COHMM time=7.0 ____ CD 13| 128 5.2 0.44 | 70 (5.6) | 18
g . ) . CD 20 64 5.0 0.50 | 74 (3.8) | 13
& \\ CD 39 32 5.0 0.67 | 77 (2.0) | 7.3
: o
. N,
S The CD SDCHMMs perform better than the CI SDCH-
2 4 8 16 32 64 128 256 MMs when compared with their respective baseline sys-

No. of Subspace Gaussian Prototypes Per Stream

(b) Context-dependent models

Fig. 5. ATIS: Effect of number of streams and sub- figure
space Gaussian prototypes on SDCHMM
recognition speed (the best systems of Ta-
ble Ill are marked with squares)

because there are about 10 times more active states dur-
ing decoding in the CD system. With the large number
of active states in the CD system, the pre-computation of
subspace Gaussian log-likelihoods represents a small pro-
portion of the total computation time.

The impact of the number of streams on recognition
speed is complicated by the above two effects, but in gen-
eral, more streams means more additions in the computa-
tion of state log-likelihoods (Equation (5)) and more (soft-
ware) function calls, hence longer recognition time.

tems. The CD SDCHMMs require fewer prototypes but
give relatively better accuracies, higher computation ef-
ficiency, greater memory savings and larger reduction in
model parameters. The most plausible explanation is that
the CI models are less complex and robustly trained due
to the large amount of available training data. Further ty-
ing of CI model parameters renders over-smoothing of the
parameters. As a result, more prototypes are required to
maintain acceptable quantization errors. On the contrary,
the CD SDCHMMs are highly complex, and modeling the
rare triphones has always been a problem. Obviously, re-
sults of Table IIT suggest that some triphones are still not
well trained, and further tying at the smaller sub-phonetic
unit of subspace Gaussians can effectively reduce the model
parameter space to obtain more robust models. Neverthe-
less, it is still amazing to see that the 76,154 Gaussians
of the baseline context-dependent CDHMMSs can be repre-
sented by 32 — 128 subspace Gaussians per stream.
Thirteen, 20, or 39 streams all work well in both CD
or CI systems, but their impacts on savings in computa-
tion, memory, model parameters and accuracy are quite
different. For the CI systems, 13- to 39-stream SDCH-
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MMs all give similar performance in terms of accuracy,
speed and memory requirement. The only difference lies
in their number of model parameters: 39-stream SDCH-
MMs (with 1-dimensional scalar streams) have the fewest
model parameters if one does not count the subspace Gaus-
sian encoding parameters, thanks to the efficiency of scalar
quantization which requires fewer prototypes. However,
once we include the encoding parameters, 39-stream SD-
CHMDMs require more model parameters than SDCHMMs
with fewer streams because they consume one encoding pa-
rameter per stream for each subspace Gaussian. On the
other hand, since there are many more distributions and
HMM state evaluations in CD systems than in CI systems,
the greater sharing of Gaussian parameters in CD SDCH-
MMs entails greater savings in computation, memory, and
model parameters.

Various statistical significance tests from NIST (National
Institute of Standards and Technology) are run on the per-
formance differences among the recognition systems of Ta-
ble III. Most of the tests indicate no significant difference
among the various CI(CD) systems. The only test that
indicates a difference actually finds the SDCHMM systems
more accurate.

C.5 Operating Curves

The foregoing discussion that is based on Viterbi decod-
ing using one particular beam-width can be biased. Fig-
ure 6 studies the effect of beam-width on various SDCHMM
systems of Table IIT with their operating curves.

The asymptotic performances of CI SDCHMMs are basi-
cally the same as those of their parent CI CDHMMs, while
CD SDCHMMs outperform CD CDHMMs asymptotically.
In addition, the SDCHMM curves always lie to the left of
the CDHMM curve on each graph; thus SDCHMM sys-
tems are always faster. Similarly, operating curves of SD-
CHMMSs with fewer streams also lie to the left of SDCH-
MMs with more streams though they may saturate sooner
with poorer accuracies (for example, compare the operat-
ing curves of 20-stream and 39-stream CI SDCHMMs, or
those of 13-stream and 20-stream CD SDCHMMs). The
best compromise seems to come from 20-stream SDCHMM
systems.

V. CoMPARISON WITH OTHER HMMSs

Our SDCHMM is very similar to two other hidden
Markov modeling methodologies: semi-continuous HMM
(SCHMM) [12], [13], [14] and feature-parameter-tying
HMM (FPTHMM) [16], [15].

A. With Semi-Continuous HMM

At first glance, SDCHMM may appear similar to
SCHMM: Both methods divide the feature space into
streams, and tie subspace distributions across all states of
all HMMs. However, close scrutiny shows that K-stream
SCHMMs compute the state likelihood differently as
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PSCHMM

H (Zcm N O, o k)) (12)

m=1

where ¢y, is the weight of the m-th mixture compo-
nent in the k-th stream satisfying the stochastic constraint
2%21 Cmk = 1.

Comparing Equation (12) with Equation (5), one finds
two differences:
o There is a switch between the product operator (J]) and
summation operator (>) in the two equations.
o In an SCHMM state, each of the K subspace Gaussians
is associated with its own mixture weight c;,,r, whereas
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one mixture weight ¢, is shared among all the K subspace
Gaussians of a SDCHMM state.

Both differences arise from the fact that SCHMMSs assume
stream independence in the global feature space, whereas
SDCHMMs assume stream independence in the local fea-
ture space — an assumption inherited from CDHMMSs with
mixture Gaussian densities and diagonal covariances. That
is, for each state, SCHMMSs estimate one mixture Gaussian
density from each of the streams independently, and then
combine the subspace Gaussian likelihoods by assuming
again independent streams. However, the assumption of
feature independence between the streams commonly used
in speech recognition is hardly justified. SDCHMMs there-
fore start with CDHMMSs using the full feature speech vec-
tors without assuming any feature independence. The cor-
relation between features at each state is well modeled by a
mixture Gaussian density. An implication of the difference
in the scope of the assumptions is the number of streams
required: The SCHMM favors fewer streams of higher di-
mensions, so that correlation among more features can be
modeled and there will be fewer mixture weights; on the
contrary, SDCHMM favors more streams of lower dimen-
sions so that quantization of the subspace Gaussians of
CDHMMs will give smaller quantization errors and more
accurate models.

Another difference between SDCHMM and SCHMM
not readily observed from Equations (5) and (12) is that
SCHMM requires each state to have the same number of
mixture components equal to the number of distribution
prototypes while SDCHMM does not. As a result, SD-
CHMM usually has many fewer mixture components per
state, and thus has the following advantages over SCHMM:
o Fewer components mean fewer mixture weights which
then take less memory space.

o Fewer components are involved in state likelihood com-
putation which then takes less CPU time.

From the evaluation result in Section IV, the best SD-
CHMM systems have 13 or 20 streams with 32-128 sub-
space Gaussian prototypes. In contrast, from the litera-
ture, SCHMM systems usually require 64-512 prototypes
using 3 or 4 streams. If these figures are representative, SD-
CHMM should require less model memory than SCHMM.

B. With Feature-Parameter-Tying HMM

The feature-parameter-tying HMM turns out to be a spe-
cial case of our SDCHMM when the number of streams, K,
is set to the size of the feature vector, D. In a sense, the
FPTHMM is the scalar quantization (SQ) version of our
SDCHMM. However, we note that,

1. the main storage cost of SDCHMNMs is incurred by the
subspace Gaussian encoding indices which grow in propor-
tion with the number of streams; and,

2. the computational cost of the state log-likelihood (Equa-
tion (5)) is directly proportional to the number of streams
once all subspace Gaussian likelihoods are pre-computed.
Thus, although SQ of the subspace Gaussians in FPTH-
MMs has the advantage of simplicity and generally gives
the highest compression of subspace Gaussians, it needs

more storage space and more computation time than SD-
CHMMs with K < D. The difference is more conspicuous
for large systems.

The evaluation results of Section IV, for example, Fig-
ure 6, have confirmed this.

VI. SUMMARY AND CONCLUSION

Continuous density hidden Markov modeling has been a
milestone in the advancement of automatic speech recog-
nition. However, its accuracy is achieved at the expense
of high computational cost. In this paper, we show that
subspace distribution clustering hidden Markov modeling
can produce acoustic models that are as accurate as the
CDHMMSs, and yet they are much more compact. For
example, on the ATIS task, compared with the baseline
CDHMM system, the best context-dependent (context-
independent) SDCHMM system saves the total computa-
tion time by 50% (30%) and obtains a 13-fold (8-fold) re-
duction in HMM memory with a relative 4% gain (1% drop)
in accuracy.

SDCHMMSs can be converted from a set of CDHMMs
by properly projecting the mixture Gaussians of the
CDHMMs onto subspaces, and carefully tying the ensuing
subspace Gaussians. We propose to put the most corre-
lated features into a stream. This correlated-feature stream
definition, though not guaranteed optimal, is shown em-
pirically giving good results. A modified k-means Gaus-
sian clustering algorithm is also devised to tie the subspace
Gaussians.

The CD SDCHMMs show greater relative improvements
than the CI SDCHMMSs probably due to the higher de-
gree of redundancy and decreased robustness of the CD
CDHMMSs. One may thus postulate that SDCHMMs may
be more effective with larger acoustic models.

The impact of the number of streams on accuracy, com-
putation time, and memory size is complicated. All things
considered, 13 and 20 streams seem to be better choices.

Re-training of the converted CI SDCHMMs has also been
studied, and no significant improvement is observed. Since
the converted CD SDCHMDMs already surpass the base-
line performance and training CD models requires a lot of
fine-tuning, we thus did not attempt to re-train the CD
SDCHMDMs. Based on our experience with re-training the
CI SDCHMMs, we are not surprised that re-training will
not improve the CD SDCHMMs.

With the great reduction of Gaussian parameters (mix-
ture weights, Gaussian means, and variances) by one to
two orders of magnitude, one should expect SDCHMMs to
be trained from scratch with much less training data than
their parent CDHMMs. It should also be easier to adapt
these fewer parameters for a new speaker or to another en-
vironment. These open exciting directions for our future
work.
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