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Kernel Eigenvoice Speaker Adaptation

Brian Mak, James T. Kwok, and Simon Ho

Abstract

Eigenvoice-based methods have been shown to be effective for fast speaker adaptation when only a

small amount of adaptation data, say, less than 10 seconds, is available. At the heart of the method is

principal component analysis (PCA) employed to find the most important eigenvoices. In this paper,

we postulate that nonlinear PCA using kernel methods may be even more effective. The eigenvoices

thus derived will be called kernel eigenvoices (KEV), and we will call our new adaptation method kernel

eigenvoice speaker adaptation. However, unlike the standard eigenvoice (EV) method, an adapted

speaker model found by the kernel eigenvoice method resides in the high-dimensional kernel-induced

feature space, which, in general, cannot be mapped back to an exact pre-image in the input speaker

supervector space. Consequently, it is not clear how to obtain the constituent Gaussians of the adapted

model that are needed for the computation of state observation likelihoods during the estimation of

eigenvoice weights and subsequent decoding. Our solution is the use of composite kernels in such a

way that state observation likelihoods can be computed using only kernel functions without the need

of a speaker-adapted model in the input supervector space. In this paper, we investigate two different

composite kernels for KEV adaptation: direct sum kernel and tensor product kernel. In an evaluation on

the TIDIGITS task, it is found that KEV speaker adaptation using both forms of composite Gaussian

kernels are equally effective, and they outperform a speaker-independent model and adapted models

found by EV, MAP, or MLLR adaptation using 2.1s and 4.1s of speech. For example, with 2.1s of

adaptation data, KEV adaptation outperforms the speaker-independent model by 27.5%, whereas EV,

MAP, or MLLR adaptation are not effective at all.
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I. Introduction

In recent years, there has been a lot of interest in the study of kernel methods [1], [2], [3]. The

basic idea is to map data in the input space X to a feature space1 F via some nonlinear map ϕ,

and then apply a linear method there. It is now well known that the computational procedure

depends only on the inner products2 ϕ(xi)
′ϕ(xj) in the feature space (where xi,xj ∈ X ),

which can be obtained efficiently from a suitable kernel function k(·, ·). Thus, the use of

kernels provides elegant nonlinear generalizations of many existing linear algorithms. A well-

known example in supervised learning is the support vector machines (SVMs). In unsupervised

learning, the kernel idea has also led to methods such as kernel-based clustering algorithms [4],

kernel independent component analysis [5], and kernel principal component analysis [6]. In this

paper, we would like to apply kernel methods to improve the performance of eigenvoice-based

methods for fast speaker adaptation.

It is commonly known that a well-trained speaker-dependent (SD) model generally achieves

a significantly lower word error rate than a speaker-independent (SI) model on recognizing

speech from the specific speaker. For many applications such as phone services, it is hard to

acquire a large amount of data from a user to train his/her SD model. A common technique

to approach the SD performance is to adapt the SI model with a relatively small amount

of SD speech using speaker adaptation methods. Adaptation methods like the Bayesian-based

maximum a posteriori (MAP) adaptation [7] and the transformation-based maximum likelihood

linear regression (MLLR) adaptation [8] have been popular for many years. Nevertheless, when

the amount of available adaptation speech is really small — for example, only a few seconds,

the more recent eigenvoice-based adaptation method is found particularly more effective. The

(original) eigenvoice (EV) adaptation method [9] was motivated by the eigenface approach in

face recognition [10]. The idea is to derive from a diverse set of speakers a small set of basis

vectors called eigenvoices that are believed to represent different voice characteristics (e.g.

gender, age, accent, etc.), and any training/new speaker is then a point in the eigenspace. In

practice, a few to a few tens of eigenvoices are found adequate for fast speaker adaptation.

Since the number of estimation parameters is greatly reduced, fast adaptation using EV is

1In the kernel methods terminology, the original space where raw data reside is called the input space and the

space to which raw data are mapped is called the feature space. In order not to confuse this with the acoustic

feature space in speech, the latter will always be called the “acoustic feature space”, while the feature space

in kernel methods will be simply called the “feature space” but may be sometimes called the “kernel-induced

feature space” if additional clarity is necessary.
2In this paper, vector or matrix transpose is denoted by the superscript ′.
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possible with a few seconds of speech. The simple algorithm was later extended to work for

large-vocabulary continuous speech recognition [11], [12], eigenspace-based MLLR [13], [14],

and to approximate the model prior in MAP adaptation [15], [16], [17].

At the heart of eigenvoice-based adaptation methods is the principal component analysis

(PCA) employed to find the eigenvoices. Then a new speaker is represented as a linear combi-

nation of a few most important eigenvoices, and the eigenvoice weights are usually estimated

by maximizing the likelihood of the adaptation data. Traditionally, these eigenvoices are found

by linear PCA. In this paper, we would like to exploit possible nonlinearity in the speaker

supervector space, and investigate the use of nonlinear PCA to find the eigenvoices by ker-

nel methods [6]. In effect, the nonlinear PCA problem is converted to a linear PCA problem

in the high-dimensional kernel-induced feature space using the kernel trick. The eigenvoices

thus derived will be called kernel eigenvoices (KEV), and we will call our new method kernel

eigenvoice speaker adaptation. In principle, since the KEV adaptation method is a nonlinear

generalization of the EV adaptation method, the former should be more powerful than the

latter, and KEV adaptation is expected to give better performance. In fact, KEV adaptation

will be reduced to the traditional EV adaptation method if linear kernel is employed.

One of the major challenges in KEV adaptation is to compute the state observation like-

lihoods of the speaker-adapted (SA) HMMs during the estimation of the kernel eigenvoice

weights and subsequent decoding of the test speech. The reason is that unlike the conventional

EV approach, the SA model found by KEV adaptation does not reside in the input speaker

supervector space but in the kernel-induced feature space. Thus, in general, one cannot break

up the SA model found by KEV adaptation into its constituent HMM Gaussians as in the EV

approach. Our solution is the use of composite kernels in such a way that state observation

likelihoods can be computed using only kernel functions without the need of an SA model in

the input supervector space. Two different composite kernels, namely, direct sum kernel and

tensor product kernel, are investigated. In addition, we also compare the performance of our

novel KEV adaptation with that of EV, MAP, and MLLR adaptation methods.

Kernel eigenvoice will have to deal with several parameter spaces. To avoid confusion, we

denote the several spaces as follows:

O: d1-dimensional observation space,

X : d2-dimensional input speaker supervector space,

F : d3-dimensional kernel-induced feature space.
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In general, d1 ≪ d2 ≪ d3. We will further put a “˜” on any quantity that has been centered

in its respective space.

The rest of this paper is organized as follows. We first review the eigenvoice speaker adapta-

tion method in Section II, and kernel principal component analysis in Section III. Then we will

describe our new KEV adaptation method in details in Section IV, and its robust extension

in Section V. In Section VI, we present the results of experimental evaluation of the KEV

adaptation method using 2.1s, 4.1s, and 9.6s of adaptation speech, and compare it with EV,

MAP, and MLLR adaptation methods. Finally, Section VII gives concluding remarks and some

suggestions for future work.

II. Eigenvoice

In the standard eigenvoice speaker adaptation approach [9], speech training data are collected

from many speakers with diverse characteristics. A set of speaker-dependent (SD) acoustic hid-

den Markov models (HMMs) are trained from each speaker where each HMM state is modeled

as a mixture of Gaussian distributions. A speaker’s voice is then represented by a speaker super-

vector that is composed by concatenating the mean vectors of all his/her HMM Gaussian distri-

butions. For simplicity, we assume that each HMM state consists of one Gaussian only; the ex-

tension to mixtures of Gaussians is straightforward. Thus, the ith speaker supervector consists

of R constituents, one from each Gaussian, and will be denoted by xi = [x′

i1, . . . ,x
′

iR]′ ∈ R
d2 ,

where d2 = Rd1. The similarity between any two speaker supervectors xi and xj is measured

by their inner product

x′

ixj =

R
∑

r=1

x′

irxjr . (1)

PCA is then performed on a set of training speaker supervectors and the resulting eigen-

vectors are called eigenvoices. To adapt to a new speaker, his/her supervector s is treated as

a linear combination of the first M eigenvoices {v1, . . . ,vM} having the largest eigenvalues.

That is, the centered supervector of the new speaker s̃ is given by

s̃ ≃ s̃(ev) =

M
∑

m=1

wmvm , (2)

where w = [w1, . . . , wM ]′ is the eigenvoice weight vector. Usually, only a few eigenvoices (e.g.,

M < 50) are employed so that a little amount of adaptation speech (e.g., a few seconds) is

required. Given the adaptation data O = {o1,o2, . . . ,oT }, the eigenvoice weights are usually

estimated by maximizing the likelihood of O. Mathematically, one finds w by maximizing the
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following Qπab(w) function:

Qπab(w) = Qπ + Qa + Qb(w) , (3)

where

Qπ =
R
∑

r=1

γ1(r) log(πr) , (4)

Qa =

R
∑

p,r=1

T−1
∑

t=1

ξt(p, r) log(apr) , (5)

Qb(w) =

R
∑

r=1

T
∑

t=1

γt(r) log(br(ot,w)) , (6)

and πr is the initial probability of state r; γt(r) is the posterior probability of the observation

sequence being at state r at time t; ξt(p, r) is the posterior probability of the observation

sequence being at state p at time t and at state r at time t + 1; br is the Gaussian pdf of the

rth state after re-estimation. Furthermore, Qb(w) is related to the new speaker supervector s

by

Qb(w) = −1

2

R
∑

r=1

T
∑

t=1

γt(r)
[

d1 log(2π) + log |Cr| + ‖ot − sr(w)‖2
Cr

]

, (7)

where ‖ot − sr(w)‖2
Cr

= (ot − sr(w))′C−1
r (ot − sr(w)) and Cr is the covariance matrix of the

Gaussian at state r. Since only the last term of Eqn. (7) depends on the eigenvoice weight

vector w, one may simply maximize the following reduced Q(w) function to find the optimal

w:

Q(w) = −1

2

R
∑

r=1

T
∑

t=1

γt(r)‖ot − sr(w)‖2
Cr

. (8)

By differentiating the reduced Q(w) function with respect to w, the optimal w can be found

by solving a system of linear equations. Details can be found in [9].

III. Kernel Principal Component Analysis

In this paper, the computation of eigenvoices is generalized by performing kernel principal

component analysis (PCA) instead of linear PCA. Linear PCA, on the other hand, can be

considered as a special case of kernel PCA with the use of linear kernels. Fig. 1 gives an

illustration of kernel PCA. Let k(·, ·) be the kernel with an associated mapping ϕ which maps

a pattern x ∈ R
d2 (a speaker supervector in the eigenvoice approach) in the input space X

to ϕ(x) ∈ R
d3 in the high-dimensional kernel-induced feature space F . Given a set of N



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, September 7, 2004 6

patterns {x1, . . . ,xN} ∈ X , their ϕ-mapped feature vectors are {ϕ(x1), . . . , ϕ(xN )} ∈ F . The

N mapped patterns are first centered in the feature space by finding the mean of the feature

vectors ϕ̄ = 1
N

∑N
i=1 ϕ(xi). Let the “centered” map be ϕ̃ so that ϕ̃(x) = ϕ(x)− ϕ̄. In addition,

let K = [Kij ] be the kernel matrix with

Kij = k(xi,xj) = ϕ(xi)
′ϕ(xj) , (9)

and K̃ be the centered version of K with K̃ij = ϕ̃(xi)
′ϕ̃(xj). Notice that K̃ is related to K by

K̃ = HKH, where H = I− 1
N

11′ is the centering matrix, I is the N ×N identity matrix, and

1 = [1, . . . , 1]′ is an N -dimensional vector.

To perform kernel PCA, instead of directly working on the covariance matrix in the feature

space, one may carry out eigendecomposition on the centered kernel matrix K̃ as

K̃ = UΛU′ , (10)

where U = [α1, . . . ,αN ] with αi = [αi1, . . . , αiN ]′, and Λ = diag(λ1, . . . , λN ). The mth

orthonormal eigenvector of the covariance matrix in the feature space is then given by ([6])

vm =

N
∑

i=1

αmi√
λm

ϕ̃(xi) . (11)

Notice that all eigenvectors with non-zero eigenvalues are in the span of the ϕ-mapped data in

the feature space.

IV. Kernel Eigenvoice (KEV)

As seen from Eqn. (8), an estimation of the eigenvoice weights requires the evaluation of the

distances between adaptation data ot and Gaussian means of the new speaker in the observation

space O. In the standard eigenvoice method, this is done by first breaking down the speaker-

adapted supervector s(ev) to obtain its R constituent Gaussian means s
(ev)
1 , . . . , s

(ev)
R . However,

the use of kernel PCA does not allow us to access each constituent Gaussian directly. The

reason is that in the standard EV approach, the state information is preserved during the

concatenation of Gaussian mean vectors to form speaker supervectors; however, that piece of

state information generally is lost during the ϕ-mapping of supervectors in the input space X
to the high-dimensional feature space F . Thus, in general, one cannot break up the speaker-

adapted model found by KEV adaptation into its constituent HMM Gaussians as in the EV

approach. To get around the problem, we investigate the use of composite kernels to preserve

the necessary state information.
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A. Definition of the Composite Kernel

For the ith speaker supervector xi = [x′

i1, . . . ,x
′

iR]′, we map each constituent xir via a

separate kernel kr(·, ·) to ϕr(xir), and construct ϕ(xi) as ϕ(xi) = [ϕ1(xi1)
′, . . . , ϕR(xiR)′]′.

The similarity between two speaker supervectors xi and xj in the composite kernel-induced

feature space F is measured by

k(xi,xj) = G(k1(xi1,xj1), . . . , kR(xiR,xjR)) , (12)

where G is some function that combines the constituent kernels kr(·, ·), r = 1, . . . , R into a

valid composite kernel k(·, ·). Using this composite kernel, we can then proceed with the usual

kernel PCA on the set of N training speaker supervectors and obtain the set of eigenvoices in

the feature space F as given by Eqn. (11) in Section III.

A.1 Two Different Composite Kernels

In this paper, two different forms of composite kernel are investigated.

1. Direct sum kernel:

k(xi,xj) =

R
∑

r=1

kr(xir,xjr) . (13)

This may be the most intuitive form of composite kernels since

k(xi,xj) = ϕ(xi)
′ϕ(xj)

=











ϕ1(xi1)
...

ϕR(xiR)











′ 









ϕ1(xj1)
...

ϕR(xjR)











=
R
∑

r=1

ϕr(xir)
′ϕr(xjr)

=

R
∑

r=1

kr(xir,xjr) .

2. Tensor product kernel:

k(xi,xj) =

R
∏

r=1

kr(xir,xjr) . (14)

Furthermore, if the constituent kernels are Gaussian kernels

kr(xir,xjr) = exp(−β‖xir − xjr‖2
Cr

) , (15)
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where β is a tunable parameter that controls the width of the Gaussian kernels, then

k(xi,xj) =

R
∏

r=1

kr(xir,xjr)

=

R
∏

r=1

exp(−β‖xir − xjr‖2
Cr

)

= exp

(

−β

R
∑

r=1

‖xir − xjr‖2
Cr

)

= exp(−β‖xi − xj‖2
C) ,

where

C =

















C1 0 0 · · · 0

0 C2 0 · · · 0

...
...

...
...

...

0 0
... 0 CR

















.

That is, the tensor product kernel is then equivalent to a single Gaussian kernel with a

block-diagonal covariance composed of the covariances from all constituent Gaussian kernels,

kr(·, ·), r = 1, . . . , R.

In both cases, if kr(·, ·)’s are valid kernels3, so is k(·, ·) [2].

B. New Speaker in the Feature Space

Let the centered supervector of a new speaker found by kernel eigenvoice method in the

feature space be ϕ̃(kev)(s). Conceptually, it corresponds to a speaker s in the input supervector

space, even though s may not exist4. However, our KEV adaptation method does not require

the existence of the pre-image s in the input supervector space.

Analogous to the formulation of a new speaker in the standard eigenvoice approach (Eqn. (2)),

ϕ̃(kev)(s) is assumed to be a linear combination of the first M eigenvectors with the largest

eigenvalues found by kernel PCA in F . That is,

ϕ̃(kev)(s) =

M
∑

m=1

wmvm =

M
∑

m=1

N
∑

i=1

wmαmi√
λm

ϕ̃(xi) . (16)

3Valid kernel functions are those that satisfy Mercer’s theorem [18]. It then follows that there exist a feature

space F and a mapping ϕ corresponding to the kernel k such that scalar products of the form ϕ(xi)
′ϕ(xj) in

the feature space F can be computed as k(xi,xj).
4The notation for a new speaker in the feature space requires some explanation. If s exists, then its centered

image is ϕ̃(kev)(s). However, since the pre-image of a speaker found in the feature space may not exist [2], the

notation ϕ̃(kev)(s) is not exactly correct. However, the notation is adopted for its intuitiveness and the readers

are advised to infer the existence of s based on the context.
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Its rth constituent is then given by

ϕ̃
(kev)
r (sr) =

M
∑

m=1

N
∑

i=1

wmαmi√
λm

ϕ̃r(xir) .

Hence, the similarity between ϕ
(kev)
r (sr) and ϕr(ot) is given by

k(kev)
r (sr,ot) ≡ ϕ

(kev)
r (sr)

′

ϕr(ot)

=

[(

M
∑

m=1

N
∑

i=1

wmαmi√
λm

ϕ̃r(xir)

)

+ ϕ̄r

]′

ϕr(ot)

=

[(

M
∑

m=1

N
∑

i=1

wmαmi√
λm

(ϕr(xir) − ϕ̄r)

)

+ ϕ̄r

]′

ϕr(ot)

=

M
∑

m=1

N
∑

i=1

wmαmi√
λm

(

kr(xir,ot) − ϕ̄′

rϕr(ot)
)

+ ϕ̄′

rϕr(ot)

≡ A(r, t) +

M
∑

m=1

wm√
λm

B(m, r, t) , (17)

where ϕ̄r = 1
N

∑N
i=1 ϕr(xir) is the rth part of ϕ̄,

A(r, t) = ϕ̄′

rϕr(ot) =
1

N

N
∑

j=1

kr(xjr,ot) , (18)

and

B(m, r, t) =

(

N
∑

i=1

αmikr(xir,ot)

)

− A(r, t)

(

N
∑

i=1

αmi

)

. (19)

Furthermore, the derivative of k
(kev)
r (sr,ot) with respect to each eigenvoice weight wj , j =

1, . . . ,M , is given by

∂
∂wj

(

k(kev)
r (sr,ot)

)

=
B(j, r, t)
√

λj

, (20)

which will be needed for the maximum likelihood estimation of the eigenvoice weights.

C. Maximum Likelihood Adaptation Using an Isotropic Kernel

On adaptation, we have to express ‖ot − sr‖2
Cr

of Eqn. (8) as a function of w. Consider

using isotropic kernels for kr so that kr(xir,xjr) = κ(‖xir − xjr‖2
Cr

). Then k
(kev)
r (sr,ot) =

κ(‖ot − sr‖2
Cr

), and if κ is invertible, ‖ot − sr‖2
Cr

will be a function of k
(kev)
r (sr,ot), which in

turn is a function of w by Eqn. (17). In the sequel, we will use the Gaussian kernel of Eqn. (15),

and hence

k(kev)
r (sr,ot) = exp(−β‖ot − sr‖2

Cr
)

⇒ ‖ot − sr‖2
Cr

= − 1

β
log
(

k(kev)
r (sr,ot)

)

. (21)
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Substituting Eqn. (21) to the reduced Q(w) function of Eqn. (8), and differentiating Q(w)

with respect to each eigenvoice weight, wj , j = 1, . . . ,M , we get

∂Q
∂wj

=
1

2β

R
∑

r=1

T
∑

t=1

γt(r)

k
(kev)
r (sr,ot)

· ∂
∂wj

(

k(kev)
r (sr,ot)

)

. (22)

By making use of the gradient in Eqn. (20), we obtain

∂Q
∂wj

=
1

2β
√

λj

R
∑

r=1

T
∑

t=1

γt(r)B(j, r, t)

k
(kev)
r (sr,ot)

. (23)

D. Generalized EM Algorithm

Because of the nonlinear nature of kernel PCA, Eqn. (23) is nonlinear in w and there is no

closed form solution for the optimal w. In this paper, we apply the generalized EM algorithm

(GEM) [19] to find the optimal weights. GEM is similar to the conventional EM except for the

maximization step: EM looks for a w that maximizes the expected likelihood of the E-step but

GEM only requires a w that improves the likelihood. Many numerical methods [20] may be used

to update w based on the derivatives of Q. In this paper, gradient ascent is used to get w(n)

from w(n − 1) based only on the first-order derivative: w(n) = w(n − 1) + η(n)Q′|w=w(n−1),

where Q′ =
∂Q
∂w

and η(n) is the learning rate at the nth iteration. Methods such as the Newton’s

method that uses the second-order derivatives may also be used for faster convergence at the

expense of computing the more costly Hessian in each iteration.

The initial value of w(0) can be important for numerical methods like gradient ascent. One

reasonable approach is to start with the eigenvoice weights of the supervector composed from

the speaker-independent model x(si). That is, for m = 1, . . . ,M ,

wm(0) = v′

mϕ̃(x(si))

=

N
∑

i=1

αmi√
λm

ϕ̃(xi)
′ϕ̃(x(si))

=

N
∑

i=1

αmi√
λm

(ϕ(xi) − ϕ̄)′(ϕ(x(si)) − ϕ̄)

=
N
∑

i=1

αmi√
λm



k(xi,x
(si))+

1

N2

N
∑

p,q=1

k(xp,xq)−
1

N

N
∑

p=1

(

k(xi,xp)+k(x(si),xp)
)



 . (24)

V. Robust Kernel Eigenvoice

The success of the eigenvoice approach for fast speaker adaptation is due to two factors:

(1) a good collection of “diverse” speakers so that the whole speaker space is captured by the
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eigenvoices; and (2) the number of adaptation parameters is reduced to a few eigenvoice weights.

However, since the amount of adaptation data is so small, the adaptation performance may

vary widely. To get a more robust performance, we propose to interpolate the kernel eigenvoice

ϕ̃(kev)(s) with the ϕ̃-mapped speaker-independent (SI) supervector ϕ̃(x(si)) to obtain the final

speaker-adapted model (in the feature space) ϕ̃(rkev)(s) as follows:

ϕ̃(rkev)(s) = w0ϕ̃(x(si)) + (1 − w0)ϕ̃
(kev)(s), 0.0 ≤ w0 ≤ 1.0 , (25)

where ϕ̃(kev)(s) is found by Eqn. (16). Following similar mathematical treatment as in Sec-

tion IV-B, it can be shown that the similarity between the ϕ
(rkev)
r (sr) and ϕr(ot) is given

by

k(rkev)
r (sr,ot) ≡ ϕ

(rkev)
r (sr)

′

ϕr(ot)

= w0kr(x
(si)
r ,ot) + (1 − w0)k

(kev)
r (sr,ot) . (26)

Hence, the gradients required to estimate w0 jointly with other eigenvoice weights are

∂
∂w0

(

k(rkev)
r (sr,ot)

)

= kr(x
(si)
r ,ot) − k(kev)

r (sr,ot) (27)

and

∂
∂wj

(

k(rkev)
r (sr,ot)

)

= (1 − w0)
∂

∂wj

(

k(kev)
r (sr,ot)

)

, j = 1, . . . ,M . (28)

The two gradients can be evaluated using the results in Eqn. (17) and Eqn. (20) of Section IV-B

respectively.

Notice that ϕ̃(rkev)(s) also contains components in ϕ̃(x(si)) from eigenvectors beyond the

M selected kernel eigenvoices for adaptation. Thus, robust KEV adaptation may have the

additional benefit of preserving the speaker-independent projections on the remaining less

important but possibly robust eigenvoices in the final speaker-adapted model.

VI. Experimental Evaluation

The proposed kernel eigenvoice adaptation method was evaluated on the TIDIGITS speech

corpus [21]. We first studied the number of kernel eigenvoices for best performance in this recog-

nition task, and the effectiveness of the two forms of composite kernels. Then the performance

of our new kernel eigenvoice adaptation was compared with that of the speaker-independent

models, the conventional eigenvoice adaptation, MAP adaptation, and MLLR adaptation.
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A. TIDIGITS Corpus

The TIDIGITS corpus contains clean connected-digit utterances sampled at 20 kHz. It is

divided into a standard training set and a test set. There are 163 speakers (of both genders) in

each set, each pronouncing 77 utterances of one to seven digits (out of the eleven digits: “0”,

“1”, . . ., “9”, and “oh”). There is no overlap between the training speakers and test speakers.

The speaker characteristics are quite diverse with speakers coming from 22 dialect regions of

USA, and their ages ranging from 6 to 70 years old.

B. Acoustic Models

All training data were processed to extract 12 mel-frequency cepstral coefficients and the

normalized frame energy from each speech frame of 25 ms at every 10 ms. Each of the eleven

digit models was a strictly left-to-right HMM comprising 16 states and one Gaussian with

diagonal covariance per state. In addition, there were a 3-state “sil” model to capture silence

speech and a 1-state “sp” model to capture short pauses between digits. All HMMs were

trained by the EM algorithm. Thus, the dimension of the observation space d1 is 13 and that

of the speaker supervector space d2 is 11 models × 16 states/model × 13/state = 2288.

Firstly, a set of speaker-independent (SI) digit models were trained. Then a set of speaker-

dependent (SD) digit models were trained for each individual training speaker by borrowing

the variances and transition matrices from the corresponding SI models, and only the Gaussian

means were estimated. Furthermore, the “sil” and “sp” models were simply copied to the SD

model. In pilot experiments, it was found that SD models trained in this way performed better

than SD models that did not share any model parameters with the SI models.

C. Experiments

In all experiments, only the training set was used to train the SI HMMs and SD HMMs

from which the SI and SD speaker supervectors were derived. Adaptation was performed on

the test speakers. Five, ten, and twenty digits were used for adaptation, which correspond to

an average of 2.1s, 4.1s, and 9.6s of adaptation speech (or 3.0s, 5.5s, and 13.0s of speech if the

leading and ending silences are counted). To improve the statistical reliability of the results, all

results were the averages of 5-fold cross-validation over all 163 test speakers. Moreover, except

for one experiment, all other adaptation experiments were performed in supervised mode.

The following models/systems are compared:

SI: the baseline speaker-independent model.
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KEV: the speaker-adapted model found by our new kernel eigenvoice adaptation method as

described in Section IV.

Robust-KEV: the speaker-adapted model found by our robust KEV adaptation method as

described in Section V.

EV: the speaker-adapted model found by the standard eigenvoice adaptation method as de-

scribed in [9].

Robust-EV: the speaker-adapted model computed as the interpolation between the SI super-

vector and the supervector found by EV adaptation. That is,

s(rev) = w0x
(si) + (1 − w0)s

(ev) , 0.0 ≤ w0 ≤ 1.0 , (29)

where s(rev) is the final speaker supervector found by robust EV adaptation, and w0 is estimated

jointly with the other eigenvoice weights by maximizing the likelihood of adaptation data. This

is analogous to the robust KEV adaptation.

MAP: the speaker-adapted model found by MAP adaptation.

MLLR: the speaker-adapted model found by MLLR adaptation.

Before we describe our experiments on KEV adaptation, remarks on some experimentation

issues are worth mentioning:

• There is one tunable parameter β in the composite Gaussian kernels. A suitable value

of β was searched as follows: 10 speakers were randomly chosen from the training set for

KEV adaptation; 4.1s of adaptation data were used, and the best value of β was empirically

determined to be around 0.0005. This value of β was used in all reported experiments.

• The learning rate was initially set to 0.0001.

• The word accuracy of the baseline SI model on the test data is 96.25%5.

• To check the quality of our SD models, a 7-fold cross-validation was performed: for each

training speaker, his data was divided into 7 roughly equal subsets, and 6 subsets were used for

training his acoustic model which was then tested on the remaining subset. The average word

accuracy over all training speakers is found to be 98.76%. It shows that our way of training SD

models produces sufficiently good acoustic models for subsequent eigenvoice determination.

5The word accuracy of our SI model is not as good as the best reported result on TIDIGITS which is about

99.7%. The main reasons are that we used only 13-dimensional static cepstra and energy, and each state

was modeled by a single Gaussian with diagonal covariance. The use of this simple model allowed us to run

experiments with 5-fold cross-validation using very short adaptation speech. Right now our approach requires

online computation of many kernel function values and is very computationally expensive. As a first attempt

on the approach, we feel that the use of this simple model is justified. We are now working on its speed-up (as

is discussed in the future works in Section VII) and its extension to HMM states of Gaussian mixtures.
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C.1 Experiment 1: Number of Kernel Eigenvoices

Fig. 2 shows the detailed results of (robust) KEV adaptation using various numbers of kernel

eigenvoices. The direct sum composite kernel was employed, and only the results from using 2.1s

and 9.6s of adaptation speech are shown in the figure. The results show that KEV adaptation

can outperform the SI model even with only two eigenvoices using only 2.1s of speech. Its

performance then improves slightly with more eigenvoices or more adaptation data. If we allow

interpolation with the SI model as in robust KEV adaptation, the performance improvement

as well as the saturation effect are even more pronounced: even with one eigenvoice, the

adaptation performance is already better than that of the SI model, and then the performance

does not change much with more eigenvoices or adaptation data. The results seem to suggest

that the requirement that the adapted speaker supervector is a weighted sum of few eigenvoices

is both the strength and weakness of the method: on the one hand, fast adaptation becomes

possible since the number of estimation parameters is small, but adaptation saturates quickly

because the constraint is so restrictive that all mean vectors of different acoustic models have

to undergo the same linear combination of the eigenvoices.

Moreover, the interpolation with the SI model in robust KEV adaptation significantly im-

proves the performance of KEV adaptation. The improvement is more pronounced with fewer

adaptation data.

From Fig. 2, the optimal number of kernel eigenvoices for this task is 8, and this is the

number of kernel eigenvoices used in the (robust) KEV adaptation experiments for the rest of

this paper.

C.2 Experiment 2: Direct Sum Kernel vs. Tensor Product Kernel

The two types of composite kernels, namely, direct sum kernel and tensor product kernel,

were compared using the robust KEV adaptation. The results are shown in Table I. It can be

seen that there is no significant difference between their performance. Therefore, we simply pick

one of them — the direct sum composite kernel — for the remaining (robust) KEV adaptation

experiments.

C.3 Experiment 3: KEV vs. EV, MAP, MLLR

In this experiment, KEV adaptation was compared with several other adaptation methods,

EV, MAP, and MLLR adaptation. For each adaptation method, efforts were made to find the

best setup for the method so as to obtain its best results for comparison purpose. That means,
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for EV or KEV adaptation (using direct sum composite kernel), the best results were obtained

with the optimal number of eigenvoices; for MAP adaptation, the best results were achieved

with the optimal scaling factors; for MLLR adaptation, only global MLLR was tried, and the

better results from using either block-diagonal or full transformation matrices were used for

comparison. The results are plotted in Fig. 3.

If we only look at the (robust) EV and (robust) KEV performance, it is clear that our

(robust) KEV adaptation always performs better than (robust) EV adaptation. The results

show that nonlinear kernel PCA using composite kernels can be more effective in finding the

eigenvoices. Moreover, the incorporation of the SI prior information in EV or KEV adaptation

always improves the adaptation performance.

When all adaptation methods are compared, we observe that when only 2.1s or 4.1s of

adaptation data are available, EV adaptation and MAP adaptation have similar performance;

MLLR adaptation, SI models, and robust EV adaptation are better with similar performance.

However, only our new KEV and robust KEV adaptation work significantly better than the

SI model; EV, MAP, and MLLR adaptation all perform worse than the SI model, and robust

EV adaptation can only match the SI performance in this task. Only for the case with 9.6s

of adaptation data, then MLLR works marginally better than the robust KEV method by an

absolute 0.06%.

Specifically, KEV adaptation obtains a word error rate (WER) reduction of 16.0%, 21.3%,

and 21.3% with 2.1s, 4.1s, and 9.6s of adaptation speech over the SI model. When the SI model

is interpolated with the KEV model in our robust KEV method, the WER reduction further

increases to 27.5%, 31.7%, and 33.3% respectively.

Analysis of Eigenvoices

The conventional eigenvoice adaptation method does not seem to be effective in this task. A

detailed examination reveals that the performance of EV adaptation does not change much with

increasing number of eigenvoices. For instance, with 10s of adaptation data, the adaptation

performance using 1 to 5 eigenvoices differs only by 0.2%. In fact, the optimal number of

eigenvoices in EV adaptation is one. Kim et al. also had similar findings in their adaptation

experiments using continuous Korean digits [15].

We further analyze the eigenvoices found the EV and KEV adaptation methods. Fig. 4
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shows the distribution of all 163 test speakers in the subspace spanned by the first two leading

eigenvoices found by EV. It can be seen that although Women and Girls can be fairly separated

by the first eigenvoice, in general, there are significant overlaps among the four groups of

speakers: Men, Women, Boys, and Girls. This may explain why one eigenvoice is adequate for

this task. A similar plot is prepared for KEV adaptation, and the result is shown in Fig. 5.

It is now noticed that there are clear separations among the three groups: Men, Women, and

Girls, and the latter two groups overlap with the Boys. From the data representation point of

view, the KEV adaptation method clearly produces better eigenvoices than the EV adaptation

method to represent the four different groups of speakers.

C.4 Experiment 4: Supervised vs. Unsupervised Adaptation

In all the above experiments, adaptation was performed in supervised manner. In this last

experiment, we would like to see the effect of unsupervised adaptation. Robust KEV adaptation

using the direct sum composite kernel was run in both supervised and unsupervised modes

on the same data, and the results are shown in Table II. We can see that the performance

of unsupervised robust KEV adaptation is only slightly worse than that of its supervised

counterpart. The results are expected since the SI model is already quite accurate.

VII. Conclusions and Future Works

In this paper, we study the use of kernel PCA with a composite kernel to derive better eigen-

voices to improve the standard eigenvoice speaker adaptation. Two forms of composite kernels,

namely, direct sum kernel and tensor product kernel, are investigated. In the TIDIGITS task,

it is found that while the standard eigenvoice approach does not help, our kernel eigenvoice

method may outperform the speaker-independent model by about 16–21% (in terms of word

error rate reduction). Moreover, we also propose to interpolate the speaker-independent model

with the speaker model found by our kernel eigenvoice approach in the robust kernel eigen-

voice adaptation. The robust extension leads to 28–33% word error rate reduction over the

performance of the SI model.

Although kernel PCA elegantly introduces nonlinearity in the linear PCA procedure, and

renders kernel eigenvoice adaptation more powerful than the standard eigenvoice adaptation,

there is a price to pay: online computation of many kernel functions is required during subse-

quent speech recognition. To understand this, one should notice that the computation of state

observation likelihoods requires the evaluation of the distance ‖ot − sr‖2
Cr

of Eqn. (21). The

distance now has to be computed via the kernel value of k
(kev)
r (sr,ot) given by Eqn. (17). As
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a result, our new kernel eigenvoice adaptation method is slower than the standard eigenvoice

adaptation method during both adaptation and recognition. We are pursuing two possible

solutions:

• reducing the number of kernel functions to compute. One possible solution is to apply sparse

kernel PCA [22] so that the computation of the first M principal components involves only M

(instead of N with M ≪ N) kernel functions. Another solution is to use compactly supported

kernels [23], in which the value of κ(‖xi−xj‖) vanishes when ‖xi−xj‖ is greater than a certain

threshold. The kernel matrix then becomes sparse. Moreover, no more computation is required

when ‖xi − xj‖ is large.

• eliminating the need to compute any kernel functions during recognition. This can be

achieved if we can map the speaker-adapted model found by kernel eigenvoice adaptation

in the feature space back to its pre-image speaker supervector in the input space. Although an

exact pre-image generally does not exist, recently, we have developed a closed-form solution for

finding an approximate pre-image [24] in an image denoising problem that uses kernel PCA.

We will adopt the algorithm in [24] to find an approximate speaker supervector in the input

space for our KEV adaptation method, and study its performance on test speech.
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TABLE I

Performance of direct sum kernel and tensor product kernel in robust KEV

adaptation. Results are word recognition accuracies.

Type of Composite Kernel 2.1s 4.1s 9.6s

direct sum kernel 97.28% 97.44% 97.50%

tensor product kernel 97.33% 97.42% 97.43%

TABLE II

Supervised vs. unsupervised robust KEV adaptation using direct sum kernel. Results

are word recognition accuracies.

Adaptation Mode 2.1s 4.1s 9.6s

Supervised 97.28% 97.44% 97.50%

Unsupervised 97.22% 97.27% 97.34%
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Fig. 1. Illustration of kernel PCA.
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