
IEEE SIGNAL PROCESSING LETTERS 1

Minimization of Utterance Verification Error Rate
as a Constrained Optimization Problem

Man-hung Siu,Senior Member, IEEE, Brian Mak?, Member, IEEE, Wing-hei Au

Abstract— Since utterance verification (UV) may be treated
as a 2-class classification problem, it may be improved with
discriminative training such as minimum verification error train-
ing or minimum verification error rate training. However, since
in practice, one usually has to pick a specific false-acceptance
or false-rejection rate for one’s system, it is more desirable to
optimize UV performance at a particular operating point. In
this paper, we show that further improvement can be achieved
by treating UV at a specific operating point as a constrained
optimization problem.

Index Terms— utterance verification, minimum verification
error, minimum verification error rate

I. I NTRODUCTION

For many practical speech applications, it is important
to identify and reject out-of-vocabulary words or utterance
without keywords by means of utterance verification (UV).
The technique has been widely used in applications ranging
from weather information retrieval, call routing application,
to language learning. In general, UV is treated as hypothesis
testing [1], [2], [3] using the (log) likelihood ratio test: the ratio
between the null hypothesis that the required word is spoken
and the alternative hypothesis that it is not. A decision is
made by comparing the ratio against a pre-set threshold. In the
past, the two likelihoods are computed from acoustic models
which are usually Gaussian mixture models (GMM) or hidden
Markov models (HMM), and they are estimated from training
data using the maximum-likelihood (ML) approach. However,
since the amount of training data is never unlimited in practice,
and the true parametric form of these acoustic models is
never known, it can be argued that these ML-estimated models
may not give the best verification performance. Recently,
discriminative training [4] that optimizes model parameters
to achieve the minimum verification error (MVE) [3], [5], [6]
or minimum verification error rate (MVER) [7] has shown to
give better verification performance.

In current UV research, most of the time, the metric used
to gauge different approaches is their equal-error-rate (EER)
when the false-acceptance rate (FAR) equals the false-rejection
rate (FRR). However, in practice, a verification application has
to pick a specific operating point to work on. For example, a
security check may require an FAR as low as 0.1% while a
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language learning application may allow an FAR as high as
10%. In [7], when we proposed the use of MVER, we had
already proposed optimizing MVER at a specific operating
point. Nevertheless, the approach we used in [7] only tries to
minimize the total error rate and requires manual adjustment
of the threshold to keep the verification system to stay at the
specific operating point. In this paper, we cast the problem
as a constrained optimization problem and design a cost
function that incorporates both MVER as well as the constraint
of operating at a specific operating point. Although there
exists other algorithms such as the multi-objective evolutionary
algorithm [8] that optimize a classification system by ROC
analysis, we believe our method is more tractable and faster
in the utterance verification context.

II. V ERIFICATION AS A CONSTRAINED OPTIMIZATION

PROBLEM

A. Log Likelihood Ratio

In utterance verification, a system is presented with a speech
segmentOk of durationMk frames, that is claimed to come
from a certain modelλ0. To verify the claim, a model for
the alternative hypothesisλa is formed and the log likelihood
ratio

LLR(Ok, λ0, λa) =
1

Mk
log

[
p(Ok|λ0)
p(Ok|λa)

]
, (1)

between the two models is computed. A decision is made by
comparing LLR(Ok, λ0, λa) with a thresholdτ . That is,

LLR(Ok, λ0, λa)
accepted

>≤
rejected

τ . (2)

B. Discriminative Training Methods

Let us review two discriminative training methods in speech
verification.

1) Minimum-verification-error (MVE) Training:In speech
recognition, discriminative training using the minimum classi-
fication error (MCE) [4], [9] or the maximum mutual informa-
tion (MMI) [10] criterion has shown significant improvement
over ML training of acoustic model. The idea of MCE
training later led to MVE discriminative training [5], [6] of
acoustic models for speech or speaker verification. As its name
implies, MVE training estimates model parameters by directly
minimizing the total verification errors made on the training
or a development data set.

Let us denote the true label of thekth segmentsk as δk

where

δk =
{

+1 if sk is correct
−1 if sk is incorrect. (3)
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Based on the MCE approach, MVE training minimizes the
following soft count of the number of verification errors:

e(Ok, λ0, λa, τ) =
1

1 + exp(−γd(Ok, λ0, λa, τ))
(4)

whered(Ok, λ0, λa, τ) = −δk(LLR(Ok, λ0, λa) − τ), andγ
is the slope of the sigmoid function. Thus, the total count of
verification errors overK segments is

Cmve(OK
1 , λ0, λa, τ) =

K∑
k=1

e(Ok, λ0, λa, τ). (5)

Cmve(OK
1 , λ0, λa, τ) can be optimized by adjusting the

model parameters via the GPD algorithm [4]. This approach
was first proposed in [6] withτ set to zero to simplify the
formulation.

2) Minimum-verification-error-rate (MVER) Training:A
shortcoming of MVE training is that error rate rather than
number of errors is usually the common metric in a verification
task. In [7], we proposed the MVER training method that
directly minimizes the verification error rates1. Let Nc andNi

be the number of correct and incorrect samples in the training
data set respectively. Then the empirical false-acceptance rate
(FAR) ΩFAR and the the empirical false-rejection rate (FRR)
ΩFRR are given by

ΩFAR =
1
Ni

K∑
k=1, δk=−1

e(Ok, λ0, λa, τ) , (6)

and

ΩFRR =
1

Nc

K∑
k=1, δk=+1

e(Ok, λ0, λa, τ) . (7)

respectively.
Finally, the MVER cost functionCmver(OK

1 , λ0, λa, τ) is
the sum of FAR and FRR2:

Cmver(OK
1 , λ0, λa, τ) = ΩFAR + ΩFRR . (8)

C. MVER Constrained Optimization Training (MVER-CO)

Although both MVE and MVER training have made im-
provement over ML training for UV, they do not address
another important aspect of a common verification system: It
is often desirable to run a verification system at a specific
operating point defined by a preset FAR or FRR. In [7],
we addressed the issue by initializing the threshold to its
approximate value deduced from the DET curve3 [11] of the
MCE-estimated model. As the value of the threshold at a
specific operating point may drift after each iteration of MVER
training, one may have to re-adjust the threshold continuously
after each iteration. This can be very laborious. In this paper,
we try to constrain the drifting effect of the threshold by

1MVER only tries to minimize the total error rates and not the equal error
rate (EER) as it is not known how to get an analytical formulation of the
latter.

2The expression of the MVER cost function in Eqn.(8) in this letter looks
different from that in Eqn.(9) of our Eurospeech 2003 paper [7], but they are
actually equivalent.

3In a DET (Detection Error Tradeoff) curve, the FRR is plotted against the
FAR as the verification threshold is varied.

casting the problem as a constrained optimization problem
on the minimum verification error rate and solve it with the
common Lagrangian method.

Let us assume, with no loss of generality, that we would like
our verification system to run with an FRR equal toωfrr. The
cost function for our new MVER-CO training is formulated
as

C(OK
1 , λ0, λa, τ) = ΩFAR + β(ΩFRR − ωfrr)2

whereβ is the Lagrange multiplier. Due to the non-linear na-
ture ofΩFAR andΩFRR, the constrained optimization cannot
be solved analytically. Instead, it is again solved numerically
by the GPD algorithm.

To optimize any system parameterθ using the GPD algo-
rithm, one finds the gradient ofC(OK

1 , λ0, λa, τ) w.r.t. θ. That
is,

∂
∂θ (C(OK

1 , λ0, λa, τ)) =
∂
∂θ (ΩFAR) + 2β(ΩFRR − ωfrr) ∂

∂θ (ΩFRR) (9)

where

∂
∂θ (ΩFAR) =

1
Ni

K∑
k=1, δk=−1

∂
∂θ (e(Ok, λ0, λa, τ)) ,

∂
∂θ (ΩFRR) =

1
Nc

K∑
k=1, δk=+1

∂
∂θ (e(Ok, λ0, λa, τ)) ,

and

∂
∂θ (e(Ok, λ0, λa, τ)) = γe(·)(1 − e(·)) ∂

∂θ (d(Ok, λ0, λa, τ)) .

If θ is a model parameter ofλ0 or λa, then

∂
∂θ (d(Ok, λ0, λa, τ)) =

− δk

Mk

[
∂
∂θ (log p(Ok|λ0))− ∂

∂θ (log p(Ok|λa))
]

where the gradients of the log likelihoods w.r.t. model means,
variances, etc. can be found in [4] and will not be repeated
here.

Theoretically speaking, the thresholdτ and the Lagrange
multiplier β can be learned as well, using the approach as
described above. However, one may then have to tune the
learning rates for each kind of system parameters. Instead, we
chose to determineτ andβ empirically.

III. E XPERIMENTS

Our new MVER constrained optimization training method
was evaluated on two phoneme verification experiments4, and
its performance was compared with those of MVE and MVER
training. The first experiment makes use of the popular TIMIT
database, and the second experiment uses a database created
specifically for pronunciation learning and it represents more
realistic phonemic errors made by the non-native English-
speaking Hong Kong children.

4The verification tasks are the same as those in [7] so that one may compare
the new algorithm with the old training methods. Notice that the results for
some of the old experiments are different from those already reported in [7].
This is because all experiments were re-run after some bug fixes.
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TABLE I

NUMBERS OF CORRECTLY AND INCORRECTLY UTTERED PHONEME

SEGMENTS IN THETIMIT AND ASTRI DATA .

Segments TIMIT Data ASTRI Data
Training Test Training Test

correct 76,923 26,008 35,489 13,352
incorrect 24,605 11,076 8,453 3,182

correct/incorrect 3.126 2.348 4.196 4.198

TABLE II

COMPARISON OF DIFFERENT TRAINING METHODS FORTIMIT PHONEME

VERIFICATION AT THE 5% FRROPERATING POINT ANDEER.

System FAR at 5% FRR EER
MCE baseline 87.2% 39.2%
MVE, τ = 0 86.3% 38.0%
MVER, τ = 0 85.9% 37.8%
MVER, τ at EER 85.5% 36.3%
MVER, τ at 5% FRR 84.4% 36.3%
MVER-CO, τ at 5% FRR 82.4% 35.4%

A. Task 1: TIMIT Phoneme Verification

1) Corpus and Acoustic Models:The common 39-
dimensional MFCC feature vectors were extracted at every
10ms from the speech data in the standard training and test
set of the TIMIT corpus [12]. Forty-two acoustic models
were trained, representing 40 monophones, silence, and a
short pause. They are 3-state straightly left-to-right HMMs
with a maximum number of 16 Gaussian components in each
HMM state. In addition, a Gaussian mixture model (GMM)
consisting of 32 mixture components was trained using all
training data as the alternative model. All models were first
estimated in the ML approach using the EM algorithm.
Phoneme recognition was performed on the test set without
using any grammar, and an accuracy of 58.7% was obtained.
Using these ML-estimated HMMs as the initial models, MCE
training was then performed and the resulting models gave a
phoneme recognition accuracy of 59.1%.

2) Experimental Procedure:Phoneme recognition was per-
formed on all speech data using the MCE-estimated models.
The resulting phonemic transcriptions were treated as the
null hypotheses for further model training and testing for
phoneme verification. Table I gives the numbers of correctly
and incorrectly uttered phoneme segments found in the TIMIT
data sets.

Using the correct and incorrect phoneme segments in the
TIMIT training set, the MCE-trained models were further
enhanced by the MVE, MVER, and MVER-CO training
algorithms. For MVER and MVER-CO training algorithms,
we arbitrarily chose 5% FRR as the operating point for
optimization. To do that, MVER and MVER-CO were carried
out using the thresholdτ at 5% FRR deduced from the DET
curve of the MCE-trained models. As a sanity check, we
also repeated MVER and MVER-CO training using different
threshold settings:τ = 0 and τ at the EER operating point.
The threshold was not re-adjusted during MVE, MVER, or
MVER-CO training iterations5.

5In [7], we had investigated re-adjusting the value ofτ after each training
iteration. The process is very expensive and there was either no gain or very
small gain.

3) Results and Discussion:The results are summarized in
Table II. From the results, we have the following observations:
• Both MVE or MVER training using a threshold (τ ) value

of zero reduce the EER and FAR at the 5% FRR operating
point; MVER training performs slightly better.

• When MVER training runs with the approximate thresh-
old at the specific operating point deduced from the
DET curve of the MCE-estimated models, significant
improvement was obtained. (Compare the results on the
4th and 5th row of Table II.) It shows that it is important
to use an appropriate threshold for MVER training.

• The constraint in MVER-CO training seems to have
effectively prevented the verification system from drifting
away from the specified operating point as it iterates; this
is evidenced from the result in the last row of Table II.

• MVER-CO training reduces the FAR at the 5% FRR
operating point from MCE model’s 87.2% to 82.4%.

• It also turns out that when the EER is reduced by
the various training methods, the FAR at the 5% FRR
operating point is also reduced as a side effect, and vice
versa.

B. Task 2: Pronunciation Verification

1) Corpus and Acoustic Models:The ASTRI Kids’ Corpus
was used in this experiment. It was collected by the Hong
Kong Applied Science and Technology Research Institute (AS-
TRI)6 for the development of pronunciation learning system
for Hong Kong children. It contains over 42,000 English
sentences and 35,000 English words uttered by 410 local and
foreign children residing in Hong Kong and studying at Grade
3–5. All utterances were recorded in a quiet environment at
the 16 kHz sampling rate. A subset of 8000 phonetically
transcribed utterances, containing both isolated words and
sentences, were used for training, and 3341 phonetically tran-
scribed isolated words were used to evaluate the verification
performance. Table I shows the numbers of correctly and
incorrectly uttered phoneme segments in the ASTRI training
and test sets; they are all determined by human transcribers.

A set of 41 phonemes was employed in this verification task.
Since only words were used for pronunciation verification,
position-dependent (PD) phone HMMs were trained. That is,
each of the 41 base phonemes has three variations depending
on its position in a word — at the beginning, middle, or the
end of a word. Thus, theoretically there should be 123 PD
phone models, but in reality only 121 of them really appear in
the corpus. Feature extraction and acoustic modeling were the
same as in the last TIMIT experiment except that each HMM
state now has a maximum of 20 Gaussian components. The
ML- and MCE-estimated models gave a phoneme recognition
accuracy of 53.8% and 54.7% respectively on a separate
development set.

2) Experimental Procedure:To verify the phonemes in
an uttered word, its pronunciation (phoneme sequence) was
looked up from a standard (American) English dictionary and
was used as the null hypotheses for verification. Each phoneme
was then verified independently. Instead of using a GMM as
the alternative model as in the last TIMIT experiment, a phone
loop consisting of all word-middle phones was used instead

6See http://www.astri.org/ for more information about the institute.
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TABLE III

COMPARISON OF DIFFERENT TRAINING METHODS FOR THEASTRI

PRONUNCIATION VERIFICATION TASK AT THE 5% FRROPERATING POINT

AND EER.

System FAR at 5% FRR EER
MCE baseline 69.4% 31.3%
MVE, τ = 0 63.4% 28.9%
MVER, τ = 0 61.6% 22.7%
MVER, τ at EER 60.5% 21.7%
MVER, τ at 5% FRR 59.3% 21.4%
MVER-CO, τ at 5% FRR 58.9% 23.3%

as it was found to give better performance. MVE, MVER,
and MVER-CO training were performed as in the TIMIT
experiments.

3) Results and Discussion:Table III summarizes the veri-
fication results using the various training approaches. We have
the following observations:
• Although the phoneme accuracy of the ASTRI task is

worse than that of the TIMIT task (54.7% vs. 59.1%),
the ASTRI verification EER is actually better than that
of the TIMIT task (31.3% vs. 39.2%). The ASTRI data
contain genuine pronunciation errors made by Hong Kong
children. On the other hand, the phonemic errors in the
TIMIT data are “artificial” in the sense that they are
the results of acoustic confusions made by the speech
recognizer, and some of them will not be made by human.

• MVE and MVER training again outperform MCE train-
ing as in the TIMIT task, but the performance gain by
MVER training is much more in this ASTRI task than
in the last TIMIT task. One possible reason is that the
priors of correctly and incorrectly uttered segments in
the training and test data sets are perfectly matched in
the ASTRI data but are mismatched in the TIMIT data:
from Table I, their ratios in the training and test set
of the ASTRI data are 4.196 and 4.198 respectively,
while the figures for the TIMIT data are 3.126 and 2.348
respectively from Table I. The mismatch in the TIMIT
data implies that the threshold used in the training process
is non-optimal for the test set.

• MVER training with an approximate threshold gives a
further 1% drop at the EER operating point, and a further
2.3% drop in FAR at the 5% FRR operating point. (See
figures in bold font in Table III.)

• MVER-CO training further reduces the FAR by 0.4% at
the 5% FRR operating point when compared with the
result of MVER training using an approximate threshold.

• In summary, compared with the MCE-trained models,
MVER-CO training reduces FAR by an absolute 10.5% at
the 5% FRR operating point; at the EER operating point,
MVER training with an approximate threshold reduces
the EER by an absolute 9.6%.

IV. CONCLUSIONS

This paper casts the minimization of utterance verifica-
tion error rate as a constrained optimization problem, and
applies standard optimization technique and discriminative
training to estimate acoustic models for speech verification. In
two phoneme verification tasks, our new training algorithm,
the minimum-verification-error-rate constrained optimization

training, gives the lowest FAR at the 5% FRR operating point
than that achieved by the minimum-verification-error training
or the minimum-verification-error-rate training. The 5% FRR
operating point is arbitrarily chosen, and we believe the result
should apply to other operating points as well. Though we
only tested the new training algorithm in speech verification
problems, we believe the approach should apply to other
verification problems such as speaker verification.

REFERENCES

[1] M. G. Rahim, C. H. Lee, and B. H. Juang, “Discriminative utterance
verification for connected digits recognition,”IEEE Trans. on SAP, vol.
5, no. 3, pp. 266–277, May 1997.

[2] A. R. Setlur, R. A. Sukkar, and J. Jacob, “Correcting recognition errors
via discriminative utterance verification,” inProc. of ICSLP, Oct 1996,
vol. 2.

[3] R. C. Rose, B. H. Juang, and C. H. Lee, “A training procedure for
verifying string hypotheses in continuous speech recognition,” inProc.
of ICASSP, May 1995, vol. 1, pp. 281–284.

[4] W. Chou, “Discriminant-function-based minimum recognition error rate
pattern-recognition approach to speech recognition,”Proc. of the IEEE,
vol. 88, no. 8, pp. 1201–1223, 2000.

[5] R. A. Sukkar, A. R. Setlur, M. G. Rahim, and C. H. Lee, “Utterance
verification of keyword string using word-based minimum verification
error (WB-MVE) training,” in Proc. of ICASSP, May 1996, vol. 1, pp.
518–521.

[6] R. A. Sukkar, “Subword-based minimum verification error (SB-MVE)
training for task independent utterance verification,” inProc. of ICASSP,
May 1998, vol. 1, pp. 229–232.

[7] Wing-Hei Au and Man-Hung Siu, “A new approach to minimize
utterance verification error rate for a specific operating point,” inProc.
of Eurospeech, Sept 2003, pp. 909–912.

[8] J.E. Fieldsend and R.M. Everson, “ROC optimisation of safety related
systems,” inProc. of ROCAI 2004, part of ECAI 2004, Valencia, Spain,
August 2004, pp. 37–44.

[9] B. H. Juang and S. Katagiri, “Discriminative training for minimum error
classification,”IEEE Trans. on SP, vol. 40, no. 12, pp. 3043–3054, Dec
1992.

[10] P. C. Woodland and D. Povey, “Large scale discriminative training of
hidden Markov models for speech recognition,”Journal of CSL, vol.
16, no. 1, pp. 25–47, Jan 2002.

[11] A. Martin et al., “The DET curve in assessment of detection task
performance,” inProc. of Eurospeech, 1997, vol. 4, pp. 1895–1898.

[12] V Zue, S. Seneff, and J. Glass, “Speech database development at MIT:
TIMIT and beyond,”Speech Communication, vol. 9, no. 4, pp. 351–356,
August 1990.


