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Abstract

It generally takes a long time and requires a large amount of speech data to train hidden Markov
models for a speech recognition task of a reasonably large vocabulary. Recently we proposed a compact
acoustic model called “subspace distribution clustering hidden Markov model” (SDCHMM) with an aim
to save some of the training effort. SDCHMMs are derived from tying continuous density hidden Markov
models (CDHMMs) at a finer sub-phonetic level, namely the subspace distributions. Experiments on
the ATIS (Airline Travel Information System) task show that SDCHMMSs with significantly fewer model
parameters — by one to two orders of magnitude — can be converted from CDHMMs with no loss in
word accuracy [1], [2]. With such compact acoustic models, one should be able to train SDCHMMs
directly from significantly less speech data (without intermediate CDHMMs). In this paper, we devise
a direct SDCHMM training algorithm, assuming an a priori knowledge of the subspace distribution
tying structure. On the ATIS task, it is found that both a context-independent and a context-dependent
speaker-independent 20-stream SDCHMM system trained with 8 minutes of speech perform as well as

their corresponding CDHMM system trained with 105 minutes and 36 hours of speech respectively.
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I. INTRODUCTION

One of the major components of an automatic speech recognition (ASR) system is its acoustic
models. Acoustic modeling for a reasonably large vocabulary is a time-consuming exercise,
requiring a large amount of speech training data in order to accommodate the great variabilities

in speech. With the availability of many large speech corpora nowadays, more accurate acoustic
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models can be built with more data covering different variabilities in speech. Thus, it is not
uncommon that it takes days to build acoustic models for a recognition task of medium to

large vocabulary. This has greatly hampered the development of ASR systems in practice.

The lengthy and data-intensive training of acoustic models can be attributed to:

(1) the large number of acoustic model parameters. For example, many state-of-the-art lab-
oratory recognizers contain millions of model parameters [3], [4]. In general, more model
parameters will require more training data to generate robust estimates of the parameters.

(2) the brute-force data-driven training scheme. Acoustic modeling is reduced to pure pa-
rameter estimation of some density functions (as in ASR based on hidden Markov models) or
non-parametric classifiers (such as artificial neural networks) without utilizing other knowledge

such as the acoustic-phonetic relationship.

Recently we proposed a new derivative of the continuous density hidden Markov model-
ing (CDHMM) methodology which we call “subspace distribution clustering hidden Markov
modeling” (SDCHMM) in order to build more compact acoustic models. It has been shown
that the subspace distribution clustering hidden Markov models (SDCHMMSs) can capture the
acoustic-phonetic information efficiently with significantly fewer parameters — by one to two
orders of magnitude — than similar continuous density hidden Markov models (CDHMMs) [1],
[2]. Consequently, SDCHMM systems run faster with a smaller memory footprint than similar
CDHMM systems, and yet they are as accurate as the latter. In the past, K-stream SDCHMDMs
are derived from a set of CDHMMSs with mixture Gaussian densities and diagonal covariances

by a simple model conversion procedure in three steps:

Step 1. Decompose the feature space into K orthogonal (disjoint) subspaces or streams.

Step 2. Project all Gaussians of the CDHMMs onto those orthogonal subspaces.

Step 3. Tie the subspace Gaussians from all states and all phone models (CDHMMSs) in each
subspace. This is done by clustering the subspace Gaussians into a small number of Gaussian

prototypes in each subspace (stream).

One may consider SDCHMMs as CDHMMs tied at the sub-phonetic level of subspace Gaussian-
s. We refer to the tying information among the subspace Gaussians of SDCHMMs together with
the mappings between them and the full-space Gaussians of CDHMMSs as the subspace Gaus-
sian tying structure (SGTS), or generally subspace distribution tying structure (SDTS) when the
type of distribution is immaterial for the discussion. By exploiting the combinatorial effect of
subspace distribution encoding, all the original full-space distributions can be closely approxi-

mated by some combinations of a small number of subspace distribution prototypes. Now with
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the significantly fewer model parameters in SDCHMDMs, one should be able to train SDCHMMs
directly from significantly less speech data. Since acoustically similar subspace Gaussians are
tied, the SGTS efficiently represents the acoustic inter-relationship among the phones as sup-
ported by an acoustic-phonetic analysis of the SDCHMMs in [5]. The presumption of an SGTS
should therefore be considered as a utilization of acoustic-phonetic knowledge in designing our
acoustic models, resulting in fewer model parameters and theoretically requiring less training

data.

In this paper, we propose a novel direct SDCHMM training algorithm and demonstrate that

by making use of

e the small number of parameters in the compact subspace distribution clustering hidden
Markov models; and,
o the a priori knowledge of the acoustic-phonetic relationship encapsulated in a subspace Gaus-

sian tying structure,

SDCHMMs can be trained directly from significantly less speech data — one to two order-
s of magnitude — than those required for equally accurate CDHMMs. Specifically, on the
ATIS (Air Travel Information System) [6] task, by progressively reducing the amount of train-
ing data, we study the training data requirement for SDCHMMs and compare that with the
data requirement for training CDHMMs of various complexities. Both context-independent

and context-dependent SDCHMMs are trained.

The organization of this paper is as follows. In Section II, we first review the theory of SDCH-
MM and an indirect method to generate SDCHMMs from a set of CDHMMs. In Section III, the
direct SDCHMM training algorithm is presented together with the reestimation formulas of the
various SDCHMM parameters. Section IV describes the experimental set-up and methodology
used to evaluate the direct SDCHMM training algorithm on the ATIS task. Direct training
of context-independent SDCHMMs is evaluated in Section V, while that of context-dependent
SDCHMMs is evaluated in Section VI with progressively more adaptation information. Finally,

we draw our conclusions in Section VII and points to some future directions in this work.

II. REVIEW OoF SDCHMM

In this Section, we review the theory of subspace distribution clustering hidden Markov
modeling, and briefly outline a conversion procedure that derives SDCHMMs from a set of

CDHMMs.
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A. Theory of SDCHMM

The theory of SDCHMM is derived from that of continuous density hidden Markov mod-
el (CDHMM) in which state-observation distributions are estimated as mixture Gaussian den-
sities with M components and diagonal covariances. Using the following notations (where

bold-faced quantities represent vectors):

o : an observation vector of dimension D

P;(0O): output probability of state i given O

Cim @ weight of the m-th mixture component of state 4
Wiy mean vector of the m-th component of state 4
o;  : variance vector of the m-th component of state i

N(-) : Gaussian pdf

the observation probability of the i-th state of a CDHMM is given by

M M
PEPIMM(Q) = Z CimN(OQNimaagm)’ Z Ccim = 1. (1)
m=1 m=1

The key observation is that a Gaussian with diagonal covariance can be expressed as a
product of subspace Gaussians where the subspaces (or streams) are orthogonal and together
span the original full feature vector space. To derive K-stream SDCHMMs from a set of
CDHMMSs, we first partition the feature set with D features into K disjoint feature subsets
with dj, features, Zszl dr = D. Each of the original full-space Gaussians is projected onto each
feature subspace to obtain K subspace Gaussians of dimension di, 1 < k < K, with diagonal

covariances. Thus, Equation (1) can be rewritten as

M K
PEPIMM(O) = Y cim (H N(OkENimk’azzmk)> (2)

m=1 k=1
where Ok, p;mi, and o'gmk are the projection of the observation O, and mean and variance
vectors of the m-th mixture component of the i-th state onto the k-th subspace respectively.
For each stream, we tie the subspace Gaussians across all states of all CDHMM acoustic

models. Hence, the state observation probability in Equation (2) is modified as

M K
PEPCIMM(O) = Y i (H N”ed(Ok;mmk,cr?mk)> : (3)
m=1

k=1
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B. Indirect SDCHMM Training Algorithm: Model Conversion from CDHMM:s

The formulation of SDCHMM as of Equation (3) suggests that SDCHMMSs may be imple-

mented in two steps as shown in Figure 1:

(1) Train CDHMMs for all the phonetic units (possibly with tied states), wherein state obser-
vation distributions are estimated as mixture Gaussian densities with diagonal covariances.
(2) Convert the CDHMMs to SDCHMMSs by tying the subspace Gaussians in each stream.

Details of the stream definitions and the clustering algorithm can be found in [2].

By exploiting the combinatorial effects of subspace Gaussian encoding, the original large
number of full-space Gaussians in the CDHMMSs can be represented by a few subspace Gaus-
sians in each stream of the SDCHMMs. For instance, on the ATIS task, 32 to 128 subspace
Gaussians per stream are found adequate. Subsequent ATIS recognition with a set of 20-stream
context-dependent SDCHMMs runs twice as fast as that with CDHMMs, and consumes 13

times less memory and 80 times fewer model parameters [2].

III. DiIREcT SDCHMM TRAINING ALGORITHM

Although the indirect training scheme of SDCHMMs through model conversion of CDHMMs
is simple and runs fast, it requires an amount of training data as large as CDHMM training
since the scheme requires intermediate CDHMMSs. Evaluation of the indirect SDCHMM train-
ing scheme on the ATIS task shows that if the subspace Gaussian tying structure (SGTS)!
is ignored, SDCHMMs have significantly fewer model parameters (mixture weights, Gaussian
means, and variances) — by one to two orders of magnitude — than their parent CDHMMs [1],
[2]. Thus, if we have a priori knowledge of the SGTS, one should be able to train SDCHMMs

directly from significantly less speech data as shown in Figure 2.

One should notice that a subspace Gaussian tying structure encapsulates a lot of information
about the acoustic-phonetic relationship, and if such information is applicable to the task on
hand, it will take fewer data to train the new SDCHMMs. The a priori SGTS may be obtained
from the conversion of a generic set of CDHMMSs (trained with a large amount of speech data)
to SDCHMMs, or from speaker-independent SDCHMMSs when speaker-specific SDCHMMSs are

to be trained, and so forth, depending on the application.

In the following, we will present the reestimation formulas of SDCHMM parameters.

!Subspace Gaussian tying structure is defined in Section I



6 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.
A. Mazimum Likelihood Estimation of SDCHMM Parameters

SDCHMM parameters may be estimated in much the same way as CDHMM parameters are
estimated using the Baum-Welch (BW) algorithm [7]. In fact, the additional constraints im-
posed by the subspace distribution tying structure (SDTS) only alter the way in which statistics
are gathered from the observations in the estimation of the distribution parameters.

Let us denote the whole set of SDCHMMs of all speech units by A. Each N-state SDCHMM
A € A is defined by three sets of parameters:

Y= m, ]

« initial-state probabilities 7
o state-transition probability matrix a* = {ag\j},l <i,j<N

« state observation pdf’s b* = [b}, 83, ..., b)].

Also assume that for each SDCHMM, there is a sequence of training observation O* =

00} -+ o/T\ (where 0} is the observation vector at time ¢) of T’ frames.

A.1 Reestimation of w and a in SDCHMM

It is clear that from the theory of SDCHMM (Equation (3)) that only the state observation
pdf b2(:) of the CDHMM is modified, while the definitions of the initial-state probabilities

and state-transition probabilities a are kept intact. Hence, = and a can still be estimated for

each SDCHMM in the same way as those of conventional CDHMM.

A.2 Reestimation of b in SDCHMM

According to the theory of SDCHMM, the state observation pdf b;\() of state 7 of a K-stream
SDCHMM ) is assumed to be a mixture density with M components b)), (-) and mixture weights
cim, 1 < m < M, such that b}, (-) is a product of K subspace pdf’s bg\mk(-), 1<k <K, of the

same functional form. That is,

M M
bi\(oi\) = Z C’imb’?\m(oz\)a Z Cim = 1 (4)
m=1 m=1
M K
= ) <cim 11 bi\mk(oz\k)> (5)
where b2 . (-) and o}), are the projections of b}, (-) and o} onto the k-th feature subspace
respectively.

The reestimation formula of b depends on the functional form of the state observation pdf.

Here, we will consider only the two cases when the state output distribution is either a single
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Gaussian distribution or a mixture Gaussian density.

Case I: Single Gaussian Output Distribution
Let us first look at the special case when there is only one Gaussian in the mixture density.

Equation (5) may then be simplified to

K
bz'A(OZ\) = H bi\k(oz\k) (6)
k=1

by dropping the mixture weight of unity and the mixture component subscript m.

Now suppose there are Ly subspace pdf prototypes hg(-), 1 <1 < Lg, in the k-th stream
of the set of K-stream SDCHMMs A, 1 < k < K. Each subspace pdf, say, b;\k() in stream k
of state 1, is tied to one of the subspace pdf prototypes of the stream, say, hy(+), 1 <1 < L.
That is, VA € A, Vi € [I,N], V k € [I,K], 31 € [1,Lg] such that b} (-) = hg(-). Then
the reestimation of b)) (-) becomes the reestimation of hy(-) and may be expressed verbally as
follows:

reestimation of the pdf parameters as in conventional CDHM-
reestimation of the pa-
= M, but the statistics are gathered from all frames belonging

rameters of pdf hg(-)
to all b)), () = hg(-) over all states and all models.

In particular if the pdf’s are Gaussians, that is,

hri(ow) = N(0k; tyr> Skt)
then the new model is
doAeA Zz : bz{\kEhkl Zthl ’y{\(z) ' Oz\k
T A
Z)\EA ZZ . bg\kEhkl Zt:l Vi (Z)
2N 2 —hy =1 7 (0) (00— Fra) (00 — k)’
b=
T A
z/\eA Zi:bf‘kEhkl D=1 (4)

K=

2Alkl:

where
Aoy def . A
vi' (i) = P(g, =1i] 0", \) (9)

is the probability of being in state 7 at time ¢, which can be efficiently computed by the
forward-backward algorithm [8].

Case II: Mixture Gaussian Output Distribution
Since an HMM state with a mixture density is equivalent to a multi-state HMM with single-

mixture densities [9], the reestimates of b are similar to those of Case I except that the quantity



8 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.

7 (i) is modified as y*(i,m) which is the probability of being in state 4 and the m-th mixture

component at time ¢, given the model A and the observation sequence O”. Hence,

T .
& — D=1 7t)\(7’7m)
m— .
tT:1 Z%:l 72\(27 m)

T A A
YA, b =hy >i=17¢ (i,m) - o,

By= AV
2xeA Zi’m b =hi 2i=17 (i,m)

2xeA Zi,m:bg\mkzhkl Y17 (6 m) (00 — i) (03), — fue)'

2A]kl: T /-
Z)\GA Zi,m:b?mkzhkz =17 ('L, m)

IV. EVALUATION: SET-UP

The Air Travel Information System (ATIS) task [6] is chosen for the evaluation of the direct
SDCHMM training algorithm. The evaluation may be rephrased as follows:

“If the subspace Gaussian tying structure for the acoustic models of the ATIS task is known,
how much training data is required to directly train SDCHMMs for the task?”

Both context-independent (CI) and context-dependent (CD) SDCHMMSs will be trained and
evaluated. Nonetheless, more emphasis is put on the CI models simply because the simpler
and fewer CI models allow us to train and test many CDHMMs and SDCHMMs of various
complexities in a manageable amount of time. Moreover, CI modeling tends to be more stable
as there is usually ample coverage of training data for the CI phones. In contrast, CD modeling
requires delicate fine-tuning effort to obtain a good balance between training data and model

accuracy, which may complicate our main research goal here.

A. Experimental Set-up

Speech features are extracted at a frame rate of 10ms. Twelve MFCCs (after mean subtrac-
tion) and power, together with their first and second order time derivatives are computed from
a frame of 20ms speech producing a 39-dimensional feature vector. Each phone model is a
3-state left-to-right HMM with the exception of one noise model which has only one state. The
testing conditions (test dataset, vocabulary, pronunciation models, language models, decoding
algorithm, and beam-width) are shown in Table I.

Lastly, the number of streams is fixed to 20 for all SDCHMMs trained below. This follows
from the conclusion in [1], [2] which suggests that 20 streams give a good balance between

accuracy, computation time, and model memory on the ATIS task.
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B. Methodology

To evaluate the effectiveness of direct SDCHMM training, its training data requirement is
compared with that for CDHMM training. The evaluation procedure consists of the following

basic steps:

Step 1. Generate N data subsets D;, 1 < 7 < N, from all the given training data by pro-
gressively cutting the data in half. That is, the amount of data in D;y; is half of that in
D;.

Step 2. Train CDHMM acoustic models with all available training data in Dj.

Step 3. Convert the CDHMMs to SDCHMMSs as described in Section II-B.

Step 4. Deduce the subspace Gaussian tying structure (SGTS) from the converted SDCHMMs.
Step 5. For each data subset (D1, Do, D3, ..., Dy), repeat Steps 6 and 7.

Step 6. Train CDHMMs of different model complexities by varying the number of components
in each state mixture density.

Step 7. Train SDCHMM acoustic models using the direct SDCHMM training algorithm as
shown in Figure 2 with the SGTS obtained in Step 4.

Step 8. Compare the recognition performance of all CDHMMs and SDCHMMs obtained in the

above steps.

C. Preparation of Training Datasets

A collection of 16,896 utterances from the ATIS-2 [6] and ATIS-3 [10] corpora are employed
in this study. They are divided into 16 datasets of roughly 1,000 utterances each, denoted as
S1, S2, S3, ..., to S16, so that data from the five sites are spread out into each dataset as
evenly as possible. The 100 longest utterances from S16 are selected for bootstrapping HMMs

and this set is denoted as dataset A. Other smaller datasets are derived as follows:

« dataset SO contains 500 utterances from dataset S1

« dataset B contains 50 utterances from dataset A

« dataset C contains 25 utterances from dataset B

o dataset D contains 12 utterances from dataset C

o E-sets comprise 10 datasets denoted as E1, E2, ..., E10, and each contains 15 different
utterances from dataset S15, three from each of the five collecting sites.

o F-sets comprise 10 datasets denoted as F1, F2, ..., F10, which are sub-sampled from the
corresponding E-sets such that each contains five utterances, one from each of the five collecting

sites.
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All the various datasets are summarized in Table II. Datasets A, B, C, D, the E-sets, and
the F-sets are all phonetically labeled using AT&T’s 1994 ATIS recognizers [11]. Both context-

independent and context-dependent phone labeling are performed.

D. Hybrid Viterbi/Baum-Welch Training Procedure

We adopt a combination of Viterbi training (VT) and Baum-Welch (BW) reestimation to
train all acoustic models, with an additional step of segmental k-means (SKM) training for
CDHMM training. The hybrid VT /BW training procedure takes advantage of the simplicity
of Viterbi training and the accuracy of Baum-Welch reestimation. The procedures for training

CDHMMs and SDCHMMs are schematically depicted in Figure 3 and Figure 4 respectively.

V. EVALUATION: DIRECT TRAINING OF CONTEXT-INDEPENDENT SDCHMM

Following the methodology described in Section IV-B, the effectiveness, the data requirement,
and the variability of the direct SDCHMM training algorithm are evaluated on training context-
independent SDCHM Ms.

A. Ezperiment I: Effectiveness of Direct SDCHMM Training

We first check, for the same amount of training data, whether SDCHMMSs trained by the
direct SDCHMM training algorithm achieve the same recognition performance as that of the
SDCHMMs converted from CDHMMs. Only CI models are trained in this experiment, and
the SGTS from the converted SDCHMMs is used for direct SDCHMM training.

A.1 Procedure

Following the CDHMM training procedure of Figure 3, 16- and 32-mixture CDHMMs are
trained with dataset S1-4 (meaning a combination of S1, S2, S3, and S4). The CDHMMs are
then converted to 20-stream SDCHMMs with 16, 32, 64, and 128 subspace Gaussian prototypes
per stream. Recognition on the ATIS test data determines the best SDCHMMs in each case of
model complexity: 128 prototypes for the 16-mixture SDCHMMSs and 64 prototypes for the 32-
mixture SDCHMMs. SGTS’s are derived from the best 16-mixture and 32-mixture SDCHMMs
and are denoted as CI-SGTS-M16-n128 and CI-SGTS-M32-n64 respectively. Finally, a new set
of SDCHMMs are trained directly from the two SGTS’s with dataset S1-4 according to the
SDCHMM training procedure of Figure 4.
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A .2 Result and Discussion

The recognition results of the following three sets of acoustic models on the ATIS test data

are shown in Table III:

o CI CDHMMs trained from the dataset S1-4

« CI SDCHMMs converted from the CDHMMs (converted SDCHMMs)

o CI SDCHMMs directly trained from the dataset S1-4 using the SGTS of the converted
SDCHMMs (trained SDCHMMs)

Although the recognition accuracies of the converted SDCHMMs and the directly-trained
SDCHMMs are slightly lower than that of their parent CDHMMs, they have very similar
performance. The result demonstrates the effectiveness of our novel direct SDCHMM training
algorithm: if one is only given the SGTS and the training data of a set of converted SDCHM Ms,
the SDCHMMs can be “recovered” by our direct SDCHMM training algorithm.

B. Ezxperiment II: Data Requirement for Training Context-Independent SDCHMM

Once the effectiveness of direct SDCHMM training is established, we go a step further to
investigate the data requirement for training CI SDCHMMs as compared to that for training
CI CDHMMs using the methodology described in Section TV-B.

B.1 Procedure

CDHMMs of various model complexities are trained using five different datasets: A only,
SO only, S1 only, S1-2, and S1-4. Dataset A is used to bootstrap all models. The maximum

number of mixtures?

in each state density varies from one to 32 in powers of two.

Similarly, SDCHMMs with the two SGTS’s, CI-SGTS-M16-n128 and CI-SGTS-M32-n64, are
trained directly from the five datasets. In addition, we also train SDCHMMs with the smaller
datasets: B only, C only, and D only. These latter SDCHMMs are bootstrapped with the

training data under study in each case (and not with dataset A).

B.2 Result and Discussion

The recognition accuracies of all CDHMMs and SDCHMMSs trained above are shown in
Figure 5.

As the model complexity (measured in terms of the number of Gaussians) decreases, the
accuracy or resolution power of HMMs is compromised. The recognition performance of all

*Note that the final number of mixtures in a density produced by the segmental k-means algorithm [12] can

be fewer than what the user specifies, when there are too few training data in the state.
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CDHMMs with different number of mixtures falls off when they are presented with fewer than
197 minutes of training speech (dataset S1-2). In contrast, the recognition performance of
the 20-stream SDCHMMs trained with CI-SGTS-M16-n128 or CI-SGTS-M32-n64 using the
direct SDCHMM training algorithm does not start to fall significantly until there are less than
8.3 minutes of training speech (dataset B). Moreover, the performance of these two sets of
SDCHMMs, trained with only 8.3 minutes of speech, is unmatched by any CDHMMs (with
the same or simpler model complexity) trained with less than 197 minutes of speech in this
study. This is a roughly 20-fold reduction in the amount of training data for SDCHMMs. The
result should be attributed to the fewer model parameters (mixture weights, Gaussian means,
and variances) of SDCHMMs — the ratios of the number of model parameters in the two
SDCHMMs to that in their parent CDHMMs are 1:14 (for CI-SGTS-M16-n128) and 1:36 (for
CI-SGTS-M32-n64).

Furthermore, as the amount of training data is reduced, the performance of SDCHMMs de-
grades gracefully whereas the performance of CDHMMs drops sharply. For example, when the
amount of training data is pared down from 374 minutes (dataset S1-4) to 17 minutes (dataset
A) the word error rates (WERs) of the 16-mixture and 32-mixture CDHMMs increases by al-
most 100%. On the other hand, the WERs of the corresponding SDCHMMs trained using
CI-SGTS-M16-n128 and CI-SGTS-M32-n64 drop by only ~20% when the amount of training
data is slashed from 374 minutes (dataset S1-4) to 2.1 minutes (dataset D). At first sight, this
does not seem to be possible: For instance, when the 32-mixture SDCHMMs are trained with
CI-SGTS-M32-n64 and the dataset D, there are only 12421 frames of speech to train the 4,086
Gaussians of the 48 monophones. That is, on average, there are about only 259 training frames
per phone or three training frames per Gaussian! Even worse is the fact that some phones
rarely occur, or do not even appear in the small training dataset D as shown in the frame
distribution over the phones in Figure 6. For example, phones “hh” and “oy” do not occur

7, “th”, and “uh” are rare. However,

in dataset D, and consonants like “el”, “g”, “jh”, “nx
if one looks at the frame distribution over the 64 subspace Gaussians of each stream of the
SDCHMMs in Figure 7, one should be convinced that there are ample estimation data for
most of the subspace Gaussians (194 frames on average), and there is full coverage for all of

them. Thus, the efficient sharing of Gaussian parameters in the SDCHMMs plays an equally

important role in reducing the training data requirements.
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C. Experiment III: Performance Variability with Little Training Data
C.1 Procedure

When the amount of training data is small, the effect of random sampling of training data
may become important. To check the performance variability of SDCHMM training with little
training data, we repeat the SDCHMM training procedure of Experiment IT with 20 even
smaller datasets: E1 only, E2 only, ..., E10 only, F1 only, F2 only, ..., and F10 only. Each
of the E-sets contains 15 utterances, and each of the F-sets contains five utterances, with
durations ranging from 13.35 seconds to 97.82 seconds of speech. Both CI-SGTS-M16-n128
and CI-SGTS-M32-n64 are tried.

C.2 Result and Discussion

Figure 8 shows the scatter plots of the recognition accuracies of SDCHMMs trained with each
of the two SGTS’s over each of the 20 datasets. Superimposed on each scatter plot is a cubic B-
spline fit generated by the statistical software S-PLUS [13]. The performance of the CI-SGTS-
M32-n64 SDCHMMs degrades more slowly than that of the CI-SGTS-M16-n128 SDCHMMs
when the amount of training data decreases. This is clearly due to the fact that there are even
fewer model parameters and more sharing among the subspace Gaussians of the CI-SGTS-M32-
n64 SDCHMMs. Nonetheless, it is observed that the 20 individual recognition results for each
set of SDCHMMs fit well into the curve-fitting spline with only small fluctuations. Combining
these results with those of Experiment II, we see a consistent trend that SDCHMMs can be

trained with significantly fewer data over different samples of training sets.

VI. EVALUATION: DIRECT TRAINING OF CONTEXT-DEPENDENT SDCHMM

Since Experiment II already shows that context-independent SDCHMMs require much less
training data than CDHMMs, we next only investigate if context-dependent (CD) SDCHMMs

also require little training data. Thus, only CD SDCHMMs are trained.

A. Ezperiment 1V: Data Requirement for Training Context-Dependent SDCHMM

As mentioned before, CD modeling requires more fine tuning to control the phonetic coverage
(e.g. through using other parameter tying techniques such as state tying). In order not to let
other factors possibly complicate our main research goal here, we start from the CDHMMs
of AT&T’s 1994 context-dependent ATIS recognizer [11] (hereafter referred to as the baseline
CD recognizer /system). There are 9,769 triphone CDHMMs with a total of 76,154 full-space

Gaussians, each having a maximum of 20 mixtures.
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A.1 Procedure

The baseline CD CDHMMs is converted to a set of 20-stream SDCHMMs with 64 subspace
Gaussian prototypes per stream, from which the subspace Gaussian tying structure, denoted
as CD-SGTS-M20-n64, is extracted. The baseline CD CDHMM system has a WER of 5.2%
on the official test set, while the converted CD SDCHMM system has a WER of 5.0%.

The subspace Gaussian tying structure, CD-SGTS-M20-n64, is used for all subsequent CD
SDCHMM training experiments. We also have all training data phonetically labeled by the
baseline CD CDHMM recognizer. To save training computation, subsequent SDCHMM train-
ing will not re-segment any training data.

Following the direct SDCHMM training procedure of Figure 4, SDCHMMSs are trained from
datasets: D, C, B, A, S0, S1, S1-2, S1-4, S1-8, and S1-16 respectively. For training with
datasets larger than A, CD SDCHMMs are initialized with CD-SGTS-M20-n64 using the pho-
netically transcribed dataset A. Whereas for other smaller datasets, bootstrapping is done with

the dataset under study.

A.2 Result and Discussion

The first two curves from the top of Figure 9 show the number of unseen triphones in each
training dataset and the recognition accuracy of the context-dependent SDCHMMs trained
on the dataset. It can be seen that even when only 5-30% of the triphones are covered in
subset D (2.1 minutes) to SO (59 minutes), reasonable word recognition accuracies of about
7% are obtained. The low coverage seems to have caused the irregular performance of the
context-dependent SDCHMMs trained in these datasets. However, the asymptotic perfor-
mance, obtained with more than 735 minutes of training speech (dataset S1-8) does not meet
the performance of neither the baseline CDHMMs nor the converted SDCHMMs (WERs of
5.5% vs. 5.2% or 5.0%). One possible explanation is the insufficient triphone coverage: Even
with all the data from S1-16, about 8% of the triphones are unrepresented. In the baseline
system, all triphones appearing even once in all of the ATIS corpora are modeled. To do that,
it is not only trained with more ATIS data, but also with 8000 additional utterances from the

Wall Street Journal Corpus [14] to increase the coverage for the rare triphones.

B. Ezperiment V: With Prior Knowledge of SGTS and Mixture Weights

Analysis of Experiment IV shows that:
o Although there is inadequate triphone coverage when the amount of training data is limited,

there is still high coverage of the subspace Gaussians of the CD SDCHMMs (full coverage in
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all our experiments).

e« When a speech unit is not observed in the training data, the main effect on SDCHMM
training is that the mixture weights of its SDCHMM are not learned — they stay at their
initial values of 1/M (where M is the number of Gaussian mixtures in the state density) and
are not reestimated in subsequent VT /BW training cycles.

Hence, to confirm our conjecture that the poor performance of CD SDCHMM training is due to
poor triphone coverage in the given training data, we repeat Experiment IV by borrowing the
mixture weights from the baseline CD CDHMMs, and by fixing them during direct SDCHMM
training. The result is presented in the third curve from the top in Figure 9. By incorporating
additional a priori knowledge of the mixture weight (on top of the SGTS, CD-SGTS-M20-n64),
the CD SDCHMMs (which have a model complexity of 76,154 Gaussians), can now be trained
from as little as 8.3 minutes of speech (dataset B) with no degradation in performance when
compared with the baseline CD CDHMMs, even when only 14% of the triphones are observed

in the training data.

C. Experiment VI: With Prior Knowledge of SGTS, Mizture Weights, and Gaussian Variances

The incorporation of known mixture weights does not totally eliminate the gap between
the asymptotic performance of the directly trained SDCHMMs and that of the converted CD
SDCHMMs, but only greatly reduces it. Since 8% of the triphones are unrepresented in the
training data S1-16, some acoustics of the unseen triphones are probably still missing. To
further account for the missing acoustics of the unseen triphones, Experiment V is repeated
by borrowing the Gaussian variances from the converted CD SDCHMMs as well. The result
is shown in the bottom curve in Figure 9. Now even with only 2.1 minute of speech, the
performance is almost the same as that of the baseline CD CDHMMs (WERs of 5.3% vs.
5.2%) and it reaches that of the converted CD SDCHMMs with 59 minutes of training data.

VII. CONCLUSION

In this paper, we successfully train SDCHMMSs directly from much less data without training
intermediate CDHMMs. Such great reduction in the amount of training data is attributed to
the significantly fewer model parameters in SDCHMMs as well as to the effective tying of
subspace Gaussians among the models. While the fewer model parameters, in theory, require
less estimation data, should the tying of subspace Gaussians not be effective, SDCHMM training
would have required even sampling of the phones in the training data. However our experiments

show that even when many phones are under-represented in the training data (Figure 6 or
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Figure 9), there is still a good coverage of the subspace Gaussians (Figure 7); hence, good
estimation of SDCHMMs is still possible.

When the amount of training data is small (say, less than 8 minutes of speech on the ATIS
task), the performance of the ensuing SDCHMMs degrades gracefully. However, over-training
readily occurs in this case. In this study, we exhaustively search for the best BW iteration to
stop using the test data. In practice, cross-validation using unseen data may be employed to
determine the best Baum-Welch iteration. Additionally, one could also investigate the use of
model selection criteria [15], [16], [17] to address the problem of model complexity.

Direct SDCHMM training requires a priori knowledge of, at least, the subspace Gaussian
tying structure. Although in our experiments, the tying structure is derived from an existing
recognizer on the same task, our results are still significant. One possible application is speaker
enrollment — using a speaker-independent SGTS to train speaker-specific SDCHMMs with
little enrollment data.

Results of Experiment IV, V, and VI also suggest that if more a priori information is avail-
able, even less training data may be sufficient. For instance, we may also incorporate the
mixture weights and/or Gaussian variances in addition to the SGTS from the converted SD-
CHMMs (from which the SGTS is derived), and fix them during SDCHMM training. This may
be found useful in speaker (environment) adaptation.

Of course, we still need one set of CDHMMs from which to derive the SGTS for SDCHMM
training. It will be interesting to investigate if the SGTS is task independent so that one may
deduce a “generic” SGTS from a set of “generic” CDHMMSs and apply it to SDCHMM training

in other tasks.
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TABLE I

ATIS: TESTING CONDITIONS

TESTING CONDITION

CI SYSTEM CD SYSTEM

#Test Sentences

981 (1994 ARPA-ATIS evaluation set)

Vocabulary

1,532 words

Language Model

word-sequence bigram (perplexity ~ 20)

Search one-pass Viterbi beam search
Lexical Structure lexical tree linear lexicon
Beam-Width 100 170

#HMMs 48 9,769
#States 142 3,916 (tied)
Max. #Mixtures per State | 32 20

19
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TABLE II

ATITS: TRAINING DATASETS (* DATASETS ARE PHONETICALLY LABELED BY AT&T’s ATIS

RECOGNIZERS. T FIGURES ARE AVERAGES.)

DATASET | #FRAMES | DURATION (min.) | DESCRIPTION

X 13,000,205 2,167 training data for AT&T’s CD ATIS recognizer
Y 6,444,959 1,074 training data for AT&T’s CI ATIS recognizer
Test 545,642 91 981 (1994 ARPA’s official) test utterances
S1-16 8,883,240 1,480 16,896 utterances

S1-4 2,140,470 357 4,226 utterances

S1-2 1,080,650 180 2,114 utterances

S1 527,599 88 1,055 utterances

S0 249,565 42 500 utterances from subset S1

Ax 101,309 17 100 utterances from subset S16

Bx 49,616 8.3 50 utterances from subset A

Cx 27,811 4.6 25 utterances from subset B

D= 12,421 2.1 12 utterances from subset C

E1-E10x 7,758 1.297 15 utterances from subset S15

F1-F10x* 2,702t 0.457 5 utterances from subset S15

TABLE IIT

ATIS: COMPARISON OF RECOGNITION ACCURACIES AMONG CI CDHMMSs, CI SDCHMMS

CONVERTED FROM THE CDHMMs, aAND CI SDCHMMS ESTIMATED BY DIRECT SDCHMM

TRAINING USING THE SGTS OF THE CONVERTED SDCHMMSs

#MIXTURES TOTAL #PROTOTYPES WORD ERROR RATE (%)
PER #GAUSSIAN PER CDHMM | CONVERTED | TRAINED
STATE COMPONENTS STREAM SDCHMM SDCHMM
16 2143 128 9.0 9.5 9.3
32 4086 64 8.5 8.7 8.7
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