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Minimization of Utterance Verification Error Rate
as a Constrained Optimization Problem
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Abstract—Since utterance verification (UV) may be treated language learning application may allow an FAR as high as
as a 2-class classification problem, it may be improved with 10%. In [7], when we proposed the use of MVER, we had
discriminative training such as minimum verification error train- already proposed optimizing MVER at a specific operating
!ng or minimum verification error rate training._ However, since oint. Nevertheless, the approach we used in [7] only tries to
in practice, one usually has to pick a specific false-acceptancep_ o ’ Pp . y
or false-rejection rate for one’s system, it is more desirable to Minimize the total error rate and requires manual adjustment
optimize UV performance at a particular operating point. In  of the threshold to keep the verification system to stay at the
this paper, we show that further improvement can be achieved gpecific operating point. In this paper, we cast the problem
by treating UV t?lt a specific operating point as a constrained 55 5 constrained optimization problem and design a cost
optimization problem. function that incorporates both MVER as well as the constraint

Index Terms—utterance verification, minimum verification of operating at a specific operating point. Although there
error, minimum verification error rate exists other algorithms such as the multi-objective evolutionary

algorithm [8] that optimize a classification system by ROC
I. INTRODUCTION analysis, we believe our method is more tractable and faster

. L o in the utterance verification context.
For many practical speech applications, it is important

to identify and reject out-of-vocabulary words or utterance
without keywords by means of utterance verification (UV). !l- V ERIFICATION AS A CONSTRAINED OPTIMIZATION
The technique has been widely used in applications ranging PROBLEM

from weather information retrieval, call routing applicationA. Log Likelihood Ratio

to language learning. In general, UV is treated as hypothesi§y, ytierance verification, a system is presented with a speech
testing [1], [2], [3] using the (log) likelihood ratio test: the rat'osegmentOk of duration M,, frames, that is claimed to come
between the null hypothesis that the required word is spokgBm a certain model,. To verify the claim, a model for

and the alternative hypothesis that it is not. A decision i8¢ gjternative hypothesis, is formed and the log likelihood
made by comparing the ratio against a pre-set threshold. In tag,
(Ok|/\0)}

past, the two likelihoods are computed from acoustic models 1 D
which are usually Gaussian mixture models (GMM) or hidden LLR(Ok, Aos Aa) = M. log O\

. .. k p( k| a)
Markov models (HMM), and they are estimated from trainin . T
data using the maximum-likelihood (ML) approach. HowevePetween the two models is computed. A decision is made by
since the amount of training data is never unlimited in practice@mparing LLROx, Ao, As) with a thresholdr. That is,
and the true parametric form of these acoustic models is

1)

never known, it can be argued that these ML-estimated models accepted
may not give the best verification performance. Recently, LLR(Og, Ao, Aa) % T. (2)
discriminative training [4] that optimizes model parameters rejected

to achieve the minimum verification error (MVE) [3], [5], [6]
or minimum verification error rate (MVER) [7] has shown taB. Discriminative Training Methods
give better verification performance.

In current UV research, most of the time, the metric us
to gauge different approaches is their equal-error-rate (EE

when the false-acceptance rate (FAR) equals the f"jllse're]ecﬁlggognition, discriminative training using the minimum classi-

rate (FRR). However, in practice, a verification application h?l%ation error (MCE) [4], [9] or the maximum mutual informa-

to pIC!( a specific operating point to work on. For egampl_e, flon (MMI) [10] criterion has shown significant improvement
security check may require an FAR as low as 0.1% Whlled'-\ller ML training of acoustic model. The idea of MCE
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Let us review two discriminative training methods in speech
rification.
) Minimum-verification-error (MVE) Training:In speech
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Based on the MCE approach, MVE training minimizes theasting the problem as a constrained optimization problem

following soft count of the number of verification errors:  on the minimum verification error rate and solve it with the
common Lagrangian method.

1 Let us assume, with no loss of generality, that we would like

1+ exp(—d(Ox, Aos Aoy 7)) 4 our verificgtion system to run with an FRR gquguprr. The
cost function for our new MVER-CO training is formulated

whered(Og, Ao, Aa, T) = =0k (LLR(O, Mo, Ao) — 7), andy  as

is the slope of the sigmoid function. Thus, the total count of

B(Ok, AO? Aaa T) =

verification errors ovef segments is C(OK Xo, Mo, T) = Qrar + B(Qrrr — wf,,.,.)2
K . .. .
wherej is the Lagrange multiplier. Due to the non-linear na-
K —
Crnve(O1"5 20, A0 ) = ) €(Ok, Aos Aa, 7). ®)  ture of Qr 4 andQ g, the constrained optimization cannot
k=1

be solved analytically. Instead, it is again solved numerically
Cinoe (0¥ X0, Xa,7) can be optimized by adjusting theby the GPD algorithm.

model parameters via the GPD algorithm [4]. This approachTo optimize any system parameigmusing the GPD algo-

was first proposed in [6] with- set to zero to simplify the rithm, one finds the gradient &f (O, Ao, Ay, 7) W.I.t. 6. That

formulation. IS,
2) Minimum-verification-error-rate (MVER) Training:A 5 X
shortcoming of MVE training is that error rate rather than 50(C(O1 X0, Aa, 7)) =
number of errors is usually the common metric in a verification 25(Qrar) +26(QrrR — Wirr) 25 (QFRR) )

task. In [7], we proposed the MVER training method that

directly minimizes the verification error rafes et N, andN; where

be the number of correct and incorrect samples in the training K

data set respectively. Then the empirical false-acceptance rate D (Qpar) = 1 Z %(e(Ok, oo has 7)) S

(FAR) Qr4r and the the empirical false-rejection rate (FRR) ~ %° e e
Qrrr are given by ke
, 1 )
K 2Qrrr) = — Y. Z(e(Ok, Ao, Aoy 7))
1 50 FRR 50 ks N0 Nasy ’
Qpar = N, Z e(Ok, Ao, Aas T) (6) k=1, dp=+1
k=1, §,=—1
and
and { )
1 K %(e(olﬁ)‘()?AOJT)) :76(')(1_e('))%(d(olm)\oaAayT)) .
Q = — Ok, Aoy Aa, T) . 7 .
FRRE N, . 125: +1e( k120 Aa, T) () If 6 is a model parameter ofy or )., then
=1, op=
respectively. 2(d(Or, Moy Aas 7)) =
Finally, the MVER cost functiorC,,,,.. (0¥, X\o, Ao, 7) is — 9 19 (Goa p(Oe D) —2- (loe p(Or |
the sum of FAR and FRR M, [39( g p(Ok| o)) 39( g (Ol a))]
where the gradients of the log likelihoods w.r.t. model means,
C’VVIUET'(O{(a AOa Aaa T) = QFAR + QFRR . (8) g g

variances, etc. can be found in [4] and will not be repeated
here.
C. MVER Constrained Optimization Training (MVER-CO)  Theoretically speaking, the threshofdand the Lagrange

Although both MVE and MVER training have made im-multiplier 3 can be learned as well, using the approach as
provement over ML training for UV, they do not addresélescribed above. However, one may then have to tune the
another important aspect of a common verification system:l¢@rning rates for each kind of system parameters. Instead, we
is often desirable to run a verification system at a specifi€iose to determine and 3 empirically.
operating point defined by a preset FAR or FRR. In [7],
we addressed the issue by initializing the threshold to its m
approximate value deduced from the DET cdrj&l] of the
MCE-estimated model. As the value of the threshold at aOur new MVER constrained optimization training method
specific operating point may drift after each iteration of MVERvas evaluated on two phoneme verification experinferatsd
training, one may have to re-adjust the threshold continuoudly performance was compared with those of MVE and MVER
after each iteration. This can be very laborious. In this papétaining. The first experiment makes use of the popular TIMIT
we try to constrain the drifting effect of the threshold bylatabase, and the second experiment uses a database created

specifically for pronunciation learning and it represents more

IMVER only tries to minimize the total error rates and not the equal errgealistic phonemic errors made by the non-native English-
Ir;’ilttt((eer(EER) as it is not known how to get an analytical formulation of thgpeaking Hong Kong children.

'ZThe expression of the MVER cost function in Eqn.(8) in this letter looks
different from that in Eqn.(9) of our Eurospeech 2003 paper [7], but they are4The verification tasks are the same as those in [7] so that one may compare
actually equivalent. the new algorithm with the old training methods. Notice that the results for

3In a DET (Detection Error Tradeoff) curve, the FRR is plotted against treome of the old experiments are different from those already reported in [7].
FAR as the verification threshold is varied. This is because all experiments were re-run after some bug fixes.

. EXPERIMENTS
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TABLE |
NUMBERS OF CORRECTLY AND INCORRECTLY UTTERED PHONEME
SEGMENTS IN THETIMIT AND ASTRI DATA.

3) Results and Discussiorthe results are summarized in
Table Il. From the results, we have the following observations:

« Both MVE or MVER training using a threshold ) value
Segments TIMIT Data ASTRI Data of zero reduce the EER and FAR at the 5% FRR operating

— ;:'g'gg : eeéf;, - gz'r:gg - 36; : point; MVER training performs slightly better.
corect 54605 T 11.076 | 8453 | 3187 « When MVER training runs with the approximate thresh-

correct/incorrect| 3.126 | 2.348 | 4.196 | 4.198 old at the specific operating point deduced from the
DET curve of the MCE-estimated models, significant
improvement was obtained. (Compare the results on the
4th and 5th row of Table I1.) It shows that it is important
to use an appropriate threshold for MVER training.

o The constraint in MVER-CO training seems to have

TABLE Il
COMPARISON OF DIFFERENT TRAINING METHODS FOR IMIT PHONEME
VERIFICATION AT THE 5% FRROPERATING POINT ANDEER.

[ System [ FARai5% FRR | EER | effectively prevented the verification system from drifting
MCE baseline 87.2% 39.2% away from the specified operating point as it iterates; this
MVE, 7 =0 86-33@ 38-0;% is evidenced from the result in the last row of Table II.
T =0 R Lo « MVER-CO training reduces the FAR at the 5% FRR
MVER.  at 5% FRR 84.4% 36.3% operating point from MCE model's 87.2% to 82.4%.
MVER-CO, 7 at 5% FRR 82.4% 35.4% o It also turns out that when the EER is reduced by

the various training methods, the FAR at the 5% FRR
operating point is also reduced as a side effect, and vice

e versa.
A. Task 1: TIMIT Phoneme Verification

.1) qupus and Acoustic Models:The common 39- B. Task 2: Pronunciation Verification
dimensional MFCC feature vectors were extracted at every ) )
10ms from the speech data in the standard training and test) Corpus and Acoustic Model§he ASTRI Kids’ Corpus
set of the TIMIT corpus [12]. Forty-two acoustic modeldvas used in this experiment. It was collected by the Hong
were trained, representing 40 monophones, silence, an&@g Applied Science and Technology Research Institute (AS-
short pause. They are 3-state straightly left-to-right HMMERI® for the development of pronunciation learning system
with a maximum number of 16 Gaussian components in eal@® Hong Kong children. It contains over 42,000 English
HMM state. In addition, a Gaussian mixture model (GMm§entences and 35,000 English words uttered by 410 local and
consisting of 32 mixture components was trained using dfreign children residing in Hong Kong and studying at Grade
training data as the alternative model. All models were fir§rS- All utterances were recorded in a quiet environment at
estimated in the ML approach using the EM algorithnfhe 16 kHz sampling rate. A subset of 8000 phonetically
Phoneme recognition was performed on the test set withd{@nscribed utterances, containing both isolated words and
using any grammar, and an accuracy of 58.7% was obtain&@ntences, were used for training, and 3341 phonetically tran-
Using these ML-estimated HMMs as the initial models, mcecribed isolated words were used to evaluate the verification
training was then performed and the resulting models gaveP@formance. Table | shows the numbers of correctly and
phoneme recognition accuracy of 59.1%. |nCOfreCt|y uttered phoneme Segments in the ASTRI tra_lnlng
2) Experimental ProcedurePhoneme recognition was per-2Nd test sets; they are all determined by human transcribers.

formed on all speech data using the MCE-estimated models” Set of 41 phonemes was employed in this verification task.
The resulting phonemic transcriptions were treated as tince only words were used for pronunciation verification,
null hypotheses for further model training and testing fdPosition-dependent (PD) phone HMMs were trained. That is,
phoneme verification. Table | gives the numbers of correctﬁﬁc_h of the 41 base phonemes has three variations depending
and incorrectly uttered phoneme segments found in the TIMPP its position in a word — at the beginning, middle, or the
data sets. end of a word. Thus, theoretically there should be 123 PD

Using the correct and incorrect phoneme segments in tAgONe models, but in reality only 121 of them really appear in
TIMIT training set, the MCE-trained models were furthefh€ corpus. Feature extraction and acoustic modeling were the

enhanced by the MVE, MVER, and MVER-CO training®@Me as in the last TIMIT experiment except that each HMM
algorithms. For MVER and MVER-CO training aIgorithms,State now has a maximum of 20 Gaussian components. The
we arbitrarily chose 5% FRR as the operating point tdyIL- and MCE-estimated models gave a phoneme recognition

optimization. To do that, MVER and MVER-CO were carried®ccuracy of 53.8% and 54.7% respectively on a separate
out using the threshold at 5% FRR deduced from the DETA€vVelopment set. _ _
curve of the MCE-trained models. As a sanity check, we 2) Experimental ProcedureTo verify the phonemes in

also repeated MVER and MVER-CO training using differerin Uttéred word, its pronunciation (phoneme sequence) was
threshold settingsr = 0 and = at the EER operating point. looked up from a standard (American) _IE_ngI!sh dictionary and
The threshold was not re-adjusted during MVE, MVER, dfas used as t_h_e nl_JII hypotheses forverlflcat|on._ Each phoneme
MVER-CO training iteratiors was then verified independently. Instead of using a GMM as
the alternative model as in the last TIMIT experiment, a phone

5In [7], we had investigated re-adjusting the valuero#fter each training loop consisting of all word-middie phones was used instead
iteration. The process is very expensive and there was either no gain or verg
small gain. See http://www.astri.org/ for more information about the institute.



TABLE Il

COMPARISON OF DIFFERENT TRAINING METHODS FOR THASTRI
PRONUNCIATION VERIFICATION TASK AT THE5% FRROPERATING POINT

AND EER.
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training, gives the lowest FAR at the 5% FRR operating point
than that achieved by the minimume-verification-error training

or the minimum-verification-error-rate training. The 5% FRR

operating point is arbitrarily chosen, and we believe the result
should apply to other operating points as well. Though we
only tested the new training algorithm in speech verification
problems, we believe the approach should apply to other

[ System [ FARat5% FRR [ EER |
MCE baseline 69.4% 31.3%
MVE, 7 =0 63.4% 28.9%
MVER, 7 =0 61.6% 22.7%
MVER, 7 at EER 60.5% 21.7%
MVER, 7 at 5% FRR 59.3% 21.4%
MVER-CO, T at 5% FRR 58.9% 23.3%

(1]

as it was found to give better performance. MVE, MVER,,
and MVER-CO training were performed as in the TIMIT
experiments.

3) Results and Discussioritable Il summarizes the veri- 3]
fication results using the various training approaches. We have
the following observations: 4

« Although the phoneme accuracy of the ASTRI task is
worse than that of the TIMIT task (54.7% vs. 59.1%),[5]
the ASTRI verification EER is actually better than that
of the TIMIT task (31.3% vs. 39.2%). The ASTRI data
contain genuine pronunciation errors made by Hong Kongfl
children. On the other hand, the phonemic errors in the
TIMIT data are “artificial” in the sense that they are[7
the results of acoustic confusions made by the speech
recognizer, and some of them will not be made by humaqs]

« MVE and MVER training again outperform MCE train-
ing as in the TIMIT task, but the performance gain by
MVER training is much more in this ASTRI task than 9]
in the last TIMIT task. One possible reason is that the
priors of correctly and incorrectly uttered segments ii0]
the training and test data sets are perfectly matched in
the ASTRI data but are mismatched in the TIMIT datgi )
from Table |, their ratios in the training and test set
of the ASTRI data are 4.196 and 4.198 respectivelg},z]
while the figures for the TIMIT data are 3.126 and 2.348
respectively from Table I. The mismatch in the TIMIT
data implies that the threshold used in the training process
is non-optimal for the test set.

« MVER training with an approximate threshold gives a
further 1% drop at the EER operating point, and a further
2.3% drop in FAR at the 5% FRR operating point. (See
figures in bold font in Table Ill.)

« MVER-CO training further reduces the FAR by 0.4% at
the 5% FRR operating point when compared with the
result of MVER training using an approximate threshold.

e In summary, compared with the MCE-trained models,
MVER-CO training reduces FAR by an absolute 10.5% at
the 5% FRR operating point; at the EER operating point,
MVER training with an approximate threshold reduces
the EER by an absolute 9.6%.

IV. CONCLUSIONS

This paper casts the minimization of utterance verifica-
tion error rate as a constrained optimization problem, and
applies standard optimization technique and discriminative
training to estimate acoustic models for speech verification. In
two phoneme verification tasks, our new training algorithm,
the minimume-verification-error-rate constrained optimization

verification problems such as speaker verification.
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