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t Training of Subspa
e DistributionClustering Hidden Markov ModelBrian Mak, Member, IEEE, and Enri
o Bo

hieri, Member, IEEEAbstra
tIt generally takes a long time and requires a large amount of spee
h data to train hidden Markovmodels for a spee
h re
ognition task of a reasonably large vo
abulary. Re
ently we proposed a 
ompa
ta
ousti
 model 
alled \subspa
e distribution 
lustering hidden Markov model" (SDCHMM) with an aimto save some of the training e�ort. SDCHMMs are derived from tying 
ontinuous density hidden Markovmodels (CDHMMs) at a �ner sub-phoneti
 level, namely the subspa
e distributions. Experiments onthe ATIS (Airline Travel Information System) task show that SDCHMMs with signi�
antly fewer modelparameters | by one to two orders of magnitude | 
an be 
onverted from CDHMMs with no loss inword a

ura
y [1℄, [2℄. With su
h 
ompa
t a
ousti
 models, one should be able to train SDCHMMsdire
tly from signi�
antly less spee
h data (without intermediate CDHMMs). In this paper, we devisea dire
t SDCHMM training algorithm, assuming an a priori knowledge of the subspa
e distributiontying stru
ture. On the ATIS task, it is found that both a 
ontext-independent and a 
ontext-dependentspeaker-independent 20-stream SDCHMM system trained with 8 minutes of spee
h perform as well astheir 
orresponding CDHMM system trained with 105 minutes and 36 hours of spee
h respe
tively.KeywordsSubspa
e distribution 
lustering hidden Markov modeling, dire
t training, subspa
e distributiontying stru
ture. I. Introdu
tionOne of the major 
omponents of an automati
 spee
h re
ognition (ASR) system is its a
ousti
models. A
ousti
 modeling for a reasonably large vo
abulary is a time-
onsuming exer
ise,requiring a large amount of spee
h training data in order to a

ommodate the great variabilitiesin spee
h. With the availability of many large spee
h 
orpora nowadays, more a

urate a
ousti
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an be built with more data 
overing di�erent variabilities in spee
h. Thus, it is notun
ommon that it takes days to build a
ousti
 models for a re
ognition task of medium tolarge vo
abulary. This has greatly hampered the development of ASR systems in pra
ti
e.The lengthy and data-intensive training of a
ousti
 models 
an be attributed to:(1) the large number of a
ousti
 model parameters. For example, many state-of-the-art lab-oratory re
ognizers 
ontain millions of model parameters [3℄, [4℄. In general, more modelparameters will require more training data to generate robust estimates of the parameters.(2) the brute-for
e data-driven training s
heme. A
ousti
 modeling is redu
ed to pure pa-rameter estimation of some density fun
tions (as in ASR based on hidden Markov models) ornon-parametri
 
lassi�ers (su
h as arti�
ial neural networks) without utilizing other knowledgesu
h as the a
ousti
-phoneti
 relationship.Re
ently we proposed a new derivative of the 
ontinuous density hidden Markov model-ing (CDHMM) methodology whi
h we 
all \subspa
e distribution 
lustering hidden Markovmodeling" (SDCHMM) in order to build more 
ompa
t a
ousti
 models. It has been shownthat the subspa
e distribution 
lustering hidden Markov models (SDCHMMs) 
an 
apture thea
ousti
-phoneti
 information eÆ
iently with signi�
antly fewer parameters | by one to twoorders of magnitude | than similar 
ontinuous density hidden Markov models (CDHMMs) [1℄,[2℄. Consequently, SDCHMM systems run faster with a smaller memory footprint than similarCDHMM systems, and yet they are as a

urate as the latter. In the past, K-stream SDCHMMsare derived from a set of CDHMMs with mixture Gaussian densities and diagonal 
ovarian
esby a simple model 
onversion pro
edure in three steps:Step 1. De
ompose the feature spa
e into K orthogonal (disjoint) subspa
es or streams.Step 2. Proje
t all Gaussians of the CDHMMs onto those orthogonal subspa
es.Step 3. Tie the subspa
e Gaussians from all states and all phone models (CDHMMs) in ea
hsubspa
e. This is done by 
lustering the subspa
e Gaussians into a small number of Gaussianprototypes in ea
h subspa
e (stream).One may 
onsider SDCHMMs as CDHMMs tied at the sub-phoneti
 level of subspa
e Gaussian-s. We refer to the tying information among the subspa
e Gaussians of SDCHMMs together withthe mappings between them and the full-spa
e Gaussians of CDHMMs as the subspa
e Gaus-sian tying stru
ture (SGTS), or generally subspa
e distribution tying stru
ture (SDTS) when thetype of distribution is immaterial for the dis
ussion. By exploiting the 
ombinatorial e�e
t ofsubspa
e distribution en
oding, all the original full-spa
e distributions 
an be 
losely approxi-mated by some 
ombinations of a small number of subspa
e distribution prototypes. Now with
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antly fewer model parameters in SDCHMMs, one should be able to train SDCHMMsdire
tly from signi�
antly less spee
h data. Sin
e a
ousti
ally similar subspa
e Gaussians aretied, the SGTS eÆ
iently represents the a
ousti
 inter-relationship among the phones as sup-ported by an a
ousti
-phoneti
 analysis of the SDCHMMs in [5℄. The presumption of an SGTSshould therefore be 
onsidered as a utilization of a
ousti
-phoneti
 knowledge in designing oura
ousti
 models, resulting in fewer model parameters and theoreti
ally requiring less trainingdata.In this paper, we propose a novel dire
t SDCHMM training algorithm and demonstrate thatby making use of� the small number of parameters in the 
ompa
t subspa
e distribution 
lustering hiddenMarkov models; and,� the a priori knowledge of the a
ousti
-phoneti
 relationship en
apsulated in a subspa
e Gaus-sian tying stru
ture,SDCHMMs 
an be trained dire
tly from signi�
antly less spee
h data | one to two order-s of magnitude | than those required for equally a

urate CDHMMs. Spe
i�
ally, on theATIS (Air Travel Information System) [6℄ task, by progressively redu
ing the amount of train-ing data, we study the training data requirement for SDCHMMs and 
ompare that with thedata requirement for training CDHMMs of various 
omplexities. Both 
ontext-independentand 
ontext-dependent SDCHMMs are trained.The organization of this paper is as follows. In Se
tion II, we �rst review the theory of SDCH-MM and an indire
t method to generate SDCHMMs from a set of CDHMMs. In Se
tion III, thedire
t SDCHMM training algorithm is presented together with the reestimation formulas of thevarious SDCHMM parameters. Se
tion IV des
ribes the experimental set-up and methodologyused to evaluate the dire
t SDCHMM training algorithm on the ATIS task. Dire
t trainingof 
ontext-independent SDCHMMs is evaluated in Se
tion V, while that of 
ontext-dependentSDCHMMs is evaluated in Se
tion VI with progressively more adaptation information. Finally,we draw our 
on
lusions in Se
tion VII and points to some future dire
tions in this work.II. Review of SDCHMMIn this Se
tion, we review the theory of subspa
e distribution 
lustering hidden Markovmodeling, and brie
y outline a 
onversion pro
edure that derives SDCHMMs from a set ofCDHMMs.



4 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.A. Theory of SDCHMMThe theory of SDCHMM is derived from that of 
ontinuous density hidden Markov mod-el (CDHMM) in whi
h state-observation distributions are estimated as mixture Gaussian den-sities with M 
omponents and diagonal 
ovarian
es. Using the following notations (wherebold-fa
ed quantities represent ve
tors):O : an observation ve
tor of dimension DPi(O): output probability of state i given O
im : weight of the m-th mixture 
omponent of state i�im : mean ve
tor of the m-th 
omponent of state i�2im : varian
e ve
tor of the m-th 
omponent of state iN (�) : Gaussian pdfthe observation probability of the i-th state of a CDHMM is given byPCDHMMi (O) = MXm=1 
imN (O;�im;�2im); MXm=1 
im = 1: (1)The key observation is that a Gaussian with diagonal 
ovarian
e 
an be expressed as aprodu
t of subspa
e Gaussians where the subspa
es (or streams) are orthogonal and togetherspan the original full feature ve
tor spa
e. To derive K-stream SDCHMMs from a set ofCDHMMs, we �rst partition the feature set with D features into K disjoint feature subsetswith dk features, PKk=1 dk = D. Ea
h of the original full-spa
e Gaussians is proje
ted onto ea
hfeature subspa
e to obtain K subspa
e Gaussians of dimension dk, 1 � k � K, with diagonal
ovarian
es. Thus, Equation (1) 
an be rewritten asPCDHMMi (O) = MXm=1 
im  KYk=1N (Ok;�imk;�2imk)! (2)where Ok, �imk, and �2imk are the proje
tion of the observation O, and mean and varian
eve
tors of the m-th mixture 
omponent of the i-th state onto the k-th subspa
e respe
tively.For ea
h stream, we tie the subspa
e Gaussians a
ross all states of all CDHMM a
ousti
models. Hen
e, the state observation probability in Equation (2) is modi�ed asP SDCHMMi (O) = MXm=1 
im  KYk=1N tied(Ok;�imk;�2imk)! : (3)



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 5B. Indire
t SDCHMM Training Algorithm: Model Conversion from CDHMMsThe formulation of SDCHMM as of Equation (3) suggests that SDCHMMs may be imple-mented in two steps as shown in Figure 1:(1) Train CDHMMs for all the phoneti
 units (possibly with tied states), wherein state obser-vation distributions are estimated as mixture Gaussian densities with diagonal 
ovarian
es.(2) Convert the CDHMMs to SDCHMMs by tying the subspa
e Gaussians in ea
h stream.Details of the stream de�nitions and the 
lustering algorithm 
an be found in [2℄.By exploiting the 
ombinatorial e�e
ts of subspa
e Gaussian en
oding, the original largenumber of full-spa
e Gaussians in the CDHMMs 
an be represented by a few subspa
e Gaus-sians in ea
h stream of the SDCHMMs. For instan
e, on the ATIS task, 32 to 128 subspa
eGaussians per stream are found adequate. Subsequent ATIS re
ognition with a set of 20-stream
ontext-dependent SDCHMMs runs twi
e as fast as that with CDHMMs, and 
onsumes 13times less memory and 80 times fewer model parameters [2℄.III. Dire
t SDCHMM Training AlgorithmAlthough the indire
t training s
heme of SDCHMMs through model 
onversion of CDHMMsis simple and runs fast, it requires an amount of training data as large as CDHMM trainingsin
e the s
heme requires intermediate CDHMMs. Evaluation of the indire
t SDCHMM train-ing s
heme on the ATIS task shows that if the subspa
e Gaussian tying stru
ture (SGTS)1is ignored, SDCHMMs have signi�
antly fewer model parameters (mixture weights, Gaussianmeans, and varian
es) | by one to two orders of magnitude | than their parent CDHMMs [1℄,[2℄. Thus, if we have a priori knowledge of the SGTS, one should be able to train SDCHMMsdire
tly from signi�
antly less spee
h data as shown in Figure 2.One should noti
e that a subspa
e Gaussian tying stru
ture en
apsulates a lot of informationabout the a
ousti
-phoneti
 relationship, and if su
h information is appli
able to the task onhand, it will take fewer data to train the new SDCHMMs. The a priori SGTS may be obtainedfrom the 
onversion of a generi
 set of CDHMMs (trained with a large amount of spee
h data)to SDCHMMs, or from speaker-independent SDCHMMs when speaker-spe
i�
 SDCHMMs areto be trained, and so forth, depending on the appli
ation.In the following, we will present the reestimation formulas of SDCHMM parameters.1Subspa
e Gaussian tying stru
ture is de�ned in Se
tion I



6 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.A. Maximum Likelihood Estimation of SDCHMM ParametersSDCHMM parameters may be estimated in mu
h the same way as CDHMM parameters areestimated using the Baum-Wel
h (BW) algorithm [7℄. In fa
t, the additional 
onstraints im-posed by the subspa
e distribution tying stru
ture (SDTS) only alter the way in whi
h statisti
sare gathered from the observations in the estimation of the distribution parameters.Let us denote the whole set of SDCHMMs of all spee
h units by �. Ea
h N -state SDCHMM� 2 � is de�ned by three sets of parameters:� initial-state probabilities �� = [��1 ; ��2 ; : : : ; ��N ℄� state-transition probability matrix a� = fa�ijg; 1 � i; j � N� state observation pdf's b� = [b�1 ; b�2 ; : : : ; b�N ℄.Also assume that for ea
h SDCHMM, there is a sequen
e of training observation O� =o�1o�2 � � � o�T (where o�t is the observation ve
tor at time t) of T frames.A.1 Reestimation of � and a in SDCHMMIt is 
lear that from the theory of SDCHMM (Equation (3)) that only the state observationpdf b�i (�) of the CDHMM is modi�ed, while the de�nitions of the initial-state probabilities �and state-transition probabilities a are kept inta
t. Hen
e, � and a 
an still be estimated forea
h SDCHMM in the same way as those of 
onventional CDHMM.A.2 Reestimation of b in SDCHMMA

ording to the theory of SDCHMM, the state observation pdf b�i (�) of state i of a K-streamSDCHMM � is assumed to be a mixture density withM 
omponents b�im(�) and mixture weights
im, 1 � m �M , su
h that b�im(�) is a produ
t of K subspa
e pdf's b�imk(�), 1 � k � K, of thesame fun
tional form. That is,b�i (o�t ) = MXm=1 
imb�im(o�t ); MXm=1 
im = 1 (4)= MXm=1 
im KYk=1 b�imk(o�tk)! (5)where b�imk(�) and o�tk are the proje
tions of b�im(�) and o�t onto the k-th feature subspa
erespe
tively.The reestimation formula of b depends on the fun
tional form of the state observation pdf.Here, we will 
onsider only the two 
ases when the state output distribution is either a single



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 7Gaussian distribution or a mixture Gaussian density.Case I: Single Gaussian Output DistributionLet us �rst look at the spe
ial 
ase when there is only one Gaussian in the mixture density.Equation (5) may then be simpli�ed tob�i (o�t ) = KYk=1 b�ik(o�tk) (6)by dropping the mixture weight of unity and the mixture 
omponent subs
ript m.Now suppose there are Lk subspa
e pdf prototypes hkl(�), 1 � l � Lk, in the k-th streamof the set of K-stream SDCHMMs �, 1 � k � K. Ea
h subspa
e pdf, say, b�ik(�) in stream kof state i, is tied to one of the subspa
e pdf prototypes of the stream, say, hkl(�), 1 � l � Lk.That is, 8� 2 �; 8 i 2 [1; N ℄; 8 k 2 [1;K℄; 9 l 2 [1; Lk℄ su
h that b�ik(�) � hkl(�). Thenthe reestimation of b�ik(�) be
omes the reestimation of hkl(�) and may be expressed verbally asfollows:reestimation of the pa-rameters of pdf hkl(�) = reestimation of the pdf parameters as in 
onventional CDHM-M, but the statisti
s are gathered from all frames belongingto all b�ik(�) � hkl(�) over all states and all models.In parti
ular if the pdf's are Gaussians, that is,hkl(otk) = N(otk;�kl;�kl)then the new model is�̂kl=P�2�Pi : b�ik�hklPTt=1 
�t (i) � o�tkP�2�Pi : b�ik�hklPTt=1 
�t (i) (7)�̂kl=P�2�Pi:b�ik�hklPTt=1 
�t (i)(o�tk��̂kl)(o�tk��̂kl)0P�2�Pi:b�ik�hklPTt=1 
�t (i) : (8)where 
�t (i) def= P (qt = i j O�; �) (9)is the probability of being in state i at time t, whi
h 
an be eÆ
iently 
omputed by theforward-ba
kward algorithm [8℄.Case II: Mixture Gaussian Output DistributionSin
e an HMM state with a mixture density is equivalent to a multi-state HMM with single-mixture densities [9℄, the reestimates of b are similar to those of Case I ex
ept that the quantity
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�t (i) is modi�ed as 
�t (i;m) whi
h is the probability of being in state i and the m-th mixture
omponent at time t, given the model � and the observation sequen
e O�. Hen
e,
̂im= PTt=1 
�t (i;m)PTt=1PMm=1 
�t (i;m) (10)�̂kl=P�2�Pi;m : b�imk�hklPTt=1 
�t (i;m) � o�tkP�2�Pi;m : b�imk�hklPTt=1 
�t (i;m) (11)�̂kl=P�2�Pi;m:b�imk�hklPTt=1
�t (i;m)(o�tk��̂kl)(o�tk��̂kl)0P�2�Pi;m:b�imk�hklPTt=1 
�t (i;m) : (12)
IV. Evaluation: Set-upThe Air Travel Information System (ATIS) task [6℄ is 
hosen for the evaluation of the dire
tSDCHMM training algorithm. The evaluation may be rephrased as follows:\If the subspa
e Gaussian tying stru
ture for the a
ousti
 models of the ATIS task is known,how mu
h training data is required to dire
tly train SDCHMMs for the task?"Both 
ontext-independent (CI) and 
ontext-dependent (CD) SDCHMMs will be trained andevaluated. Nonetheless, more emphasis is put on the CI models simply be
ause the simplerand fewer CI models allow us to train and test many CDHMMs and SDCHMMs of various
omplexities in a manageable amount of time. Moreover, CI modeling tends to be more stableas there is usually ample 
overage of training data for the CI phones. In 
ontrast, CD modelingrequires deli
ate �ne-tuning e�ort to obtain a good balan
e between training data and modela

ura
y, whi
h may 
ompli
ate our main resear
h goal here.A. Experimental Set-upSpee
h features are extra
ted at a frame rate of 10ms. Twelve MFCCs (after mean subtra
-tion) and power, together with their �rst and se
ond order time derivatives are 
omputed froma frame of 20ms spee
h produ
ing a 39-dimensional feature ve
tor. Ea
h phone model is a3-state left-to-right HMM with the ex
eption of one noise model whi
h has only one state. Thetesting 
onditions (test dataset, vo
abulary, pronun
iation models, language models, de
odingalgorithm, and beam-width) are shown in Table I.Lastly, the number of streams is �xed to 20 for all SDCHMMs trained below. This followsfrom the 
on
lusion in [1℄, [2℄ whi
h suggests that 20 streams give a good balan
e betweena

ura
y, 
omputation time, and model memory on the ATIS task.



MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 9B. MethodologyTo evaluate the e�e
tiveness of dire
t SDCHMM training, its training data requirement is
ompared with that for CDHMM training. The evaluation pro
edure 
onsists of the followingbasi
 steps:Step 1. Generate N data subsets Di, 1 � i � N , from all the given training data by pro-gressively 
utting the data in half. That is, the amount of data in Di+1 is half of that inDi.Step 2. Train CDHMM a
ousti
 models with all available training data in D1.Step 3. Convert the CDHMMs to SDCHMMs as des
ribed in Se
tion II-B.Step 4. Dedu
e the subspa
e Gaussian tying stru
ture (SGTS) from the 
onverted SDCHMMs.Step 5. For ea
h data subset (D1, D2, D3, : : :, DN ), repeat Steps 6 and 7.Step 6. Train CDHMMs of di�erent model 
omplexities by varying the number of 
omponentsin ea
h state mixture density.Step 7. Train SDCHMM a
ousti
 models using the dire
t SDCHMM training algorithm asshown in Figure 2 with the SGTS obtained in Step 4.Step 8. Compare the re
ognition performan
e of all CDHMMs and SDCHMMs obtained in theabove steps.C. Preparation of Training DatasetsA 
olle
tion of 16,896 utteran
es from the ATIS-2 [6℄ and ATIS-3 [10℄ 
orpora are employedin this study. They are divided into 16 datasets of roughly 1,000 utteran
es ea
h, denoted asS1, S2, S3, . . . , to S16, so that data from the �ve sites are spread out into ea
h dataset asevenly as possible. The 100 longest utteran
es from S16 are sele
ted for bootstrapping HMMsand this set is denoted as dataset A. Other smaller datasets are derived as follows:� dataset S0 
ontains 500 utteran
es from dataset S1� dataset B 
ontains 50 utteran
es from dataset A� dataset C 
ontains 25 utteran
es from dataset B� dataset D 
ontains 12 utteran
es from dataset C� E-sets 
omprise 10 datasets denoted as E1, E2, . . . , E10, and ea
h 
ontains 15 di�erentutteran
es from dataset S15, three from ea
h of the �ve 
olle
ting sites.� F-sets 
omprise 10 datasets denoted as F1, F2, . . . , F10, whi
h are sub-sampled from the
orresponding E-sets su
h that ea
h 
ontains �ve utteran
es, one from ea
h of the �ve 
olle
tingsites.



10 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.All the various datasets are summarized in Table II. Datasets A, B, C, D, the E-sets, andthe F-sets are all phoneti
ally labeled using AT&T's 1994 ATIS re
ognizers [11℄. Both 
ontext-independent and 
ontext-dependent phone labeling are performed.D. Hybrid Viterbi/Baum-Wel
h Training Pro
edureWe adopt a 
ombination of Viterbi training (VT) and Baum-Wel
h (BW) reestimation totrain all a
ousti
 models, with an additional step of segmental k-means (SKM) training forCDHMM training. The hybrid VT/BW training pro
edure takes advantage of the simpli
ityof Viterbi training and the a

ura
y of Baum-Wel
h reestimation. The pro
edures for trainingCDHMMs and SDCHMMs are s
hemati
ally depi
ted in Figure 3 and Figure 4 respe
tively.V. Evaluation: Dire
t Training of Context-Independent SDCHMMFollowing the methodology des
ribed in Se
tion IV-B, the e�e
tiveness, the data requirement,and the variability of the dire
t SDCHMM training algorithm are evaluated on training 
ontext-independent SDCHMMs.A. Experiment I: E�e
tiveness of Dire
t SDCHMM TrainingWe �rst 
he
k, for the same amount of training data, whether SDCHMMs trained by thedire
t SDCHMM training algorithm a
hieve the same re
ognition performan
e as that of theSDCHMMs 
onverted from CDHMMs. Only CI models are trained in this experiment, andthe SGTS from the 
onverted SDCHMMs is used for dire
t SDCHMM training.A.1 Pro
edureFollowing the CDHMM training pro
edure of Figure 3, 16- and 32-mixture CDHMMs aretrained with dataset S1{4 (meaning a 
ombination of S1, S2, S3, and S4). The CDHMMs arethen 
onverted to 20-stream SDCHMMs with 16, 32, 64, and 128 subspa
e Gaussian prototypesper stream. Re
ognition on the ATIS test data determines the best SDCHMMs in ea
h 
ase ofmodel 
omplexity: 128 prototypes for the 16-mixture SDCHMMs and 64 prototypes for the 32-mixture SDCHMMs. SGTS's are derived from the best 16-mixture and 32-mixture SDCHMMsand are denoted as CI-SGTS-M16-n128 and CI-SGTS-M32-n64 respe
tively. Finally, a new setof SDCHMMs are trained dire
tly from the two SGTS's with dataset S1{4 a

ording to theSDCHMM training pro
edure of Figure 4.
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ussionThe re
ognition results of the following three sets of a
ousti
 models on the ATIS test dataare shown in Table III:� CI CDHMMs trained from the dataset S1{4� CI SDCHMMs 
onverted from the CDHMMs (
onverted SDCHMMs)� CI SDCHMMs dire
tly trained from the dataset S1{4 using the SGTS of the 
onvertedSDCHMMs (trained SDCHMMs)Although the re
ognition a

ura
ies of the 
onverted SDCHMMs and the dire
tly-trainedSDCHMMs are slightly lower than that of their parent CDHMMs, they have very similarperforman
e. The result demonstrates the e�e
tiveness of our novel dire
t SDCHMM trainingalgorithm: if one is only given the SGTS and the training data of a set of 
onverted SDCHMMs,the SDCHMMs 
an be \re
overed" by our dire
t SDCHMM training algorithm.B. Experiment II: Data Requirement for Training Context-Independent SDCHMMOn
e the e�e
tiveness of dire
t SDCHMM training is established, we go a step further toinvestigate the data requirement for training CI SDCHMMs as 
ompared to that for trainingCI CDHMMs using the methodology des
ribed in Se
tion IV-B.B.1 Pro
edureCDHMMs of various model 
omplexities are trained using �ve di�erent datasets: A only,S0 only, S1 only, S1{2, and S1{4. Dataset A is used to bootstrap all models. The maximumnumber of mixtures2 in ea
h state density varies from one to 32 in powers of two.Similarly, SDCHMMs with the two SGTS's, CI-SGTS-M16-n128 and CI-SGTS-M32-n64, aretrained dire
tly from the �ve datasets. In addition, we also train SDCHMMs with the smallerdatasets: B only, C only, and D only. These latter SDCHMMs are bootstrapped with thetraining data under study in ea
h 
ase (and not with dataset A).B.2 Result and Dis
ussionThe re
ognition a

ura
ies of all CDHMMs and SDCHMMs trained above are shown inFigure 5.As the model 
omplexity (measured in terms of the number of Gaussians) de
reases, thea

ura
y or resolution power of HMMs is 
ompromised. The re
ognition performan
e of all2Note that the �nal number of mixtures in a density produ
ed by the segmental k-means algorithm [12℄ 
anbe fewer than what the user spe
i�es, when there are too few training data in the state.



12 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.CDHMMs with di�erent number of mixtures falls o� when they are presented with fewer than197 minutes of training spee
h (dataset S1{2). In 
ontrast, the re
ognition performan
e ofthe 20-stream SDCHMMs trained with CI-SGTS-M16-n128 or CI-SGTS-M32-n64 using thedire
t SDCHMM training algorithm does not start to fall signi�
antly until there are less than8.3 minutes of training spee
h (dataset B). Moreover, the performan
e of these two sets ofSDCHMMs, trained with only 8.3 minutes of spee
h, is unmat
hed by any CDHMMs (withthe same or simpler model 
omplexity) trained with less than 197 minutes of spee
h in thisstudy. This is a roughly 20-fold redu
tion in the amount of training data for SDCHMMs. Theresult should be attributed to the fewer model parameters (mixture weights, Gaussian means,and varian
es) of SDCHMMs | the ratios of the number of model parameters in the twoSDCHMMs to that in their parent CDHMMs are 1:14 (for CI-SGTS-M16-n128) and 1:36 (forCI-SGTS-M32-n64).
Furthermore, as the amount of training data is redu
ed, the performan
e of SDCHMMs de-grades gra
efully whereas the performan
e of CDHMMs drops sharply. For example, when theamount of training data is pared down from 374 minutes (dataset S1{4) to 17 minutes (datasetA) the word error rates (WERs) of the 16-mixture and 32-mixture CDHMMs in
reases by al-most 100%. On the other hand, the WERs of the 
orresponding SDCHMMs trained usingCI-SGTS-M16-n128 and CI-SGTS-M32-n64 drop by only �20% when the amount of trainingdata is slashed from 374 minutes (dataset S1{4) to 2.1 minutes (dataset D). At �rst sight, thisdoes not seem to be possible: For instan
e, when the 32-mixture SDCHMMs are trained withCI-SGTS-M32-n64 and the dataset D, there are only 12421 frames of spee
h to train the 4,086Gaussians of the 48 monophones. That is, on average, there are about only 259 training framesper phone or three training frames per Gaussian! Even worse is the fa
t that some phonesrarely o

ur, or do not even appear in the small training dataset D as shown in the framedistribution over the phones in Figure 6. For example, phones \hh" and \oy" do not o

urin dataset D, and 
onsonants like \el", \g", \jh", \nx", \th", and \uh" are rare. However,if one looks at the frame distribution over the 64 subspa
e Gaussians of ea
h stream of theSDCHMMs in Figure 7, one should be 
onvin
ed that there are ample estimation data formost of the subspa
e Gaussians (194 frames on average), and there is full 
overage for all ofthem. Thus, the eÆ
ient sharing of Gaussian parameters in the SDCHMMs plays an equallyimportant role in redu
ing the training data requirements.
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e Variability with Little Training DataC.1 Pro
edureWhen the amount of training data is small, the e�e
t of random sampling of training datamay be
ome important. To 
he
k the performan
e variability of SDCHMM training with littletraining data, we repeat the SDCHMM training pro
edure of Experiment II with 20 evensmaller datasets: E1 only, E2 only, . . . , E10 only, F1 only, F2 only, . . . , and F10 only. Ea
hof the E-sets 
ontains 15 utteran
es, and ea
h of the F-sets 
ontains �ve utteran
es, withdurations ranging from 13.35 se
onds to 97.82 se
onds of spee
h. Both CI-SGTS-M16-n128and CI-SGTS-M32-n64 are tried.C.2 Result and Dis
ussionFigure 8 shows the s
atter plots of the re
ognition a

ura
ies of SDCHMMs trained with ea
hof the two SGTS's over ea
h of the 20 datasets. Superimposed on ea
h s
atter plot is a 
ubi
 B-spline �t generated by the statisti
al software S-PLUS [13℄. The performan
e of the CI-SGTS-M32-n64 SDCHMMs degrades more slowly than that of the CI-SGTS-M16-n128 SDCHMMswhen the amount of training data de
reases. This is 
learly due to the fa
t that there are evenfewer model parameters and more sharing among the subspa
e Gaussians of the CI-SGTS-M32-n64 SDCHMMs. Nonetheless, it is observed that the 20 individual re
ognition results for ea
hset of SDCHMMs �t well into the 
urve-�tting spline with only small 
u
tuations. Combiningthese results with those of Experiment II, we see a 
onsistent trend that SDCHMMs 
an betrained with signi�
antly fewer data over di�erent samples of training sets.VI. Evaluation: Dire
t Training of Context-Dependent SDCHMMSin
e Experiment II already shows that 
ontext-independent SDCHMMs require mu
h lesstraining data than CDHMMs, we next only investigate if 
ontext-dependent (CD) SDCHMMsalso require little training data. Thus, only CD SDCHMMs are trained.A. Experiment IV: Data Requirement for Training Context-Dependent SDCHMMAs mentioned before, CD modeling requires more �ne tuning to 
ontrol the phoneti
 
overage(e.g. through using other parameter tying te
hniques su
h as state tying). In order not to letother fa
tors possibly 
ompli
ate our main resear
h goal here, we start from the CDHMMsof AT&T's 1994 
ontext-dependent ATIS re
ognizer [11℄ (hereafter referred to as the baselineCD re
ognizer/system). There are 9,769 triphone CDHMMs with a total of 76,154 full-spa
eGaussians, ea
h having a maximum of 20 mixtures.
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edureThe baseline CD CDHMMs is 
onverted to a set of 20-stream SDCHMMs with 64 subspa
eGaussian prototypes per stream, from whi
h the subspa
e Gaussian tying stru
ture, denotedas CD-SGTS-M20-n64, is extra
ted. The baseline CD CDHMM system has a WER of 5.2%on the oÆ
ial test set, while the 
onverted CD SDCHMM system has a WER of 5.0%.The subspa
e Gaussian tying stru
ture, CD-SGTS-M20-n64, is used for all subsequent CDSDCHMM training experiments. We also have all training data phoneti
ally labeled by thebaseline CD CDHMM re
ognizer. To save training 
omputation, subsequent SDCHMM train-ing will not re-segment any training data.Following the dire
t SDCHMM training pro
edure of Figure 4, SDCHMMs are trained fromdatasets: D, C, B, A, S0, S1, S1{2, S1{4, S1{8, and S1{16 respe
tively. For training withdatasets larger than A, CD SDCHMMs are initialized with CD-SGTS-M20-n64 using the pho-neti
ally trans
ribed dataset A. Whereas for other smaller datasets, bootstrapping is done withthe dataset under study.A.2 Result and Dis
ussionThe �rst two 
urves from the top of Figure 9 show the number of unseen triphones in ea
htraining dataset and the re
ognition a

ura
y of the 
ontext-dependent SDCHMMs trainedon the dataset. It 
an be seen that even when only 5{30% of the triphones are 
overed insubset D (2.1 minutes) to S0 (59 minutes), reasonable word re
ognition a

ura
ies of about7% are obtained. The low 
overage seems to have 
aused the irregular performan
e of the
ontext-dependent SDCHMMs trained in these datasets. However, the asymptoti
 perfor-man
e, obtained with more than 735 minutes of training spee
h (dataset S1{8) does not meetthe performan
e of neither the baseline CDHMMs nor the 
onverted SDCHMMs (WERs of5.5% vs. 5.2% or 5.0%). One possible explanation is the insuÆ
ient triphone 
overage: Evenwith all the data from S1{16, about 8% of the triphones are unrepresented. In the baselinesystem, all triphones appearing even on
e in all of the ATIS 
orpora are modeled. To do that,it is not only trained with more ATIS data, but also with 8000 additional utteran
es from theWall Street Journal Corpus [14℄ to in
rease the 
overage for the rare triphones.B. Experiment V: With Prior Knowledge of SGTS and Mixture WeightsAnalysis of Experiment IV shows that:� Although there is inadequate triphone 
overage when the amount of training data is limited,there is still high 
overage of the subspa
e Gaussians of the CD SDCHMMs (full 
overage in
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h unit is not observed in the training data, the main e�e
t on SDCHMMtraining is that the mixture weights of its SDCHMM are not learned | they stay at theirinitial values of 1=M (where M is the number of Gaussian mixtures in the state density) andare not reestimated in subsequent VT/BW training 
y
les.Hen
e, to 
on�rm our 
onje
ture that the poor performan
e of CD SDCHMM training is due topoor triphone 
overage in the given training data, we repeat Experiment IV by borrowing themixture weights from the baseline CD CDHMMs, and by �xing them during dire
t SDCHMMtraining. The result is presented in the third 
urve from the top in Figure 9. By in
orporatingadditional a priori knowledge of the mixture weight (on top of the SGTS, CD-SGTS-M20-n64),the CD SDCHMMs (whi
h have a model 
omplexity of 76,154 Gaussians), 
an now be trainedfrom as little as 8.3 minutes of spee
h (dataset B) with no degradation in performan
e when
ompared with the baseline CD CDHMMs, even when only 14% of the triphones are observedin the training data.C. Experiment VI: With Prior Knowledge of SGTS, Mixture Weights, and Gaussian Varian
esThe in
orporation of known mixture weights does not totally eliminate the gap betweenthe asymptoti
 performan
e of the dire
tly trained SDCHMMs and that of the 
onverted CDSDCHMMs, but only greatly redu
es it. Sin
e 8% of the triphones are unrepresented in thetraining data S1{16, some a
ousti
s of the unseen triphones are probably still missing. Tofurther a

ount for the missing a
ousti
s of the unseen triphones, Experiment V is repeatedby borrowing the Gaussian varian
es from the 
onverted CD SDCHMMs as well. The resultis shown in the bottom 
urve in Figure 9. Now even with only 2.1 minute of spee
h, theperforman
e is almost the same as that of the baseline CD CDHMMs (WERs of 5.3% vs.5.2%) and it rea
hes that of the 
onverted CD SDCHMMs with 59 minutes of training data.VII. Con
lusionIn this paper, we su

essfully train SDCHMMs dire
tly from mu
h less data without trainingintermediate CDHMMs. Su
h great redu
tion in the amount of training data is attributed tothe signi�
antly fewer model parameters in SDCHMMs as well as to the e�e
tive tying ofsubspa
e Gaussians among the models. While the fewer model parameters, in theory, requireless estimation data, should the tying of subspa
e Gaussians not be e�e
tive, SDCHMM trainingwould have required even sampling of the phones in the training data. However our experimentsshow that even when many phones are under-represented in the training data (Figure 6 or



16 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.Figure 9), there is still a good 
overage of the subspa
e Gaussians (Figure 7); hen
e, goodestimation of SDCHMMs is still possible.When the amount of training data is small (say, less than 8 minutes of spee
h on the ATIStask), the performan
e of the ensuing SDCHMMs degrades gra
efully. However, over-trainingreadily o

urs in this 
ase. In this study, we exhaustively sear
h for the best BW iteration tostop using the test data. In pra
ti
e, 
ross-validation using unseen data may be employed todetermine the best Baum-Wel
h iteration. Additionally, one 
ould also investigate the use ofmodel sele
tion 
riteria [15℄, [16℄, [17℄ to address the problem of model 
omplexity.Dire
t SDCHMM training requires a priori knowledge of, at least, the subspa
e Gaussiantying stru
ture. Although in our experiments, the tying stru
ture is derived from an existingre
ognizer on the same task, our results are still signi�
ant. One possible appli
ation is speakerenrollment | using a speaker-independent SGTS to train speaker-spe
i�
 SDCHMMs withlittle enrollment data.Results of Experiment IV, V, and VI also suggest that if more a priori information is avail-able, even less training data may be suÆ
ient. For instan
e, we may also in
orporate themixture weights and/or Gaussian varian
es in addition to the SGTS from the 
onverted SD-CHMMs (from whi
h the SGTS is derived), and �x them during SDCHMM training. This maybe found useful in speaker (environment) adaptation.Of 
ourse, we still need one set of CDHMMs from whi
h to derive the SGTS for SDCHMMtraining. It will be interesting to investigate if the SGTS is task independent so that one maydedu
e a \generi
" SGTS from a set of \generi
" CDHMMs and apply it to SDCHMM trainingin other tasks. Referen
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MAK AND BOCCHIERI: DIRECT TRAINING OF THE SDCHMM 19TABLE IATIS: Testing 
onditionsTESTING CONDITION CI SYSTEM CD SYSTEM#Test Senten
es 981 (1994 ARPA-ATIS evaluation set)Vo
abulary 1,532 wordsLanguage Model word-sequen
e bigram (perplexity � 20)Sear
h one-pass Viterbi beam sear
hLexi
al Stru
ture lexi
al tree linear lexi
onBeam-Width 100 170#HMMs 48 9,769#States 142 3,916 (tied)Max. #Mixtures per State 32 20



20 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING.TABLE IIATIS: Training datasets (� Datasets are phoneti
ally labeled by AT&T's ATISre
ognizers. y Figures are averages.)DATASET #FRAMES DURATION (min.) DESCRIPTIONX 13,000,205 2,167 training data for AT&T's CD ATIS re
ognizerY 6,444,959 1,074 training data for AT&T's CI ATIS re
ognizerTest 545,642 91 981 (1994 ARPA's oÆ
ial) test utteran
esS1{16 8,883,240 1,480 16,896 utteran
esS1{4 2,140,470 357 4,226 utteran
esS1{2 1,080,650 180 2,114 utteran
esS1 527,599 88 1,055 utteran
esS0 249,565 42 500 utteran
es from subset S1A� 101,309 17 100 utteran
es from subset S16B� 49,616 8.3 50 utteran
es from subset AC� 27,811 4.6 25 utteran
es from subset BD� 12,421 2.1 12 utteran
es from subset CE1{E10� 7,758y 1.29y 15 utteran
es from subset S15F1{F10� 2,702y 0.45y 5 utteran
es from subset S15
TABLE IIIATIS: Comparison of re
ognition a

ura
ies among CI CDHMMs, CI SDCHMMs
onverted from the CDHMMs, and CI SDCHMMs estimated by dire
t SDCHMMtraining using the SGTS of the 
onverted SDCHMMs#MIXTURES TOTAL #PROTOTYPES WORD ERROR RATE (%)PER #GAUSSIAN PER CDHMM CONVERTED TRAINEDSTATE COMPONENTS STREAM SDCHMM SDCHMM16 2143 128 9.0 9.5 9.332 4086 64 8.5 8.7 8.7
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