
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING. 1Subspace Distribution Clustering Hidden MarkovModelEnrico Bocchieri, Member, IEEE, and Brian Mak, Member, IEEEAbstract|Most contemporary laboratory recognizers re-quire too much memory to run, and are too slow formass applications. One major cause of the problem isthe large parameter space of their acoustic models. Inthis paper, we propose a new acoustic modeling methodol-ogy which we call subspace distribution clustering hidden Markovmodeling (SDCHMM) with the aim at achieving much morecompact acoustic models. The theory of SDCHMM isbased on tying continuous density hidden Markov mod-els (CDHMMs) at a new �ner sub-phonetic unit, namely thesubspace distribution. SDCHMMs can be converted fromCDHMMs by projecting the distributions of the CDHMMsonto orthogonal subspaces, and then tying similar sub-space distributions over all states and all acoustic modelsin each subspace. By exploiting the combinatorial e�ect ofsubspace distribution encoding, all original full-space dis-tributions can be represented by combinations of a smallnumber of subspace distribution prototypes. Consequently,there is a great reduction in the number of model parame-ters, and thus substantial savings in memory and computa-tion. This renders SDCHMM very attractive in the prac-tical implementation of acoustic models. Evaluation on theATIS (Airline Travel Information System) task shows thatin comparison to its parent CDHMM system, a convertedSDCHMM system achieves 7- to 18-fold reduction in mem-ory requirement for acoustic models, and runs 30{60% fasterwithout any loss of recognition accuracy.Keywords|Hidden Markov modelling, subspace distribu-tion, distribution clustering.I. IntroductionTHE high computational cost of many state-of-the-artautomatic speech recognizers is a major impedimentto their deployment in mass applications. A signi�cantchallenge is to adjust these recognizers so that they maybe run on more a�ordable machines of lower processingpower and smaller memory size without losing accuracy.Techniques exist to reduce memory requirement alone, forexample, by using simpler but less accurate models, orthrough data compression [1]. There are also techniques tospeed up computation alone: for example, by simply exer-cising more vigorous pruning schemes, by computing statelikelihoods only from a small subset of the most relevantstate probability density distributions [2], [3], [4], [5], [6],or by fast-match techniques [7]. However, these techniquesare usually done at the expense of recognition accuracy;in the case of computation speedup, more memory is usu-ally required. One of the most e�ective way to achieve allEnrico Bocchieri is with the AT&T Labs { Research, Florham Park,NJ 07932, USA. E-mail: enrico@research.att.com.Brian Mak is with the Department of Computer Science, the HongKong University of Science and Technology, Clear Water Bay, HongKong. This work is �nished when he was a PhD candidate of Ore-gon Graduate Institute of Science and Technology, Portland, Oregon,USA, and a Research Consultant at the AT&T Labs { Research. E-mail: mak@cs.ust.hk.

the three seemingly conicting goals | faster recognitionspeed, smaller memory footprint, and high accuracy | isto reduce the number of parameters in the acoustic mod-els. In general, a smaller model parameter space has thefollowing advantages:� smaller memory requirement� faster recognition� requiring fewer training data� requiring fewer data for speaker or environment adapta-tion.In this paper, we propose a more e�cient acoustic mod-eling methodology to arrive at a more compact recognizer.A. Subspace Distribution TyingThe most common approach to reducing the num-ber of parameters in acoustic models is parameter ty-ing: Similar structures are discovered among the acous-tic models, and they are then tied together to sharethe same value. With the (limited) amount of train-ing data on hand, parameter tying allows more complexacoustic models to be estimated reliably while the num-ber of model parameters will not grow unchecked. Inthe past, the technique of parameter tying has been ap-plied successfully at various granularities: Phones (context-independent phones [8], generalized biphones/triphones[9]), states (tied-state HMM [10], [11]), observation dis-tributions (tied-mixture/semi-continuous HMM [12], [13],[14]), and feature parameters [15] have all been tied. Thetechnology trend is to tie acoustic models at �ner and �nerdetails so as to maintain good resolution among models asmuch as possible. In this paper, we propose to push thetechnique to an even �ner sub-phonetic unit | subspacedistributions | in the context of hidden Markov modeling.Subspace distributions are the projections of the full-spacedistributions of an HMM in lower dimensional spaces. Thehypothesis is that speech sounds are more alike in someacoustic subspaces than in the full acoustic space. We callour novel HMM formulation \subspace distribution cluster-ing hidden Markov modeling" (SDCHMM).Subspace distribution clustering hidden Markov mod-els (SDCHMMs) can be derived from already existing con-tinuous density hidden Markov models (CDHMMs) with-out requiring any extra training data nor re-training. Thedistributions of CDHMMs are projected onto orthogonalsubspaces (or streams1), and similar subspace distributionsare then tied into a small number of distribution prototypesover all states and all acoustic models in each subspace. By1In this paper, the two terms, \subspace" and \stream" are usedinterchangeably to mean a feature space of dimension smaller thanthat of the full feature space.



2 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.exploiting the combinatorial e�ect of subspace distributionencoding, all original full-space distributions can be closelyapproximated by some combinations of a small number ofsubspace distribution prototypes. Consequently, there isa great reduction in the number of model parameters, andthus substantial savings in memory and computation. Thisrenders SDCHMM very attractive in practical implemen-tation of acoustic models.From the perspective of quantization, one may con-sider SDCHMM as an approximation to the highly accu-rate CDHMM, achieving great data compression by sub-space distribution quantization. From the perspectiveof hidden Markov modeling, SDCHMM uni�es the the-ory of CDHMM which employs full-space state probabil-ity density distributions and the feature-parameter-tyingHMM [16], [15] which is generated by scalar quantizationof the distributions. SDCHMM combines the accuracyof CDHMM with the compactness of feature-parameter-tying HMM. In this aspect, it is interesting to compare thiswork with a similar approach called \split vector quantiza-tion" [17], [18] that has been successfully applied to high-quality, low-bit rate speech coding for years. In speech cod-ing, it is known that (full) vector quantization (VQ) resultsin smaller quantization distortion than scalar quantizationat any given bit rate [19]. However, to attain the requiredhigh quality in practical telecommunication, full VQ su�ersfrom training, memory, and computation problems muchlike those of our current complex speech recognizers. SplitVQ overcomes the complexity problem of full VQ by split-ting the speech vectors into sub-vectors of lower dimensionsand quantizing the sub-vectors in their subspaces.The organization of this paper is as follows. In Section II,we present the theory of SDCHMM. Section III describesan implementation method in which SDCHMMs are con-verted from CDHMMs through a simple Gaussian cluster-ing algorithm. A coherent de�nition of the streams arealso proposed. The conversion method is evaluated in Sec-tion IV on the ATIS task. The e�ect of di�erent numbers ofstreams and di�erent amounts of tying will be studied andevaluated on three metrics: accuracy, computation time,and memory requirement. In Section V, we compare theSDCHMM with two similar HMM methodologies. Finally,we draw our conclusions in Section VI.II. Subspace Distribution Clustering HiddenMarkov ModelA. Theory of SDCHMMThe theory of SDCHMM is derived from that of the con-tinuous density hidden Markov model (CDHMM). Let us�rst consider a set of CDHMMs (possibly with tied states)in which state-observation distributions are estimated asmixture Gaussian densities with M components and diag-onal covariances. Using the following notations (where, asusual, bold-faced quantities represent vectors):O : an observation vector of dimension DP (O) : state output probability given Ocm : weight of the m-th mixture component

�m : mean vector of the m-th component�2m : variance vector of the m-th componentN (�) : Gaussian pdfthe state observation probability is given byPCDHMM (O) = MXm=1 cm N (O;�m;�2m); MXm=1 cm = 1: (1)The key observation is that a Gaussian with diagonal co-variance can be expressed as a product of subspace Gaus-sians where the subspaces (or streams) are orthogonal andtogether span the original full feature vector space. For-mally, let us denote the full vector space of dimension Dby RD with an orthonormal basis, which are composed ofthe column vectors of the D�D identity matrix. RD is de-composed into K orthogonal subspaces Rdk of dimensiondk, 1 � k � K, with the following conditions:Condition 1: KXk=1 dk = D (2)Condition 2:Rdi \ Rdj = ;; 1 � i 6= j � K: (3)Condition 3: The basis of each subspace is composedof a subset of the basis vectors of thefull vector space.Each of the original full-space Gaussians is projectedonto each of the K subspaces to obtain K subspace Gaus-sians of dimension dk, 1 � k � K, with diagonal covari-ances. That is, Equation (1) can be rewritten asPCDHMM (O) = MXm=1 cm KYk=1N (Ok;�mk;�2mk)! (4)where Ok, �mk, and �2mk are the projection of the observa-tion O, and mean and variance vectors of the m-th mixturecomponent onto the k-th subspace respectively.For each stream, we treat the subspace Gaussians as thebasic modeling unit, and tie them across all states of allCDHMM acoustic models. Hence, the state observationprobability in Equation (4) is modi�ed asPSDCHMM (O) = MXm=1 cm KYk=1N tied(Ok;�mk;�2mk)! : (5)The ensuing HMM will be called the subspace distribu-tion clustering hidden Markov model (SDCHMM). Figure 1shows an extension of various HMM tying schemes to in-clude SDCHMMs. There are 4 streams in the example.
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Fig. 1: Subspace distribution clustering hidden Markov models with 4 streams�gureA.1 GeneralizationThe foregoing SDCHMM formulation can be generalizedto any mixture density insofar as the component pdf F(O)can be expressed as a product of subspace pdf's of the samefunctional form. That is,F(O) = KYk=1F(Ok) ; (6)provided that the three conditions on the subspaces men-tioned above are satis�ed. An obvious candidate for thisfunctional is a Gaussian pdf with block-diagonal covari-ance.While Gaussians with block-diagonal covariances orother pdf functionals appear intriguing, they have notbeen widely studied (except, e.g., [20]) in automatic speechrecognition. To keep our focus on the main issue of SD-CHMM in this paper, we investigate only SDCHMMs basedon CDHMMs with mixture Gaussian densities and diago-nal covariances.B. Distribution ClusteringIn practice, the proposed SDCHMM as in Equation (5)can be obtained by clustering or quantizing the subspaceGaussians of CDHMMs in each stream. That is, to deriveK-stream SDCHMMs from a set of CDHMMs in whichthere are originally a total of N full-space Gaussian distri-butions, the subspace Gaussians in each stream are clus-tered into a small set of L subspace Gaussian prototypesN quantized(Ok;�lk;�2lk); 1 � l � L; 1 � k � K

where L � N . Each original subspace Gaussian is then\approximated" by its nearest subspace Gaussian proto-type N (Ok;�mk;�2mk) � N quantized(Ok;�lk;�2lk)with l being given byl = argmin1�q�L dist �N (Ok;�mk;�2mk);N quantized(Ok;�qk;�2qk)� (7)where dist(�) measures the distance between two Gaussiandistributions.In this respect, SDCHMMs can be considered as an ap-proximation to the conventional CDHMMs.C. Why Are SDCHMMs Good?If the subspace distributions are properly clustered, alloriginal full-space distributions can be represented by somecombinations of a small number of subspace distributionprototypes with small quantization errors. The combina-torial e�ect of subspace distribution encoding can be verypowerful: For instance, a 20-stream SDCHMM system withas few as 2 subspace distribution prototypes per streamcan represent 220 = 1; 048; 576 di�erent full-space distribu-tions. Of course, in reality, more prototypes are requiredto ensure small quantization errors. This can be achievedwith more streams or more prototypes per stream.SDCHMMs are also computationally e�cient because ifa small number of the subspace Gaussians are shared by a



4 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.large number of full-space Gaussian components, all thesesubspace Gaussian log likelihoods can be pre-computedonce and only once at the beginning of every frame, andtheir values are stored in lookup tables. During Viterbi de-coding [21] of a K-stream SDCHMM system, the log likeli-hood of a Gaussian component of a state can be computedas the summation of K pre-computed subspace Gaussianlog likelihoods and the log mixture weight.III. Model Conversion from Continuous DensityHMMsThe formulation of the subspace distribution clusteringhidden Markov model as of Equation (5) of Section II sug-gests that SDCHMMs may be implemented in the followingtwo steps as shown in Figure 2:1. Train continuous density hidden Markov models for allthe phonetic units (possibly with tied states), wherein stateobservation distributions are estimated as mixture Gaus-sian densities with diagonal covariances.2. Convert the CDHMMs to SDCHMMs by tying the sub-space Gaussians in each stream.
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Fig. 2: Conversion of CDHMMs to SDCHMMs�gureSince the training of CDHMMs is well covered in theliterature [22], [23], we will not repeat it here. Instead,we assume that a set of (well-trained) CDHMMs is given,and we focus only on the conversion of the CDHMMs toSDCHMMs.Tying of subspace Gaussians consists of splitting the fullspeech feature vector space into disjoint subspaces, project-ing mixture Gaussians of CDHMMs onto these subspaces,and then clustering the subspace Gaussians into a small

number of Gaussian prototypes in each subspace. In thefollowing, we describe various stream de�nitions and dis-tribution clustering algorithms to tie subspace Gaussians.They will be evaluated in the next Section.A. Issue I: Stream De�nitionTo derive K-stream SDCHMMs, we �rst have to par-tition the feature set 
D with D features into K disjointfeature subsets 
dk with dk features, 1 � k � K. Formally,let PDK be such a partition, thenPDK = (
dk : KXk=1 dk = D and 
dk \ 
dj = ;) (8)where 1 � k 6= j � K.The partition PDK is optimal if subsequent tying of sub-space Gaussians in the feature subspaces of the parti-tion results in minimal total quantization error for a pre-determined number of prototypes and clustering algorithm.In general, the clustering problem cannot be solved analyti-cally, and is tackled numerically using iterative procedures.Since the total number of possible partitions is usually verylarge, it is not feasible to determine the optimal partitionby numerically computing the quantization errors due toall possible candidates. Thus some heuristic approach hasto be used to obtain a reasonable partition.A.1 Common StreamsOur speech input comprises 39 features: 12 MFCCs,normalized power, and their �rst- and second-order timederivatives. By putting conceptually similar features to-gether in a stream like the commonly-used streams indiscrete HMM and semi-continuous HMM, the following\common" de�nitions of streams are explored:1{stream de�nition:12MFCC + 12�MFCC + 12�2MFCC + e+�e+�2e4{stream de�nition:12MFCC12�MFCC12�2MFCCe+�e+�2e13{stream de�nition:12 * MFCC +�MFCC +�2MFCCe+�e+�2e39{stream de�nition: each 1-dimensional feature is putinto one stream.Note that 1-stream SDCHMMs are identical with theoriginal CDHMMs, and 39-stream SDCHMMs are the sameas feature-parameter-tying HMMs.



BOCCHIERI AND MAK: SUBSPACE DISTRIBUTION CLUSTERING HIDDEN MARKOV MODEL 5A.2 Correlated-Feature StreamsWe adopt the heuristic that correlated features, by def-inition, should tend to cluster in a similar manner, andrequire each stream to have the most correlated features.Intuitively this criterion should result in smaller distortionsfor the clustered subspace Gaussians. This de�nition hasthe additional bene�t of providing a single coherent de�ni-tion for any arbitrary number of streams of any dimension.Note that, although the features are assumed uncorrelatedlocally within each Gaussian distribution (with diagonalcovariance), during clustering of the subspace Gaussians,it is the global feature correlation that matters.I. Multiple Correlation MeasureThe correlation �ij between two variables is commonlymeasured by Pearson's moment product correlation coe�-cient �ij = �ij�i�j ; (9)where �i and �j are the standard deviations of the i-thand j-th variables respectively, and �ij is the square rootof their covariance. Nevertheless, multiple correlation mea-sures among three or more variables are less studied. In thestatistics literature, multiple correlation is usually reducedto a binary correlation [24]. However, this is inappropriatein our context where a multiple correlation measure thatemphasizes mutual correlations among all variables at thesame time is more desirable. In this paper, we propose anew de�nition of a multiple correlation coe�cient R de�nedas R def= 1 � determinant of correlationmatrix of the variables:That is, the multiple correlation coe�cient R among kvariables is,R = 1� ����������� 1 �12 �13 � � � �1k�21 1 �23 � � � �2k�31 �32 1 � � � �3k... ... ... . . . ...�k1 �k2 �k3 � � � 1
����������� (10)In the case when there are only two variables, R equalsthe square of the moment product correlation coe�cient.It can also easily be shown that R has the following de-sirable properties of a correlation measure:� 0 � R � 1� when all variables are correlated, i.e. 8i; j; �ij = 1; R = 1� when all variables are uncorrelated, i.e. 8i; j; �ij =0; R = 0.II. Derivation of StreamsPractically, we apply a greedy algorithm [25] to obtainstreams in which the features are most correlated, as de-picted in Algorithm 1. It is simple to modify the algorithmin cases when the number of features D is not a multiple ofthe number of streams K. Since the streams are restrictedto have the same dimension, the computation of multiple

TABLE I: ATIS: 20 correlated-feature streamstable STREAM FEATURES1 c1, ��c12 c2, ��c23 c3, ��c34 c4, ��c45 c5, ��c56 c6, ��c67 c7, ��c78 c8, ��c89 c9, ��c910 c10, ��c1011 c11, ��c1112 c12, ��c1213 �c1, �c714 �c2, �c615 �c3, �c516 �c4, e17 �c8, �c918 �c10, �c1119 �e, ��e20 �c12correlation coe�cients involves only determinants of anyn� n matrices obtained by deleting any (D� n) rows andthe corresponding columns from the D �D feature corre-lation matrix | which needs to be computed once. As aresult, the algorithm is e�cient.Algorithm 1: Selection of the most correlated-feature streams(of the same dimension)Goal: Given D features, de�ne K n-dimensional streamswith D = nK.Step 1. Compute the multiple correlation coe�cientamong any set of n features according to Equation (10).(There are totally C(D;n) coe�cients.)Step 2. Sort the multiple correlation coe�cients in de-scending order, each tagged by an n-feature tuple indicat-ing the features it computes from.Step 3. Starting from the top, an n-feature tuple is movedfrom the sorted list to the \solution list" if none of itsfeatures already appear in any feature tuples of the solutionlist.Step 4. Repeat Step 3 until all features appear in the so-lution list.Step 5. The feature tuples in the \solution list" are theK-stream de�nition.Table I shows the de�nition of 20 correlated-featurestreams generated by Algorithm 1 using 1,000 utterancesfrom the ATIS training corpus. From the de�nition,MFCC and �2MFCC are found mostly correlated.



6 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.B. Issue II: Subspace Gaussian ClusteringTwo very di�erent clustering schemes are investigated: Abottom-up agglomerative clustering algorithm and a top-down modi�ed k-means (MKM) clustering algorithm.B.1 Agglomerative Gaussian Clustering AlgorithmThe ensemble merging algorithm for state tying describedin [26] can be applied without modi�cation to cluster sub-space Gaussians in each stream instead of HMM states. Itis a bottom-up agglomerative clustering scheme in whichtwo subspace Gaussians are merged if they result in mini-mum increase in distortion (scatter). To avoid an otherwiseO(n3) complexity, the algorithm introduces the heuristicthat at each iteration, the Gaussian corresponding to thesmallest training ensemble must be merged. As a result,the algorithm has a complexity of O(n2).B.2 Modi�ed k-means Gaussian Clustering AlgorithmAlgorithm 2 shows a novel O(JLn) modi�ed k-meansclustering algorithm which derives L subspace Gaussianprototypes from n Gaussians, in J iterations without usingany heuristics. With JL� n for large acoustic models, thelinearity in n implies improved e�ciency (over the ensemblemerging algorithm).Algorithm 2: Modi�ed k-means Gaussians clustering algo-rithmGoal: To derive K-stream SDCHMMs with L subspaceGaussian prototypes per stream.Step 1. Initialization: First train a 1-stream Gaussian mix-ture model with L components. Project each of the LGaussian components onto the K subspaces according tothe given K-stream speci�cation. The resultant KL sub-space Gaussians will be used as initial subspace Gaussianprototypes.Step 2. Similarly project each Gaussian pdf in the originalCDHMMs onto the K subspaces.Step 3. For each stream, repeat Step 4 & 5 until some con-vergence criterion is met.Step 4. Membership: Associate each subspace Gaussian ofCDHMMs with its nearest prototype as determined bytheir Bhattacharyya distance.Step 5. Update: Merge all subspace Gaussians which sharethe same nearest prototype to become the new subspaceGaussian prototypes.To compute the distance between two Gaussians duringdistribution clustering, we adopt the classi�cation-basedBhattacharyya distance, which is de�ned asDbhat = 18 (�2 � �1)T h�1+�22 i�1 (�2 � �1)+ 12 ln ����1+�22 ���pj�1jj�2j (11)

where, �i and�i, i = 1; 2, are the means and covariances ofthe two Gaussians [27]. The Bhattacharyya distance hasbeen used in several speech-related tasks [28], [29], [30],leading to good results. The Bhattacharyya distance cap-tures both the �rst- and the second-order statistics, andis expected to give better clustering results than the Eu-clidean distortion measure employed in the AgglomerativeGaussian Clustering Algorithm, which makes use of onlythe �rst-order statistics.To initiate the iterative k-means clustering procedure forthe conversion of CDHMMs to K-stream SDCHMMs withL subspace Gaussian prototypes per stream, we �rst traina Gaussian mixture model with L components using 1,000ATIS training utterances. The L Gaussians are split intoL subspace Gaussians for each stream, which are then usedas seeds for clustering. If no training data is available, onemay, for example, randomly pick L subspace Gaussiansfrom the CDHMMs to start the clustering procedure.IV. Evaluation of SDCHMMA. The ATIS taskThe Air Travel Information System (ATIS) [31] is amedium-vocabulary, spontaneous, and goal-directed speechrecognition task. An ATIS system allows users to speaknaturally to inquire about air travel information stored asa relational database which is derived from the AmericanO�cial Airline Guide. To date, the ATIS corpora containnearly 25,000 utterances with a vocabulary size of 1,536words. The query database includes information on 23,457air ights for 46 cities and 52 airports in the United Statesand Canada. A set of 981 utterances were set aside for the1994 ARPA{ATIS evaluation.B. The Baseline CDHMM RecognizerOur baseline system consists of AT&T's ATIS recognizerused in the 1994 ARPA{ATIS evaluation [32]. The con-�gurations, testing conditions, and performance of boththe context-independent (CI) and context-dependent (CD)baseline systems are described in Table II.The recognizer frontend is based on mel-frequency cep-stral analysis of input speech sampled at 16kHz. At every10ms, 31 mel-frequency energy components are computedfrom a �lter bank by performing an FFT on a frame of 20msof speech. The energies are converted to 12 mel-frequencycepstral coe�cients (MFCCs) by cosine transform. Cep-stral mean subtraction is then performed using the averageMFCCs per utterance. Finally a speech feature vector forone frame is composed from 39 components: 12 MFCCsand normalized power, and their �rst- and second-ordertime derivatives computed as follows:x[t] = normalized MFCC or power�x[t] = 2x[t+ 2] + x[t+ 1]� x[t� 1]� 2x[t� 2]��x[t] = �x[t+ 1]��x[t� 1] :C. EvaluationAll components of the baseline recognizers are kept in-tact, except that their acoustic models are converted from



BOCCHIERI AND MAK: SUBSPACE DISTRIBUTION CLUSTERING HIDDEN MARKOV MODEL 7TABLE II: ATIS: Testing conditions and performance of the baseline CI/CD systemstable CONDITION/PERFORMANCE CI SYSTEM CD SYSTEM#Test Sentences 981 (1994 ARPA-ATIS evaluation set)Vocabulary 1,536 wordsLanguage Model word-sequence bigram (perplexity � 20)#Training Utterances �12,000 ATIS �20,000 ATIS + �8,000 WSJ#HMMs 48 9,769#States 142 3,916 (tied)Max. #Mixtures per State 16 20#Gaussians (39-dimensional) 2,254 76,154#Acoustic Parameters 178,066 6,016,166Search one-pass Viterbi beam searchLexical Structure lexical tree linear lexiconBeam-Width 100 170CPU 150MHz MIPS R4400 195MHZ MIPS R10000Word Error Rate 9.4% 5.2%Time (x real-time) 1.93 7.06HMM Memory Usage 0.71MB 24MBCDHMMs to SDCHMMs. The testing conditions are ex-actly the same as those described in Table II. All subspaceGaussian log-likelihoods are pre-computed at the begin-ning of each frame, and their values are stored in tables incontiguous memory2. In addition, for implementation andsystem simplicity, all streams are tied to the same numberof subspace Gaussian prototypes in all our SDCHMMs.C.1 I. Stream De�nitions and Clustering AlgorithmsWith the two types of stream de�nitions of Section III-A and the two clustering algorithms of Section III-B, fourdi�erent combinations of stream de�nitions and clusteringalgorithms are tested using 13 streams:� common stream de�nition + ensemble merging� common stream de�nition + modi�ed k-means Gaussianclustering� correlated-feature stream de�nition + ensemble merging� correlated-feature stream de�nition + modi�ed k-meansGaussian clustering.Thirteen streams are chosen because both the commonstream de�nition and the correlated-feature stream de�ni-tion readily apply. Each stream consists of exactly threefeatures, and is tied to 8{256 subspace Gaussian proto-types. Each of the ensuing 13-stream SDCHMM systemsis then tested on the 1994 ATIS evaluation dataset.Figure 3(a) and (b) show incremental improvements inrecognition performance when correlated-feature streamsand/or the modi�ed k-means Gaussian clustering algo-rithm are used. The incremental improvement due to eithercorrelated-feature streams or the modi�ed k-means Gaus-2We have also tried to compute the subspace Gaussian log-likelihoods on the y during decoding, but unless when there aremore than 512 prototypes per stream, pre-computation of the log-likelihoods always entails faster recognition.

sian clustering algorithm alone is similar in the case of CImodels. In the case of CD models, most of the gain inaccuracy comes from the modi�ed k-means Gaussian clus-tering algorithm. Nonetheless, the improvements are ob-served with both CI and CD models at almost all levels ofquantization | various numbers of subspace Gaussian pro-totypes. This shows that by bringing more knowledge intoplay | correlation in the correlated-feature stream de�ni-tion and second-order statistics in the modi�ed k-meansGaussian clustering algorithm, better subspace Gaussiantying is achieved.Henceforth, all experiments are run with SDCHMMs de-rived using the modi�ed k-means Gaussian clustering al-gorithm with correlated-feature streams except for the 4-stream SDCHMMs which are derived with the common4-stream de�nition.C.2 II. Recognition AccuracyThe baseline CI (CD) CDHMMs are converted toCI (CD) SDCHMMs with 8{256(2{256) subspace Gaussianprototypes per stream. One, 4, 13, 20, and 39 streams aretried. Figure 4 shows their recognition accuracies in termsof word error rate (WER).In general, WER decreases with more streams and moreprototypes as expected, since more streams of smaller di-mensions should result in smaller distortions when the sub-space Gaussians are quantized, and more prototypes shouldgive smaller quantization errors. For example, 39-streamCD SDCHMMs obtain the best WER of 5.0% with 16subspace Gaussian prototypes, while 20-stream CD SDCH-MMs require 64 prototypes, and 13-stream CD SDCHMMsreach their best WER of 5.2% with at least 128 prototypes.The best CI SDCHMMs (with 20 streams and 128 proto-types, or 39 streams and 32 prototypes) compare well with
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(b) Context-dependent modelsFig. 3: ATIS: Recognition accuracy of 13-streamSDCHMMs with various stream de�nitionsand clustering schemes �gurethe baseline CI CDHMMs (9.5% vs. 9.4%), and the bestCD SDCHMMs (with 20 streams and 64 prototypes, or 39streams and 16 prototypes) actually outperform the base-line CD CDHMMs (5.0% vs. 5.2%). This suggests thatsome of the original CD CDHMMs may not be well trained,and subspace Gaussian tying may help improve these poormodels by interpolating them with the better-trained mod-els, or by pooling together more training data for them.C.3 II. Recognition SpeedThe corresponding total recognition times of the SD-CHMM systems of Figure 4 are presented in Figure 5 rel-ative to real-time performance. The relationships between
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recognition speed and the number of prototypes are gener-ally parabolas that curve upwards. The longer recognitiontime at the two ends of the parabolic curves are due to twovery di�erent e�ects:� More prototypes simply require more computation forthe subspace Gaussian log-likelihoods.� Fewer prototypes lead to poorer SDCHMMs (due tolarger quantization errors) with less discriminating powerand more active states during a Viterbi search (using thesame beam-width), and thus more computation.The CD SDCHMM system is quite insensitive to the �rste�ect when compared with the CI SDCHMM system. It is
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because there are about 10 times more active states dur-ing decoding in the CD system. With the large numberof active states in the CD system, the pre-computation ofsubspace Gaussian log-likelihoods represents a small pro-portion of the total computation time.The impact of the number of streams on recognitionspeed is complicated by the above two e�ects, but in gen-eral, more streams means more additions in the computa-tion of state log-likelihoods (Equation (5)) and more (soft-ware) function calls, hence longer recognition time.

C.4 Summary of Best ResultsFrom the discussion above, there is a trade-o� betweenrecognition accuracy and recognition speed by adjustingthe number of streams and the number of prototypes. Byoverlaying Figure 5 onto Figure 4, the best SDCHMMrecognition systems with various numbers of streams aredetermined and summarized in Table III.TABLE III: ATIS: Summary of the best re-sults (K = #streams, n = #subspaceGaussian prototypes per stream, CI = con-text independent, CD = context dependent,WER = word error rate (%), TIMEis relative to that of the baseline system,PR = parameter reduction, and MS = mem-ory savings. For PR, �gures in parenthesestake into account the mappings of subspaceGaussians to the full-space Gaussians. ForMS, 1-byte mappings are assumed.)tableCI/CD K n WER TIME PR MSCI 1 2254 9.4 1.00 1 1CI 13 256 9.7 0.72 8 (3.5) 6.1CI 20 128 9.5 0.70 15 (3.1) 7.6CI 39 32 9.5 0.70 38 (1.9) 6.7CD 1 76154 5.2 1.00 1 1CD 4 256 5.8 0.42 63 (15) 35CD 13 128 5.2 0.44 70 (5.6) 18CD 20 64 5.0 0.50 74 (3.8) 13CD 39 32 5.0 0.67 77 (2.0) 7.3The CD SDCHMMs perform better than the CI SDCH-MMs when compared with their respective baseline sys-tems. The CD SDCHMMs require fewer prototypes butgive relatively better accuracies, higher computation ef-�ciency, greater memory savings and larger reduction inmodel parameters. The most plausible explanation is thatthe CI models are less complex and robustly trained dueto the large amount of available training data. Further ty-ing of CI model parameters renders over-smoothing of theparameters. As a result, more prototypes are required tomaintain acceptable quantization errors. On the contrary,the CD SDCHMMs are highly complex, and modeling therare triphones has always been a problem. Obviously, re-sults of Table III suggest that some triphones are still notwell trained, and further tying at the smaller sub-phoneticunit of subspace Gaussians can e�ectively reduce the modelparameter space to obtain more robust models. Neverthe-less, it is still amazing to see that the 76,154 Gaussiansof the baseline context-dependent CDHMMs can be repre-sented by 32 | 128 subspace Gaussians per stream.Thirteen, 20, or 39 streams all work well in both CDor CI systems, but their impacts on savings in computa-tion, memory, model parameters and accuracy are quitedi�erent. For the CI systems, 13- to 39-stream SDCH-



10 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.MMs all give similar performance in terms of accuracy,speed and memory requirement. The only di�erence liesin their number of model parameters: 39-stream SDCH-MMs (with 1-dimensional scalar streams) have the fewestmodel parameters if one does not count the subspace Gaus-sian encoding parameters, thanks to the e�ciency of scalarquantization which requires fewer prototypes. However,once we include the encoding parameters, 39-stream SD-CHMMs require more model parameters than SDCHMMswith fewer streams because they consume one encoding pa-rameter per stream for each subspace Gaussian. On theother hand, since there are many more distributions andHMM state evaluations in CD systems than in CI systems,the greater sharing of Gaussian parameters in CD SDCH-MMs entails greater savings in computation, memory, andmodel parameters.Various statistical signi�cance tests from NIST (NationalInstitute of Standards and Technology) are run on the per-formance di�erences among the recognition systems of Ta-ble III. Most of the tests indicate no signi�cant di�erenceamong the various CI (CD) systems. The only test thatindicates a di�erence actually �nds the SDCHMM systemsmore accurate.C.5 Operating CurvesThe foregoing discussion that is based on Viterbi decod-ing using one particular beam-width can be biased. Fig-ure 6 studies the e�ect of beam-width on various SDCHMMsystems of Table III with their operating curves.The asymptotic performances of CI SDCHMMs are basi-cally the same as those of their parent CI CDHMMs, whileCD SDCHMMs outperform CD CDHMMs asymptotically.In addition, the SDCHMM curves always lie to the left ofthe CDHMM curve on each graph; thus SDCHMM sys-tems are always faster. Similarly, operating curves of SD-CHMMs with fewer streams also lie to the left of SDCH-MMs with more streams though they may saturate soonerwith poorer accuracies (for example, compare the operat-ing curves of 20-stream and 39-stream CI SDCHMMs, orthose of 13-stream and 20-stream CD SDCHMMs). Thebest compromise seems to come from 20-stream SDCHMMsystems. V. Comparison with Other HMMsOur SDCHMM is very similar to two other hiddenMarkov modeling methodologies: semi-continuous HMM(SCHMM) [12], [13], [14] and feature-parameter-tyingHMM (FPTHMM) [16], [15].A. With Semi-Continuous HMMAt �rst glance, SDCHMM may appear similar toSCHMM: Both methods divide the feature space intostreams, and tie subspace distributions across all states ofall HMMs. However, close scrutiny shows that K-streamSCHMMs compute the state likelihood di�erently as
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PSCHMM(O) = KYk=1 MXm=1 cmk N tied(Ok;�mk;�2mk)! (12)where cmk is the weight of the m-th mixture compo-nent in the k-th stream satisfying the stochastic constraintPMm=1 cmk = 1.Comparing Equation (12) with Equation (5), one �ndstwo di�erences:� There is a switch between the product operator (Q) andsummation operator (P) in the two equations.� In an SCHMM state, each of the K subspace Gaussiansis associated with its own mixture weight cmk, whereas



BOCCHIERI AND MAK: SUBSPACE DISTRIBUTION CLUSTERING HIDDEN MARKOV MODEL 11one mixture weight cm is shared among all the K subspaceGaussians of a SDCHMM state.Both di�erences arise from the fact that SCHMMs assumestream independence in the global feature space, whereasSDCHMMs assume stream independence in the local fea-ture space | an assumption inherited from CDHMMs withmixture Gaussian densities and diagonal covariances. Thatis, for each state, SCHMMs estimate one mixture Gaussiandensity from each of the streams independently, and thencombine the subspace Gaussian likelihoods by assumingagain independent streams. However, the assumption offeature independence between the streams commonly usedin speech recognition is hardly justi�ed. SDCHMMs there-fore start with CDHMMs using the full feature speech vec-tors without assuming any feature independence. The cor-relation between features at each state is well modeled by amixture Gaussian density. An implication of the di�erencein the scope of the assumptions is the number of streamsrequired: The SCHMM favors fewer streams of higher di-mensions, so that correlation among more features can bemodeled and there will be fewer mixture weights; on thecontrary, SDCHMM favors more streams of lower dimen-sions so that quantization of the subspace Gaussians ofCDHMMs will give smaller quantization errors and moreaccurate models.Another di�erence between SDCHMM and SCHMMnot readily observed from Equations (5) and (12) is thatSCHMM requires each state to have the same number ofmixture components equal to the number of distributionprototypes while SDCHMM does not. As a result, SD-CHMM usually has many fewer mixture components perstate, and thus has the following advantages over SCHMM:� Fewer components mean fewer mixture weights whichthen take less memory space.� Fewer components are involved in state likelihood com-putation which then takes less CPU time.From the evaluation result in Section IV, the best SD-CHMM systems have 13 or 20 streams with 32{128 sub-space Gaussian prototypes. In contrast, from the litera-ture, SCHMM systems usually require 64{512 prototypesusing 3 or 4 streams. If these �gures are representative, SD-CHMM should require less model memory than SCHMM.B. With Feature-Parameter-Tying HMMThe feature-parameter-tying HMM turns out to be a spe-cial case of our SDCHMM when the number of streams, K,is set to the size of the feature vector, D. In a sense, theFPTHMM is the scalar quantization (SQ) version of ourSDCHMM. However, we note that,1. the main storage cost of SDCHMMs is incurred by thesubspace Gaussian encoding indices which grow in propor-tion with the number of streams; and,2. the computational cost of the state log-likelihood (Equa-tion (5)) is directly proportional to the number of streamsonce all subspace Gaussian likelihoods are pre-computed.Thus, although SQ of the subspace Gaussians in FPTH-MMs has the advantage of simplicity and generally givesthe highest compression of subspace Gaussians, it needs

more storage space and more computation time than SD-CHMMs with K < D. The di�erence is more conspicuousfor large systems.The evaluation results of Section IV, for example, Fig-ure 6, have con�rmed this.VI. Summary and ConclusionContinuous density hidden Markov modeling has been amilestone in the advancement of automatic speech recog-nition. However, its accuracy is achieved at the expenseof high computational cost. In this paper, we show thatsubspace distribution clustering hidden Markov modelingcan produce acoustic models that are as accurate as theCDHMMs, and yet they are much more compact. Forexample, on the ATIS task, compared with the baselineCDHMM system, the best context-dependent (context-independent) SDCHMM system saves the total computa-tion time by 50%(30%) and obtains a 13-fold (8-fold) re-duction in HMMmemory with a relative 4% gain (1% drop)in accuracy.SDCHMMs can be converted from a set of CDHMMsby properly projecting the mixture Gaussians of theCDHMMs onto subspaces, and carefully tying the ensuingsubspace Gaussians. We propose to put the most corre-lated features into a stream. This correlated-feature streamde�nition, though not guaranteed optimal, is shown em-pirically giving good results. A modi�ed k-means Gaus-sian clustering algorithm is also devised to tie the subspaceGaussians.The CD SDCHMMs show greater relative improvementsthan the CI SDCHMMs probably due to the higher de-gree of redundancy and decreased robustness of the CDCDHMMs. One may thus postulate that SDCHMMs maybe more e�ective with larger acoustic models.The impact of the number of streams on accuracy, com-putation time, and memory size is complicated. All thingsconsidered, 13 and 20 streams seem to be better choices.Re-training of the converted CI SDCHMMs has also beenstudied, and no signi�cant improvement is observed. Sincethe converted CD SDCHMMs already surpass the base-line performance and training CD models requires a lot of�ne-tuning, we thus did not attempt to re-train the CDSDCHMMs. Based on our experience with re-training theCI SDCHMMs, we are not surprised that re-training willnot improve the CD SDCHMMs.With the great reduction of Gaussian parameters (mix-ture weights, Gaussian means, and variances) by one totwo orders of magnitude, one should expect SDCHMMs tobe trained from scratch with much less training data thantheir parent CDHMMs. It should also be easier to adaptthese fewer parameters for a new speaker or to another en-vironment. These open exciting directions for our futurework. References[1] M.K. Ravishankar, E�cient Algorithms for Speech Recognition,Ph.D. thesis, School of Computer Science, Carnegie Mellon Uni-versity, 1996.
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