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Abstract— Traditionally, static mel-frequency cepstral coeffi-
cients (MFCCs) are derived by discrete cosine transformation
(DCT), and dynamic MFCCs are derived by linear regression.
Their derivation may be generalized as a frequency-domain
transformation of the log filter-bank energies (FBEs) followed
by a time-domain transformation. In the past, these two trans-
formations are usually estimated or optimized separately. In this
paper, we consider sequences of log FBEs as a set of spectrogram
images, and investigate an image compression technique to jointly
optimize the two transformations so that the reconstruction error
of the spectrogram images is minimized; there is an efficient
algorithm that solves the optimization problem. The framework
allows extension to other optimization costs as well.

Index Terms— low-rank approximation of matrices, time-
frequency representation, mel-frequency cepstral coefficients,
discrete cosine transform

I. I NTRODUCTION

Mel-frequency cepstral coefficients (MFCCs) are the most
commonly used acoustic features in automatic speech recogni-
tion. Traditionally, static MFCCs are derived by discrete cosine
transformation (DCT), and dynamic MFCCs are derived by
linear regression. The use of DCT is motivated by the need
to de-correlate the cepstral elements so that Gaussians with
diagonal covariances may be used in hidden Markov model
states, while the use of linear regression gives a robust estimate
of the temporal derivative. The MFCC extraction procedure
may be generalized as two transformations or filtering on the
time-frequency (TF) representation of speech: a frequency-
domain transformation or filtering of the log filter-bank en-
ergies (FBEs) followed by a time-domain transformation or
filtering. Various well-known statistical techniques like PCA,
LDA, ICA, and NLDA have been investigated and compared
for frequency transformation [1], [2]. For time-domain trans-
formation, similar transformation-based techniques are used
in cepstral-time matrices [3]; on the other hand, [4], [5]
perform filtering across successive cepstral vectors. The time-
domain transformation introduces a smoothing across time and
can improve the robustness property of the features but may
degrade performance when the data is clean.
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In the past, the two TF transformations or filtering processes
are usually estimated or optimized separately in a sequential
manner. In this paper, we propose a joint optimization of the
two TF transformations (JOTFT) so that the reconstruction
error of the log FBEs is minimized. That is, if a speech signal
is represented by its 2-dimensional spectrogram (using log
FBEs), we would like to find an optimal acoustic represen-
tation of reduced dimension such that the spectrogram can be
reconstructed with minimum squared error.

Our work is motivated by a recent work in low-rank
approximation of matrices [6]. There is an efficient algorithm
that solves the optimization problem, and it runs directly on
the TF representation without building any acoustic models.

II. GENERALIZATION OF TIME-FREQUENCY

TRANSFORMATIONS

The feature extraction of static and dynamic mel-frequency
cepstral coefficients (MFCCs) can be generalized as two time-
frequency (TF) transformation on the log filter-bank energies
(FBEs). Let S∈ Rr×c be a sequence of log FBEs,st∈ Rr

around timet, andS = [st−d, . . . , st+d] wherec = 2d + 1.
The acoustic feature vector that may be called the “generalized
static and dynamic MFCCs” for automatic speech recognition,
X∈ Rl1×l2 can be computed by one matrix multiplication to
its left and another matrix multiplication to its right as follows:

X = L′SR, (1)

whereL∈ Rr×l1 represents a frequency-domain transforma-
tion that computes the static cepstra, andR∈ Rc×l2 represents
a time-domain transformation that computes the dynamic
cepstra1.

For automatic speech recognition, it is generally desirable
that the frequency transformationL can separate the phonetic
information from the speaker information, or the more dis-
criminative information from the less discriminative informa-
tion. Thus, the frequency-domain transformation may also be
considered as an information selection, and some coefficients
are usually removed. Meanwhile, the time transformationR
usually has to derive useful dynamic features over a long
period of time. As a result, there is usually a dimensionality
reduction and the dimension ofX is smaller than that ofS.
i.e. l1 < r and l2 < c.

1In this paper, vector or matrix quantities are bold-faced, and′ represents
their transpose.
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Let us look at two special cases of the generalized TF
transformations.

A. Mel-frequency Cepstral Coefficients (MFCCs)

The most common acoustic features for speech recognition
are the static MFCCs with their first and the second order time
derivatives. In the computation of standard MFCCs,

• the frequency-domain transformation matrixL is the
DCT matrix

L′(i, j) =

√
2
N

cos
(

πi

N
(j − 0.5)

)
(2)

whereN is the size of the filter-bank.
• the time-domain transformation matrixR represents lin-

ear regression over 9 frames of speech:

R =



0 0 0.04
0 0 0.04
0 −0.2 0.01
0 −0.1 −0.04
1 0 −0.10
0 0.1 −0.04
0 0.2 0.01
0 0 0.04
0 0 0.04


(3)

B. Two-dimensional DCT

Two-dimensional DCT (2D-DCT) has also been proposed
for the computation of static and dynamic MFCCs and is
equivalent to a 1D-DCT on the frequency domain followed
by another 1D-DCT on the time domain. The main difference
from the standard MFCC extraction is that the linear regression
over consecutive time frames is replaced by another DCT.
Thus,

• the frequency-domain transformation matrixL is the
same DCT matrix as given by Eqn. (2).

• the time-domain transformation matrixR is also similar
to theL given by Eqn. (2) except thatN is now replaced
by M which is the number of consecutive speech frames.
That is,

R′(i, j) =

√
2
M

cos
(

πi

M
(j − 0.5)

)
. (4)

C. Log Frame Energy

As the log frame energy is usually used together with
MFCCs, we augment theS matrix with a sequence of log
frame energiesE as follows:

Ŝ =
[

S
E

]
, (5)

and the frequency-domain transformation matrix becomes

L̂ =
[

L 0
0 1

]
. (6)

As a results, the last row of the acoustic feature matrixX
represents the static and dynamic log frame energies.

III. JOINT OPTIMIZATION OF THE TWO TIME-FREQUENCY

TRANSFORMATIONS

A sequence of log FBEs,S = [st−d, . . . , st+d], as defined in
Section II may be considered as a 2D spectrogram image. It is
well-known that an image may be compressed (and smoothed
or de-noised as a side effect) by treating the image as a
matrix and applying low-rank approximation. In this paper, we
investigate the use of a recent work in low-rank approximation
of matrices proposed by Ye [6] to extract static and dynamic
acoustic features through smoothing speech spectrograms. The
method allows us to cast the feature extraction problem as an
optimization problem with a well-defined cost function which
is the error in reconstructing the original spectrograms from
the compressed spectrograms.

Formally, if we have a set ofn original spectrograms rep-
resented by the matrices{Si∈ Rr×c, i = 1, . . . , n}, we would
like to compress them inton matrices of reduced dimensions,
{Xi∈ Rl1×l2 , i = 1, . . . , n}. Each original spectrogramSi can
be reconstructed with some error fromXi with the help of
two transformation matrices,L∈ Rr×l1 and R∈ Rc×l2 , both
having orthonormal column vectors asLXiR′. Our goal is to
find the optimalL and R so that the squared reconstruction
error (SRE) over the set ofn spectrogram images (i.e. log
FBEs sequences) is minimized. The squared reconstruction
error is defined as

SRE =
n∑

i=1

||Si − L′XiR||2F (7)

where||A||2F is the Frobenius norm of matrixA.
It was proved in [6] that
• minimizing the SRE of Eqn. (7) is equivalent to maxi-

mizing

n∑
i=1

||LSiR′||2F , (8)

subject to the required dimensions ofL,R, andSi, i =
1, . . . , n.

• for the optimal solution, we will have

∀i, Xi = L′SiR . (9)

Comparing the solution of minimizing SRE in Eqn. (9) with
the generalized MFCCs in Eqn. (1), we notice that the com-
pressed spectrograms may be interpreted as the generalized
static and dynamic MFCCs, and theL andR matrices as the
frequency- and time-domain transformation respectively.

The optimization problem has no closed form solution, but
an iterative algorithm was proposed by Ye [6] which is given in
Fig. 1. The solution is based on the following key observation:

• For a given R, L consists of thel1 eigenvectors of
the matrixAL =

∑n
i=1 SiRR′S′i corresponding to the

largestl1 eigenvalues.
• For a givenL, R consists of thel2 eigenvectors of the

matrixAR =
∑n

i=1 S′iLL′Si corresponding to the largest
l2 eigenvalues.

Computationally, the learning of JOTFT matrices is approx-
imately linearly dependent on the data size and proportional
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to the square ofr and c. Once theR and L matrix are
known, there is no difference in computation between the three
extraction methods.

Algorithm

Input : matricesSi, 1 ≤ i ≤ n.

Output : matricesL, R, andXi, 1 ≤ i ≤ n.

1) Obtain an initialL0 and seti← 1
2) While convergence is not reached

a) form the matrixAR =
∑n

j=1 S′jLi−1L′
i−1Sj

b) compute thel2 eigenvectorsφR
j , 1 ≤ j ≤ l2

of AR corresponding to the largestl2 eigen-
values

c) Ri ← [φR
1 , . . . , φR

l2
]

d) form the matrixAL =
∑n

j=1 SjRi−1R′
i−1S

′
j

e) compute thel1 eigenvectorsφL
j , 1 ≤ j ≤ l1

of AL corresponding to the largestl1 eigen-
values

f) Li ← [φL
1 , . . . , φL

l1
]

g) i← i + 1
3) EndWhile
4) L← Li−1

5) R← Ri−1

6) ∀j = 1 to n, Xj = L′SjR

Fig. 1. The optimization algorithm of finding the two TF transformation
matrices in JOTFT.

IV. EXPERIMENTAL EVALUATION

Generalized MFCCs computed by the following 3 different
time-frequency (TF) transformation methods:

• Standard: TF transformations for the standard MFCCs.
• 2D-DCT
• JOTFT

were compared in two speech tasks: TIMIT phoneme recog-
nition, and Resource Management (RM) speech recognition.
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Fig. 2. The left frequency-domain transformation matrix.

A. Task I: TIMIT Phoneme Recognition

1) Feature Extraction:Through FFT-based filter-bank anal-
ysis, log FBEs were extracted over each 25ms-window of
speech at a frame rate of 100Hz. There were 23 triangular
filters uniformly lying along the mel-scaled frequency spec-
trum of 0–8kHz with 50% overlap. Following the standard
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Fig. 3. The right time-domain transformation matrix.

procedure for generating the standard 39-dimensional MFCC
acoustic vectors (which contains 12 static MFCCs plus the
log frame energy, and their first- and second-order temporal
derivatives), all the three TF transformations were performed
on successive blocks of 9 frames of log FBEs. That is, the
dimension of the signal blocksSi is 23×9, and the dimension
of the extracted feature matricesXi is 13 × 3. The feature
matrices are vectorized to obtain the final 39-dimensional
MFCC acoustic vectors. After feature extraction, cepstral mean
normalization (CMN) was carried out to remove the channel
effect.

2) JOTFT: The jointly optimized TF transformations were
estimated by the JOTFT algorithm described in Fig. 1 using
100 utterances randomly selected from the TIMIT training
set. We find that using more utterances does not make much
difference to the transforms.

The JOTFT algorithm requires an initial frequency-domain
transformationL0 to start. Here, we simply employ the DCT
which is used in the generation of the standard MFCC. The
first four basis vectors of the frequency-domain transformation
L found by our JOTFT method are plotted in Fig. 2 together
with those of DCT. Except for a change in sign, they are quite
similar, but their leading basis vectors are more similar than
their trailing basis vectors. For example, it is found that the
first basis vector of JOTFT’sL matrix is fairly constant for
high frequency bands; its role is believed to be similar to that
of the standardc0 or log frame energy. And the second basis
vector of JOTFT’sL matrix is almost as linear as that of DCT.

Fig. 3 shows the time-domain transformationR found by
JOTFT as well as that of 2D-DCT, and the linear regression
matrix for the generation of standard dynamic MFCCs. Again
except for some sign changes, theR matrix found by JOTFT is
very similar to that of 2D-DCT. This may not be surprising as
in the current algorithm, bothL andR matrices are composed
of orthonormal eigenvectors as in 2D-DCT and we start with
L = DCT.

3) Phoneme recognition:The standard TIMIT training and
testing data without the “sa” utterances were used. The training
set consists of 3696 utterances from 462 speakers, and the test
set consists of 1344 utterances from 168 speakers. Each of
the 61 phones in the standard TIMIT phone sets was modeled
as a strictly left-to-right hidden Markov model (HMM) with
3 emitting states, and each HMM state was a mixture of
Gaussians. Context-independent HMMs were employed. Fi-
nally decoding was carried out with a bigram language model
that was trained only from the training set.

The recognition results are folded into the standard 39
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TABLE I

TIMIT PHONEME ACCURACY.

TF Transformation 1-mixture 4-mixture 8-mixture
Standard 53.69% 61.38% 64.14%
2D-DCT 53.91% 61.60% 64.55%
JOTFT 53.82% 62.48% 65.28%

TABLE II

RM WORD ERROR RATE.

TF Transformation 2-mixture 7-mixture

Standard 5.22% 3.86%
JOTFT (RM on RM) 5.06% 3.98%
JOTFT (TIMIT on RM) 5.50% 4.84%

phoneme classes to compute the phoneme recognition accu-
racies. The phoneme recognition accuracies for HMMs with
various numbers of Gaussian mixtures are summarized in
Table I. It is obvious that while MFCCs generated by 2D-
DCT is only marginally better the standard MFCCs, MFCCs
generated by our newly proposed JOTFT gives additional
improvement over 2D-DCT.

B. Task II: RM Speech Recognition

The generalized MFCCs computed by JOTFT algorithm
was also compared with the standard MFCCs on Resource
Management (RM1) speech recognition. All the 3990 SI
training utterances from 109 speakers in RM1 were used for
training acoustic models, and evaluation was performed on 4
common RM test sets: feb89, oct89, feb91, and sep92 test
set, which consist of totally 1200 testing utterances from 40
speakers. The experimental procedure is similar to that of the
TIMIT experiment except for the following:

• the spectrogram frame size for JOTFT was reduced from
9 to 5 as we found that 5 frames gave a slightly better
performance than 7 or 9 frames.

• 47 phoneme HMMs were estimated.
• the standard RM word-pair grammar was used for decod-

ing the test utterances.

The results are shown in Table II. In this task, the relative
performance of the standard MFCCs and the generalized
MFCCs computed by JOTFT varies with the complexity of
the acoustic models and the difference is small. Furthermore,
the use of cross-domain estimation for JOTFT degrades per-
formance significantly.

C. Reconstruction Error

For JOTFT, the extracted features are selected by optimizing
the reconstruction error as measured by Eqn. (7) which can
also be used as a criterion for feature comparison. In Fig. 4,
the rate-distortion curves (ratio of the dimensions before and
after extraction vs. SNR as measured by the distortion over
the signal energy) of RM are plotted by changing bothl1 and
l2. The top two curves are from JOTFT: one learned from RM
and one from TIMIT and the mis-match gives a slightly worse
SNR. The third and fourth curves, labeled “2D-DCT” and
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Fig. 4. The rate-distortion curves of various feature extraction methods using
RM utterances.

“MFCC” are results of reconstruction from the 2D-DCT and
MFCC features2. Because both approaches are not optimized
for reconstruction errors, their distortions are higher.

V. CONCLUSIONS

In this paper, we propose a data-driven approach to jointly
optimize the two time-frequency (TF) transformations used
in the generation of MFCCs. It is observed that both the
frequency- and time-domain transformations found by our
JOTFT method are similar to those of 2D-DCT. This may not
be too surprising given the fact that we use DCT as the initial
frequency-domain transformation to run our iterative JOTFT
algorithm, and both JOTFT and DCT employ orthonormal
eigenvectors. In the TIMIT phoneme recognition task, the
MFCCs generated by our TF transformations outperform those
generated by 2D-DCT and the standard MFCC generation
method, but the result is not conclusive in the RM speech
recognition task.

In the current JOTFT method, the generation of generalized
MFCCs is cast as an optimization problem that tries to
minimize the reconstruction error of spectrograms. We believe
that the framework may be generalized with other optimization
criteria, e.g. minimum classification errors, as well. Moreover,
besides generation of MFCC features for speech recognition,
the proposed joint optimization method may also be used for
speech coding to represents the spectrum with reduced number
of parameters.
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