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2 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.models an be built with more data overing di�erent variabilities in speeh. Thus, it is notunommon that it takes days to build aousti models for a reognition task of medium tolarge voabulary. This has greatly hampered the development of ASR systems in pratie.The lengthy and data-intensive training of aousti models an be attributed to:(1) the large number of aousti model parameters. For example, many state-of-the-art lab-oratory reognizers ontain millions of model parameters [3℄, [4℄. In general, more modelparameters will require more training data to generate robust estimates of the parameters.(2) the brute-fore data-driven training sheme. Aousti modeling is redued to pure pa-rameter estimation of some density funtions (as in ASR based on hidden Markov models) ornon-parametri lassi�ers (suh as arti�ial neural networks) without utilizing other knowledgesuh as the aousti-phoneti relationship.Reently we proposed a new derivative of the ontinuous density hidden Markov model-ing (CDHMM) methodology whih we all \subspae distribution lustering hidden Markovmodeling" (SDCHMM) in order to build more ompat aousti models. It has been shownthat the subspae distribution lustering hidden Markov models (SDCHMMs) an apture theaousti-phoneti information eÆiently with signi�antly fewer parameters | by one to twoorders of magnitude | than similar ontinuous density hidden Markov models (CDHMMs) [1℄,[2℄. Consequently, SDCHMM systems run faster with a smaller memory footprint than similarCDHMM systems, and yet they are as aurate as the latter. In the past, K-stream SDCHMMsare derived from a set of CDHMMs with mixture Gaussian densities and diagonal ovarianesby a simple model onversion proedure in three steps:Step 1. Deompose the feature spae into K orthogonal (disjoint) subspaes or streams.Step 2. Projet all Gaussians of the CDHMMs onto those orthogonal subspaes.Step 3. Tie the subspae Gaussians from all states and all phone models (CDHMMs) in eahsubspae. This is done by lustering the subspae Gaussians into a small number of Gaussianprototypes in eah subspae (stream).One may onsider SDCHMMs as CDHMMs tied at the sub-phoneti level of subspae Gaussian-s. We refer to the tying information among the subspae Gaussians of SDCHMMs together withthe mappings between them and the full-spae Gaussians of CDHMMs as the subspae Gaus-sian tying struture (SGTS), or generally subspae distribution tying struture (SDTS) when thetype of distribution is immaterial for the disussion. By exploiting the ombinatorial e�et ofsubspae distribution enoding, all the original full-spae distributions an be losely approxi-mated by some ombinations of a small number of subspae distribution prototypes. Now with



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 3the signi�antly fewer model parameters in SDCHMMs, one should be able to train SDCHMMsdiretly from signi�antly less speeh data. Sine aoustially similar subspae Gaussians aretied, the SGTS eÆiently represents the aousti inter-relationship among the phones as sup-ported by an aousti-phoneti analysis of the SDCHMMs in [5℄. The presumption of an SGTSshould therefore be onsidered as a utilization of aousti-phoneti knowledge in designing ouraousti models, resulting in fewer model parameters and theoretially requiring less trainingdata.In this paper, we propose a novel diret SDCHMM training algorithm and demonstrate thatby making use of� the small number of parameters in the ompat subspae distribution lustering hiddenMarkov models; and,� the a priori knowledge of the aousti-phoneti relationship enapsulated in a subspae Gaus-sian tying struture,SDCHMMs an be trained diretly from signi�antly less speeh data | one to two order-s of magnitude | than those required for equally aurate CDHMMs. Spei�ally, on theATIS (Air Travel Information System) [6℄ task, by progressively reduing the amount of train-ing data, we study the training data requirement for SDCHMMs and ompare that with thedata requirement for training CDHMMs of various omplexities. Both ontext-independentand ontext-dependent SDCHMMs are trained.The organization of this paper is as follows. In Setion II, we �rst review the theory of SDCH-MM and an indiret method to generate SDCHMMs from a set of CDHMMs. In Setion III, thediret SDCHMM training algorithm is presented together with the reestimation formulas of thevarious SDCHMM parameters. Setion IV desribes the experimental set-up and methodologyused to evaluate the diret SDCHMM training algorithm on the ATIS task. Diret trainingof ontext-independent SDCHMMs is evaluated in Setion V, while that of ontext-dependentSDCHMMs is evaluated in Setion VI with progressively more adaptation information. Finally,we draw our onlusions in Setion VII and points to some future diretions in this work.II. Review of SDCHMMIn this Setion, we review the theory of subspae distribution lustering hidden Markovmodeling, and briey outline a onversion proedure that derives SDCHMMs from a set ofCDHMMs.



4 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.A. Theory of SDCHMMThe theory of SDCHMM is derived from that of ontinuous density hidden Markov mod-el (CDHMM) in whih state-observation distributions are estimated as mixture Gaussian den-sities with M omponents and diagonal ovarianes. Using the following notations (wherebold-faed quantities represent vetors):O : an observation vetor of dimension DPi(O): output probability of state i given Oim : weight of the m-th mixture omponent of state i�im : mean vetor of the m-th omponent of state i�2im : variane vetor of the m-th omponent of state iN (�) : Gaussian pdfthe observation probability of the i-th state of a CDHMM is given byPCDHMMi (O) = MXm=1 imN (O;�im;�2im); MXm=1 im = 1: (1)The key observation is that a Gaussian with diagonal ovariane an be expressed as aprodut of subspae Gaussians where the subspaes (or streams) are orthogonal and togetherspan the original full feature vetor spae. To derive K-stream SDCHMMs from a set ofCDHMMs, we �rst partition the feature set with D features into K disjoint feature subsetswith dk features, PKk=1 dk = D. Eah of the original full-spae Gaussians is projeted onto eahfeature subspae to obtain K subspae Gaussians of dimension dk, 1 � k � K, with diagonalovarianes. Thus, Equation (1) an be rewritten asPCDHMMi (O) = MXm=1 im  KYk=1N (Ok;�imk;�2imk)! (2)where Ok, �imk, and �2imk are the projetion of the observation O, and mean and varianevetors of the m-th mixture omponent of the i-th state onto the k-th subspae respetively.For eah stream, we tie the subspae Gaussians aross all states of all CDHMM aoustimodels. Hene, the state observation probability in Equation (2) is modi�ed asP SDCHMMi (O) = MXm=1 im  KYk=1N tied(Ok;�imk;�2imk)! : (3)



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 5B. Indiret SDCHMM Training Algorithm: Model Conversion from CDHMMsThe formulation of SDCHMM as of Equation (3) suggests that SDCHMMs may be imple-mented in two steps as shown in Figure 1:(1) Train CDHMMs for all the phoneti units (possibly with tied states), wherein state obser-vation distributions are estimated as mixture Gaussian densities with diagonal ovarianes.(2) Convert the CDHMMs to SDCHMMs by tying the subspae Gaussians in eah stream.Details of the stream de�nitions and the lustering algorithm an be found in [2℄.By exploiting the ombinatorial e�ets of subspae Gaussian enoding, the original largenumber of full-spae Gaussians in the CDHMMs an be represented by a few subspae Gaus-sians in eah stream of the SDCHMMs. For instane, on the ATIS task, 32 to 128 subspaeGaussians per stream are found adequate. Subsequent ATIS reognition with a set of 20-streamontext-dependent SDCHMMs runs twie as fast as that with CDHMMs, and onsumes 13times less memory and 80 times fewer model parameters [2℄.III. Diret SDCHMM Training AlgorithmAlthough the indiret training sheme of SDCHMMs through model onversion of CDHMMsis simple and runs fast, it requires an amount of training data as large as CDHMM trainingsine the sheme requires intermediate CDHMMs. Evaluation of the indiret SDCHMM train-ing sheme on the ATIS task shows that if the subspae Gaussian tying struture (SGTS)1is ignored, SDCHMMs have signi�antly fewer model parameters (mixture weights, Gaussianmeans, and varianes) | by one to two orders of magnitude | than their parent CDHMMs [1℄,[2℄. Thus, if we have a priori knowledge of the SGTS, one should be able to train SDCHMMsdiretly from signi�antly less speeh data as shown in Figure 2.One should notie that a subspae Gaussian tying struture enapsulates a lot of informationabout the aousti-phoneti relationship, and if suh information is appliable to the task onhand, it will take fewer data to train the new SDCHMMs. The a priori SGTS may be obtainedfrom the onversion of a generi set of CDHMMs (trained with a large amount of speeh data)to SDCHMMs, or from speaker-independent SDCHMMs when speaker-spei� SDCHMMs areto be trained, and so forth, depending on the appliation.In the following, we will present the reestimation formulas of SDCHMM parameters.1Subspae Gaussian tying struture is de�ned in Setion I



6 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.A. Maximum Likelihood Estimation of SDCHMM ParametersSDCHMM parameters may be estimated in muh the same way as CDHMM parameters areestimated using the Baum-Welh (BW) algorithm [7℄. In fat, the additional onstraints im-posed by the subspae distribution tying struture (SDTS) only alter the way in whih statistisare gathered from the observations in the estimation of the distribution parameters.Let us denote the whole set of SDCHMMs of all speeh units by �. Eah N -state SDCHMM� 2 � is de�ned by three sets of parameters:� initial-state probabilities �� = [��1 ; ��2 ; : : : ; ��N ℄� state-transition probability matrix a� = fa�ijg; 1 � i; j � N� state observation pdf's b� = [b�1 ; b�2 ; : : : ; b�N ℄.Also assume that for eah SDCHMM, there is a sequene of training observation O� =o�1o�2 � � � o�T (where o�t is the observation vetor at time t) of T frames.A.1 Reestimation of � and a in SDCHMMIt is lear that from the theory of SDCHMM (Equation (3)) that only the state observationpdf b�i (�) of the CDHMM is modi�ed, while the de�nitions of the initial-state probabilities �and state-transition probabilities a are kept intat. Hene, � and a an still be estimated foreah SDCHMM in the same way as those of onventional CDHMM.A.2 Reestimation of b in SDCHMMAording to the theory of SDCHMM, the state observation pdf b�i (�) of state i of a K-streamSDCHMM � is assumed to be a mixture density withM omponents b�im(�) and mixture weightsim, 1 � m �M , suh that b�im(�) is a produt of K subspae pdf's b�imk(�), 1 � k � K, of thesame funtional form. That is,b�i (o�t ) = MXm=1 imb�im(o�t ); MXm=1 im = 1 (4)= MXm=1 im KYk=1 b�imk(o�tk)! (5)where b�imk(�) and o�tk are the projetions of b�im(�) and o�t onto the k-th feature subspaerespetively.The reestimation formula of b depends on the funtional form of the state observation pdf.Here, we will onsider only the two ases when the state output distribution is either a single



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 7Gaussian distribution or a mixture Gaussian density.Case I: Single Gaussian Output DistributionLet us �rst look at the speial ase when there is only one Gaussian in the mixture density.Equation (5) may then be simpli�ed tob�i (o�t ) = KYk=1 b�ik(o�tk) (6)by dropping the mixture weight of unity and the mixture omponent subsript m.Now suppose there are Lk subspae pdf prototypes hkl(�), 1 � l � Lk, in the k-th streamof the set of K-stream SDCHMMs �, 1 � k � K. Eah subspae pdf, say, b�ik(�) in stream kof state i, is tied to one of the subspae pdf prototypes of the stream, say, hkl(�), 1 � l � Lk.That is, 8� 2 �; 8 i 2 [1; N ℄; 8 k 2 [1;K℄; 9 l 2 [1; Lk℄ suh that b�ik(�) � hkl(�). Thenthe reestimation of b�ik(�) beomes the reestimation of hkl(�) and may be expressed verbally asfollows:reestimation of the pa-rameters of pdf hkl(�) = reestimation of the pdf parameters as in onventional CDHM-M, but the statistis are gathered from all frames belongingto all b�ik(�) � hkl(�) over all states and all models.In partiular if the pdf's are Gaussians, that is,hkl(otk) = N(otk;�kl;�kl)then the new model is�̂kl=P�2�Pi : b�ik�hklPTt=1 �t (i) � o�tkP�2�Pi : b�ik�hklPTt=1 �t (i) (7)�̂kl=P�2�Pi:b�ik�hklPTt=1 �t (i)(o�tk��̂kl)(o�tk��̂kl)0P�2�Pi:b�ik�hklPTt=1 �t (i) : (8)where �t (i) def= P (qt = i j O�; �) (9)is the probability of being in state i at time t, whih an be eÆiently omputed by theforward-bakward algorithm [8℄.Case II: Mixture Gaussian Output DistributionSine an HMM state with a mixture density is equivalent to a multi-state HMM with single-mixture densities [9℄, the reestimates of b are similar to those of Case I exept that the quantity



8 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.�t (i) is modi�ed as �t (i;m) whih is the probability of being in state i and the m-th mixtureomponent at time t, given the model � and the observation sequene O�. Hene,̂im= PTt=1 �t (i;m)PTt=1PMm=1 �t (i;m) (10)�̂kl=P�2�Pi;m : b�imk�hklPTt=1 �t (i;m) � o�tkP�2�Pi;m : b�imk�hklPTt=1 �t (i;m) (11)�̂kl=P�2�Pi;m:b�imk�hklPTt=1�t (i;m)(o�tk��̂kl)(o�tk��̂kl)0P�2�Pi;m:b�imk�hklPTt=1 �t (i;m) : (12)
IV. Evaluation: Set-upThe Air Travel Information System (ATIS) task [6℄ is hosen for the evaluation of the diretSDCHMM training algorithm. The evaluation may be rephrased as follows:\If the subspae Gaussian tying struture for the aousti models of the ATIS task is known,how muh training data is required to diretly train SDCHMMs for the task?"Both ontext-independent (CI) and ontext-dependent (CD) SDCHMMs will be trained andevaluated. Nonetheless, more emphasis is put on the CI models simply beause the simplerand fewer CI models allow us to train and test many CDHMMs and SDCHMMs of variousomplexities in a manageable amount of time. Moreover, CI modeling tends to be more stableas there is usually ample overage of training data for the CI phones. In ontrast, CD modelingrequires deliate �ne-tuning e�ort to obtain a good balane between training data and modelauray, whih may ompliate our main researh goal here.A. Experimental Set-upSpeeh features are extrated at a frame rate of 10ms. Twelve MFCCs (after mean subtra-tion) and power, together with their �rst and seond order time derivatives are omputed froma frame of 20ms speeh produing a 39-dimensional feature vetor. Eah phone model is a3-state left-to-right HMM with the exeption of one noise model whih has only one state. Thetesting onditions (test dataset, voabulary, pronuniation models, language models, deodingalgorithm, and beam-width) are shown in Table I.Lastly, the number of streams is �xed to 20 for all SDCHMMs trained below. This followsfrom the onlusion in [1℄, [2℄ whih suggests that 20 streams give a good balane betweenauray, omputation time, and model memory on the ATIS task.



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 9B. MethodologyTo evaluate the e�etiveness of diret SDCHMM training, its training data requirement isompared with that for CDHMM training. The evaluation proedure onsists of the followingbasi steps:Step 1. Generate N data subsets Di, 1 � i � N , from all the given training data by pro-gressively utting the data in half. That is, the amount of data in Di+1 is half of that inDi.Step 2. Train CDHMM aousti models with all available training data in D1.Step 3. Convert the CDHMMs to SDCHMMs as desribed in Setion II-B.Step 4. Dedue the subspae Gaussian tying struture (SGTS) from the onverted SDCHMMs.Step 5. For eah data subset (D1, D2, D3, : : :, DN ), repeat Steps 6 and 7.Step 6. Train CDHMMs of di�erent model omplexities by varying the number of omponentsin eah state mixture density.Step 7. Train SDCHMM aousti models using the diret SDCHMM training algorithm asshown in Figure 2 with the SGTS obtained in Step 4.Step 8. Compare the reognition performane of all CDHMMs and SDCHMMs obtained in theabove steps.C. Preparation of Training DatasetsA olletion of 16,896 utteranes from the ATIS-2 [6℄ and ATIS-3 [10℄ orpora are employedin this study. They are divided into 16 datasets of roughly 1,000 utteranes eah, denoted asS1, S2, S3, . . . , to S16, so that data from the �ve sites are spread out into eah dataset asevenly as possible. The 100 longest utteranes from S16 are seleted for bootstrapping HMMsand this set is denoted as dataset A. Other smaller datasets are derived as follows:� dataset S0 ontains 500 utteranes from dataset S1� dataset B ontains 50 utteranes from dataset A� dataset C ontains 25 utteranes from dataset B� dataset D ontains 12 utteranes from dataset C� E-sets omprise 10 datasets denoted as E1, E2, . . . , E10, and eah ontains 15 di�erentutteranes from dataset S15, three from eah of the �ve olleting sites.� F-sets omprise 10 datasets denoted as F1, F2, . . . , F10, whih are sub-sampled from theorresponding E-sets suh that eah ontains �ve utteranes, one from eah of the �ve olletingsites.



10 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.All the various datasets are summarized in Table II. Datasets A, B, C, D, the E-sets, andthe F-sets are all phonetially labeled using AT&T's 1994 ATIS reognizers [11℄. Both ontext-independent and ontext-dependent phone labeling are performed.D. Hybrid Viterbi/Baum-Welh Training ProedureWe adopt a ombination of Viterbi training (VT) and Baum-Welh (BW) reestimation totrain all aousti models, with an additional step of segmental k-means (SKM) training forCDHMM training. The hybrid VT/BW training proedure takes advantage of the simpliityof Viterbi training and the auray of Baum-Welh reestimation. The proedures for trainingCDHMMs and SDCHMMs are shematially depited in Figure 3 and Figure 4 respetively.V. Evaluation: Diret Training of Context-Independent SDCHMMFollowing the methodology desribed in Setion IV-B, the e�etiveness, the data requirement,and the variability of the diret SDCHMM training algorithm are evaluated on training ontext-independent SDCHMMs.A. Experiment I: E�etiveness of Diret SDCHMM TrainingWe �rst hek, for the same amount of training data, whether SDCHMMs trained by thediret SDCHMM training algorithm ahieve the same reognition performane as that of theSDCHMMs onverted from CDHMMs. Only CI models are trained in this experiment, andthe SGTS from the onverted SDCHMMs is used for diret SDCHMM training.A.1 ProedureFollowing the CDHMM training proedure of Figure 3, 16- and 32-mixture CDHMMs aretrained with dataset S1{4 (meaning a ombination of S1, S2, S3, and S4). The CDHMMs arethen onverted to 20-stream SDCHMMs with 16, 32, 64, and 128 subspae Gaussian prototypesper stream. Reognition on the ATIS test data determines the best SDCHMMs in eah ase ofmodel omplexity: 128 prototypes for the 16-mixture SDCHMMs and 64 prototypes for the 32-mixture SDCHMMs. SGTS's are derived from the best 16-mixture and 32-mixture SDCHMMsand are denoted as CI-SGTS-M16-n128 and CI-SGTS-M32-n64 respetively. Finally, a new setof SDCHMMs are trained diretly from the two SGTS's with dataset S1{4 aording to theSDCHMM training proedure of Figure 4.



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 11A.2 Result and DisussionThe reognition results of the following three sets of aousti models on the ATIS test dataare shown in Table III:� CI CDHMMs trained from the dataset S1{4� CI SDCHMMs onverted from the CDHMMs (onverted SDCHMMs)� CI SDCHMMs diretly trained from the dataset S1{4 using the SGTS of the onvertedSDCHMMs (trained SDCHMMs)Although the reognition auraies of the onverted SDCHMMs and the diretly-trainedSDCHMMs are slightly lower than that of their parent CDHMMs, they have very similarperformane. The result demonstrates the e�etiveness of our novel diret SDCHMM trainingalgorithm: if one is only given the SGTS and the training data of a set of onverted SDCHMMs,the SDCHMMs an be \reovered" by our diret SDCHMM training algorithm.B. Experiment II: Data Requirement for Training Context-Independent SDCHMMOne the e�etiveness of diret SDCHMM training is established, we go a step further toinvestigate the data requirement for training CI SDCHMMs as ompared to that for trainingCI CDHMMs using the methodology desribed in Setion IV-B.B.1 ProedureCDHMMs of various model omplexities are trained using �ve di�erent datasets: A only,S0 only, S1 only, S1{2, and S1{4. Dataset A is used to bootstrap all models. The maximumnumber of mixtures2 in eah state density varies from one to 32 in powers of two.Similarly, SDCHMMs with the two SGTS's, CI-SGTS-M16-n128 and CI-SGTS-M32-n64, aretrained diretly from the �ve datasets. In addition, we also train SDCHMMs with the smallerdatasets: B only, C only, and D only. These latter SDCHMMs are bootstrapped with thetraining data under study in eah ase (and not with dataset A).B.2 Result and DisussionThe reognition auraies of all CDHMMs and SDCHMMs trained above are shown inFigure 5.As the model omplexity (measured in terms of the number of Gaussians) dereases, theauray or resolution power of HMMs is ompromised. The reognition performane of all2Note that the �nal number of mixtures in a density produed by the segmental k-means algorithm [12℄ anbe fewer than what the user spei�es, when there are too few training data in the state.



12 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.CDHMMs with di�erent number of mixtures falls o� when they are presented with fewer than197 minutes of training speeh (dataset S1{2). In ontrast, the reognition performane ofthe 20-stream SDCHMMs trained with CI-SGTS-M16-n128 or CI-SGTS-M32-n64 using thediret SDCHMM training algorithm does not start to fall signi�antly until there are less than8.3 minutes of training speeh (dataset B). Moreover, the performane of these two sets ofSDCHMMs, trained with only 8.3 minutes of speeh, is unmathed by any CDHMMs (withthe same or simpler model omplexity) trained with less than 197 minutes of speeh in thisstudy. This is a roughly 20-fold redution in the amount of training data for SDCHMMs. Theresult should be attributed to the fewer model parameters (mixture weights, Gaussian means,and varianes) of SDCHMMs | the ratios of the number of model parameters in the twoSDCHMMs to that in their parent CDHMMs are 1:14 (for CI-SGTS-M16-n128) and 1:36 (forCI-SGTS-M32-n64).
Furthermore, as the amount of training data is redued, the performane of SDCHMMs de-grades graefully whereas the performane of CDHMMs drops sharply. For example, when theamount of training data is pared down from 374 minutes (dataset S1{4) to 17 minutes (datasetA) the word error rates (WERs) of the 16-mixture and 32-mixture CDHMMs inreases by al-most 100%. On the other hand, the WERs of the orresponding SDCHMMs trained usingCI-SGTS-M16-n128 and CI-SGTS-M32-n64 drop by only �20% when the amount of trainingdata is slashed from 374 minutes (dataset S1{4) to 2.1 minutes (dataset D). At �rst sight, thisdoes not seem to be possible: For instane, when the 32-mixture SDCHMMs are trained withCI-SGTS-M32-n64 and the dataset D, there are only 12421 frames of speeh to train the 4,086Gaussians of the 48 monophones. That is, on average, there are about only 259 training framesper phone or three training frames per Gaussian! Even worse is the fat that some phonesrarely our, or do not even appear in the small training dataset D as shown in the framedistribution over the phones in Figure 6. For example, phones \hh" and \oy" do not ourin dataset D, and onsonants like \el", \g", \jh", \nx", \th", and \uh" are rare. However,if one looks at the frame distribution over the 64 subspae Gaussians of eah stream of theSDCHMMs in Figure 7, one should be onvined that there are ample estimation data formost of the subspae Gaussians (194 frames on average), and there is full overage for all ofthem. Thus, the eÆient sharing of Gaussian parameters in the SDCHMMs plays an equallyimportant role in reduing the training data requirements.



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 13C. Experiment III: Performane Variability with Little Training DataC.1 ProedureWhen the amount of training data is small, the e�et of random sampling of training datamay beome important. To hek the performane variability of SDCHMM training with littletraining data, we repeat the SDCHMM training proedure of Experiment II with 20 evensmaller datasets: E1 only, E2 only, . . . , E10 only, F1 only, F2 only, . . . , and F10 only. Eahof the E-sets ontains 15 utteranes, and eah of the F-sets ontains �ve utteranes, withdurations ranging from 13.35 seonds to 97.82 seonds of speeh. Both CI-SGTS-M16-n128and CI-SGTS-M32-n64 are tried.C.2 Result and DisussionFigure 8 shows the satter plots of the reognition auraies of SDCHMMs trained with eahof the two SGTS's over eah of the 20 datasets. Superimposed on eah satter plot is a ubi B-spline �t generated by the statistial software S-PLUS [13℄. The performane of the CI-SGTS-M32-n64 SDCHMMs degrades more slowly than that of the CI-SGTS-M16-n128 SDCHMMswhen the amount of training data dereases. This is learly due to the fat that there are evenfewer model parameters and more sharing among the subspae Gaussians of the CI-SGTS-M32-n64 SDCHMMs. Nonetheless, it is observed that the 20 individual reognition results for eahset of SDCHMMs �t well into the urve-�tting spline with only small utuations. Combiningthese results with those of Experiment II, we see a onsistent trend that SDCHMMs an betrained with signi�antly fewer data over di�erent samples of training sets.VI. Evaluation: Diret Training of Context-Dependent SDCHMMSine Experiment II already shows that ontext-independent SDCHMMs require muh lesstraining data than CDHMMs, we next only investigate if ontext-dependent (CD) SDCHMMsalso require little training data. Thus, only CD SDCHMMs are trained.A. Experiment IV: Data Requirement for Training Context-Dependent SDCHMMAs mentioned before, CD modeling requires more �ne tuning to ontrol the phoneti overage(e.g. through using other parameter tying tehniques suh as state tying). In order not to letother fators possibly ompliate our main researh goal here, we start from the CDHMMsof AT&T's 1994 ontext-dependent ATIS reognizer [11℄ (hereafter referred to as the baselineCD reognizer/system). There are 9,769 triphone CDHMMs with a total of 76,154 full-spaeGaussians, eah having a maximum of 20 mixtures.



14 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.A.1 ProedureThe baseline CD CDHMMs is onverted to a set of 20-stream SDCHMMs with 64 subspaeGaussian prototypes per stream, from whih the subspae Gaussian tying struture, denotedas CD-SGTS-M20-n64, is extrated. The baseline CD CDHMM system has a WER of 5.2%on the oÆial test set, while the onverted CD SDCHMM system has a WER of 5.0%.The subspae Gaussian tying struture, CD-SGTS-M20-n64, is used for all subsequent CDSDCHMM training experiments. We also have all training data phonetially labeled by thebaseline CD CDHMM reognizer. To save training omputation, subsequent SDCHMM train-ing will not re-segment any training data.Following the diret SDCHMM training proedure of Figure 4, SDCHMMs are trained fromdatasets: D, C, B, A, S0, S1, S1{2, S1{4, S1{8, and S1{16 respetively. For training withdatasets larger than A, CD SDCHMMs are initialized with CD-SGTS-M20-n64 using the pho-netially transribed dataset A. Whereas for other smaller datasets, bootstrapping is done withthe dataset under study.A.2 Result and DisussionThe �rst two urves from the top of Figure 9 show the number of unseen triphones in eahtraining dataset and the reognition auray of the ontext-dependent SDCHMMs trainedon the dataset. It an be seen that even when only 5{30% of the triphones are overed insubset D (2.1 minutes) to S0 (59 minutes), reasonable word reognition auraies of about7% are obtained. The low overage seems to have aused the irregular performane of theontext-dependent SDCHMMs trained in these datasets. However, the asymptoti perfor-mane, obtained with more than 735 minutes of training speeh (dataset S1{8) does not meetthe performane of neither the baseline CDHMMs nor the onverted SDCHMMs (WERs of5.5% vs. 5.2% or 5.0%). One possible explanation is the insuÆient triphone overage: Evenwith all the data from S1{16, about 8% of the triphones are unrepresented. In the baselinesystem, all triphones appearing even one in all of the ATIS orpora are modeled. To do that,it is not only trained with more ATIS data, but also with 8000 additional utteranes from theWall Street Journal Corpus [14℄ to inrease the overage for the rare triphones.B. Experiment V: With Prior Knowledge of SGTS and Mixture WeightsAnalysis of Experiment IV shows that:� Although there is inadequate triphone overage when the amount of training data is limited,there is still high overage of the subspae Gaussians of the CD SDCHMMs (full overage in



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 15all our experiments).� When a speeh unit is not observed in the training data, the main e�et on SDCHMMtraining is that the mixture weights of its SDCHMM are not learned | they stay at theirinitial values of 1=M (where M is the number of Gaussian mixtures in the state density) andare not reestimated in subsequent VT/BW training yles.Hene, to on�rm our onjeture that the poor performane of CD SDCHMM training is due topoor triphone overage in the given training data, we repeat Experiment IV by borrowing themixture weights from the baseline CD CDHMMs, and by �xing them during diret SDCHMMtraining. The result is presented in the third urve from the top in Figure 9. By inorporatingadditional a priori knowledge of the mixture weight (on top of the SGTS, CD-SGTS-M20-n64),the CD SDCHMMs (whih have a model omplexity of 76,154 Gaussians), an now be trainedfrom as little as 8.3 minutes of speeh (dataset B) with no degradation in performane whenompared with the baseline CD CDHMMs, even when only 14% of the triphones are observedin the training data.C. Experiment VI: With Prior Knowledge of SGTS, Mixture Weights, and Gaussian VarianesThe inorporation of known mixture weights does not totally eliminate the gap betweenthe asymptoti performane of the diretly trained SDCHMMs and that of the onverted CDSDCHMMs, but only greatly redues it. Sine 8% of the triphones are unrepresented in thetraining data S1{16, some aoustis of the unseen triphones are probably still missing. Tofurther aount for the missing aoustis of the unseen triphones, Experiment V is repeatedby borrowing the Gaussian varianes from the onverted CD SDCHMMs as well. The resultis shown in the bottom urve in Figure 9. Now even with only 2.1 minute of speeh, theperformane is almost the same as that of the baseline CD CDHMMs (WERs of 5.3% vs.5.2%) and it reahes that of the onverted CD SDCHMMs with 59 minutes of training data.VII. ConlusionIn this paper, we suessfully train SDCHMMs diretly from muh less data without trainingintermediate CDHMMs. Suh great redution in the amount of training data is attributed tothe signi�antly fewer model parameters in SDCHMMs as well as to the e�etive tying ofsubspae Gaussians among the models. While the fewer model parameters, in theory, requireless estimation data, should the tying of subspae Gaussians not be e�etive, SDCHMM trainingwould have required even sampling of the phones in the training data. However our experimentsshow that even when many phones are under-represented in the training data (Figure 6 or



16 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.Figure 9), there is still a good overage of the subspae Gaussians (Figure 7); hene, goodestimation of SDCHMMs is still possible.When the amount of training data is small (say, less than 8 minutes of speeh on the ATIStask), the performane of the ensuing SDCHMMs degrades graefully. However, over-trainingreadily ours in this ase. In this study, we exhaustively searh for the best BW iteration tostop using the test data. In pratie, ross-validation using unseen data may be employed todetermine the best Baum-Welh iteration. Additionally, one ould also investigate the use ofmodel seletion riteria [15℄, [16℄, [17℄ to address the problem of model omplexity.Diret SDCHMM training requires a priori knowledge of, at least, the subspae Gaussiantying struture. Although in our experiments, the tying struture is derived from an existingreognizer on the same task, our results are still signi�ant. One possible appliation is speakerenrollment | using a speaker-independent SGTS to train speaker-spei� SDCHMMs withlittle enrollment data.Results of Experiment IV, V, and VI also suggest that if more a priori information is avail-able, even less training data may be suÆient. For instane, we may also inorporate themixture weights and/or Gaussian varianes in addition to the SGTS from the onverted SD-CHMMs (from whih the SGTS is derived), and �x them during SDCHMM training. This maybe found useful in speaker (environment) adaptation.Of ourse, we still need one set of CDHMMs from whih to derive the SGTS for SDCHMMtraining. It will be interesting to investigate if the SGTS is task independent so that one maydedue a \generi" SGTS from a set of \generi" CDHMMs and apply it to SDCHMM trainingin other tasks. Referenes[1℄ E. Bohieri and B. Mak, \Subspae Distribution Clustering for Continuous Observation Density HiddenMarkov Models," in Proeedings of the European Conferene on Speeh Communiation and Tehnology,1997, vol. 1, pp. 107{110.[2℄ B. Mak, E. Bohieri, and E. Barnard, \Stream Derivation and Clustering Shemes for Subspae Distri-bution Clustering HMM," in Proeedings of the IEEE Automati Speeh Reognition and UnderstandingWorkshop, 1997, pp. 339{346.[3℄ E. Bohieri and G. Riardi, \State Tying of Triphone HMM's for the 1994 AT&T ARPA ATIS Reog-nizer," in Proeedings of the European Conferene on Speeh Communiation and Tehnology, 1995, vol. 2,pp. 1499{1502.[4℄ X. Huang et al., \The SPHINX-II Speeh Reognition System: An Overview," Journal of Computer Speehand Language, vol. 7, no. 2, pp. 137{148, April 1993.[5℄ B. Mak, Towards A Compat Speeh Reognizer: Subspae Distribution Clustering Hidden Markov Model,
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MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 19TABLE IATIS: Testing onditionsTESTING CONDITION CI SYSTEM CD SYSTEM#Test Sentenes 981 (1994 ARPA-ATIS evaluation set)Voabulary 1,532 wordsLanguage Model word-sequene bigram (perplexity � 20)Searh one-pass Viterbi beam searhLexial Struture lexial tree linear lexionBeam-Width 100 170#HMMs 48 9,769#States 142 3,916 (tied)Max. #Mixtures per State 32 20



20 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.TABLE IIATIS: Training datasets (� Datasets are phonetially labeled by AT&T's ATISreognizers. y Figures are averages.)DATASET #FRAMES DURATION (min.) DESCRIPTIONX 13,000,205 2,167 training data for AT&T's CD ATIS reognizerY 6,444,959 1,074 training data for AT&T's CI ATIS reognizerTest 545,642 91 981 (1994 ARPA's oÆial) test utteranesS1{16 8,883,240 1,480 16,896 utteranesS1{4 2,140,470 357 4,226 utteranesS1{2 1,080,650 180 2,114 utteranesS1 527,599 88 1,055 utteranesS0 249,565 42 500 utteranes from subset S1A� 101,309 17 100 utteranes from subset S16B� 49,616 8.3 50 utteranes from subset AC� 27,811 4.6 25 utteranes from subset BD� 12,421 2.1 12 utteranes from subset CE1{E10� 7,758y 1.29y 15 utteranes from subset S15F1{F10� 2,702y 0.45y 5 utteranes from subset S15
TABLE IIIATIS: Comparison of reognition auraies among CI CDHMMs, CI SDCHMMsonverted from the CDHMMs, and CI SDCHMMs estimated by diret SDCHMMtraining using the SGTS of the onverted SDCHMMs#MIXTURES TOTAL #PROTOTYPES WORD ERROR RATE (%)PER #GAUSSIAN PER CDHMM CONVERTED TRAINEDSTATE COMPONENTS STREAM SDCHMM SDCHMM16 2143 128 9.0 9.5 9.332 4086 64 8.5 8.7 8.7
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