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Abstract
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1 Introduction

Finding shortest paths in a geometric environment is a classical optimization problem in com-
putational geometry (e.g. [7, 8, 14, 15, 18, 19, 20, 21, 25, 26, 28, 29, 31]). In 2D and ter-
rains, researchers have also studied cost models in applications that are non-Lp metrics and
anisotropic (e.g.[1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 22, 23, 27, 32, 33]). In 3D, other than mo-
tion planning, shortest path is a popular tool for simulating seismic raytracing in ray-based
tomography schemes for studying some geological properties, and the time required to traverse
different regions may vary (e.g. [17, 24]).

The weighted region problem is a way to model the unequal difficulties in traversing different
regions [27]. In 3D, we are given a simplicial complex T of n tetrahedra. These tetrahedra
and their vertices, edges and triangles are called the simplices of T . Given two simplices in T ,
either they are disjoint or their intersection is another simplex in T . Every vertex has integral
coordinates and let N denote the largest vertex coordinate magnitude. Each tetrahedron τ is
associated with an integral weight ωτ ∈ [1,W ]. For every edge or triangle, its weight is equal
to the minimum weight among the tetrahedra incident to that edge or triangle. The cost of a
path that lies in a simplex σ is equal to the path length multiplied by ωσ. Given a path P in
T , we denote its length by ‖P‖ and its cost by cost(P ) =

∑
simplex σ ωσ‖P ∩ σ‖. The weighted

region problem is to find the least-cost path from a given source vertex to a given destination
vertex.

The weighted region problem in 2D has been studied extensively. Fully polynomial time
approximation schemes are known [11, 27]. There are also successful discretization schemes
whose running time is linear in the input size and dependent on some geometric parameter of
the polygonal domain [5, 33]. In contrast, only one algorithm for the weighted region problem
in 3D has been proposed (Aleksandrov et al. [6]). The authors present a (1 + ε)-approximation
algorithm whose running time is O

(
Knε−2.5 log n

ε log3 1
ε

)
, where K is asymptotically at least

the cubic power of the maximum aspect ratio of the tetrahedra in the worst case. (Aspect ratio
is defined in Section 2.) It is an open problem whether an FPTAS exists for the 3D weighted
region problem. Our contribution is an algorithm whose running time depends on combinatorial
parameters only and it is in fact polynomial when the tetrahedra with large aspect ratios are
scattered.

Let ρ be an arbitrary constant independent of T . We call a tetrahedron skinny if its
aspect ratio exceeds ρ. Two skinny tetrahedra are connected if their boundaries touch, and the
transitive closure of this relation gives the connected components of skinny tetrahedra. Let κ
be the number of tetrahedra in the largest connected component of skinny tetrahedra.

We present a (1 + ε)-approximation algorithm for the 3D weighted region problem. It runs

in O(22O(κ)
nε−7 log2 W

ε log2 NW
ε ) time. The hidden constant in the exponent O(κ) is dependent

on ρ but independent of T . Thus, there exists a constant C dependent on ρ but independent of
T such that if κ ≤ 1

C log logn+O(1), the running time is polynomial in n, 1/ε and log(NW ).
If κ = O(1), the running time is linear in n. In comparison, the running time in [6] has the
advantage of being independent from N and W , but K can be arbitrarily large even if there
are only O(1) skinny tetrahedra. Putting the result in [6] in our model, K is a function of N
and n in the worst case, and K can be Ω( 1

nN
3 + 1).

2 Preliminaries

A path P in T consists of links and nodes. A link is a maximal segment that lies in a simplex
of T . Nodes are link endpoints. We assume that P does not bend in the interior of any simplex
because such a bend can be shortcut. So the nodes of P lie at vertices, edges and triangles.
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Given two points x and y in this order in P , we use P [x, y] to denote the subpath between
them.

The simplex sequence of a path P is the ordered sequence Σ of vertices, edges and triangles
that intersect the interior of P from u to v. If P has the minimum cost among all paths from
u to v with simplex sequence Σ, we call P a locally shortest path (with respect to Σ). The
shortest path from u to v is the locally shortest path with the minimum cost among all possible
simplex sequences.

Let B(x, r) denote a closed ball centered at a point x with radius r.
The aspect ratio of a tetrahedron τ is the ratio of the radius of the smallest sphere that

encloses τ to the radius of the largest sphere inscribed in τ . If the aspect ratio is bounded by a
constant, all angles of τ are bounded from below and above by some constants. A tetrahedron
is skinny if its aspect ratio exceeds some arbitrary constant ρ fixed a priori. If a tetrahedron is
not skinny, it is fat.

Two tetrahedra are connected if their boundaries touch. The equivalence classes of the tran-
sitive closure of this relation are called connected components of tetrahedra. Two tetrahedra are
edge-connected if they share at least one edge. The equivalence classes of the transitive closure
of this relation are called edge-connected components of tetrahedra. A cluster is a connected
component of skinny tetrahedra. By definition, every cluster has at most κ tetrahedra.

For every simplex σ in T , star(σ) denotes the set of tetrahedra that have σ as a boundary
simplex. Given a set K of simplices, |K| denotes the union of all simplices in K and bd(K)
denotes the set of simplices in the boundary of |K|.

For simplicity, we will show a 1 +O(ε) approximation ratio, which can be reduced to 1 + ε
by tuning some constants. Our algorithm discretizes T and builds an edge-weighted graph G
so that the shortest path in G is a 1 + O(ε) approximation. This approach is also taken in [6]
in 3D. Unlike in [6], in order to allow for skinny tetrahedra, we discretize the fat tetrahedra
only, and the edges in G represent approximate shortest paths that may not lie within a single
tetrahedron. This also leads to a very different analysis for obtaining the approximation ratio
of 1 + ε.

Let {u, v} be a pair of vertices of G. If u and v lie in a cluster, we would ideally connect
them by an edge with weight equal to the shortest path cost between u and v within the cluster.
However, even if a simplex sequence is given, finding the locally shortest path requires solving
a nonlinear system derived using Snell’s law. It is unclear how to do this exactly. Instead, we
switch to convex distance functions induced by convex polytopes with O(1/ε) vertices, so that
the modified metrics give 1 +O(ε) approximations of the original metrics. Under the modified
metrics, the locally shortest path with respect to Σ can be obtained by linear programming.
We enumerate all possible simplex sequences to find the shortest path cost within the cluster
under the modified metrics.

3 Placement of Steiner points

For every vertex v in T , the fat tetrahedra in star(v) may form multiple edge-connected compo-
nents and we call each a fat substar. For an edge or triangle σ, there is at most one fat substar
in star(σ).

Definition 1 Let x be a point in the union of vertices, edges and triangles of T . Let σ be the
simplex of the lowest dimension containing x. For every fat substar F of σ, define δF (x) to be
the minimum distance from x to a simplex in bd(F ) that does not contain x. When σ is an
edge or triangle, there is at most one fat substar of σ and so we simplify the notation to δ(x).
Figure 1 shows some examples.
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Figure 1: Examples of fat substars and δF (x).

Remark 1: For a vertex v of T , δF (v) is the distance between v and a triangle opposite v in
some tetrahedron τ ∈ F . Since the tetrahedra in F have bounded aspect ratio and there are
O(1) of them, δF (v) = Θ(‖e‖) for every edge e ∈ F .

Remark 2: For a point x in the interior of an edge e, δ(x) is the distance between x and an
edge or triangle σ such that σ bounds a fat tetrahedron incident to e and σ shares only a vertex
v with e. Thus, δ(x) = ‖vx‖ sin θ, where θ is the angle between e and σ, which is bounded
from below by a constant. So δ(x) = Θ(‖vx‖).

Remark 3: Consider the edge-ball Bq placed at the intersection q between uv and the boundary
of Nu. By Remark 1, ‖qu‖ = ε

3W δF (u) = Θ( ε
W ‖uv‖), where F is the fat substar of u that con-

tains uv. By definition, δ(q) ≤ ‖qu‖ = O( ε
W ‖uv‖). By Remark 2, δ(q) = Ω(min{‖qu‖, ‖qv‖}) =

Ω(min{ εW ‖uv‖, (1− ε
W )‖uv‖}. So δ(q) = Θ( ε

W ‖uv‖). The radius of Bq is ε
3δ(q) = Θ( ε

2

W ‖uv‖).

For every vertex v of T and every fat substar F of v, define a vertex-ball Bv,F = B(v, ε
3W δF (v)).

Let Nv be the union of Bv,F ∩ F over all fat substars F .
Let uv be an edge of a fat tetrahedron in T . We place Steiner points in uv outside Nu

and Nv as follows. Initialize B to be the union of the interiors of Nu and Nv. Find the
point p ∈ uv \ B such that δ(p) is maximum. Make p a Steiner point. Define an edge-ball
Bp = B(p, ε3δ(p)). Add the interior of Bp to B. Repeat until uv \ B is empty. Finally, make
the intersection point q between uv and the boundary of Nu a Steiner point and introduce an
edge-ball Bq = B(q, ε3δ(q)). Repeat the same for the intersection point between uv and the
boundary of Nv.

As we will see below, the edge-balls centered at two consecutive Steiner points strictly
outside Nu and Nv overlap significantly. After placing Steiner points strictly outside Nu and
Nv, an extreme edge-ball may have a tiny overlap with Nu or Nv. In this case, if x is a point
on some triangle incident to uv such that x lies close to this tiny overlap, then δ(x) can be
arbitrarily small. This will cause a problem in discretizing triangles. Thus, we place two more
edge-balls at the intersection points between uv and the boundaries of Nu and Nv. Figure 2
shows an example.

Lemma 3.1 Let uv be an edge of a fat tetrahedron. The edge uv is covered by the union of
Nu, Nv, and the edge-balls centered at the Steiner points in uv. For every consecutive pair of
Steiner points p, q ∈ uv strictly outside Nu and Nv,

(i) ‖pq‖ = ε
3 ·max{δ(p), δ(q)}, and

(ii) if δ(p) ≥ δ(q), then q lies on the boundary of Bp; otherwise, p lies on the boundary of Bq.

There are O
(

1
ε log W

ε

)
Steiner points in uv.
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Figure 2: Placement of Steiner points on an edge uv. The solid circle centered at u denotes
a vertex ball at u. The dashed circles denote some edge-balls placed with their centers in the
interior of uv. The bold circle centered at the intersection of uv and the solid circle is the
edge-ball placed at the intersection of uv and the boundary of Nu.
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Figure 3: As x moves from u towards v, the radius δ(x) of the ball Bx is determined by an
edge or triangle σ incident to u. So δ(x) grows linearly in size, and δ(x) reaches the maximum
when it touches another edge or triangle σ′ incident to v.

Proof. The construction ensures the coverage of uv. Consider moving a point x from u along
the edge uv towards v. When x is arbitrarily close to u, δ(x) is determined by some edge or
triangle σ incident to u, that is, δ(x) is the distance from x to σ. Therefore, if we draw a ball
Bx centered at x with radius δ(x), Bx touches σ and does not intersect any other simplex in
star(uv) that is not incident to the interior of uv. Figure 3 shows an example. As x moves
towards v, σ remains the closest simplex to x among the edges and triangles incident to u.
Therefore, the radius δ(x) of Bx grows linearly, and Bx remains disjoint from any other edge
or triangle that is incident to u or v. At some moment during the movement of x, Bx comes
into contact with another edge or triangle σ′ incident to v. At this moment, δ(x) reaches its
maximum. When x moves further towards v, σ′ determines δ(x) instead and δ(x) decreases
linearly. In summary, δ(x) increases linearly from a limit of zero at u and then decreases linearly
to a limit of zero at v.

The placement of Steiner points strictly outside Nu and Nv begins with the point p ∈ uv
that maximizes δ(p). Therefore, the point q ∈ uv that maximizes δ(q) outside the interiors of
Nu, Nv, and Bp must lie on the boundary of Bp. Repeating this argument establishes properties
(i) and (ii) in the lemma.

Let p, q ∈ uv be two consecutive Steiner points strictly outside Nu and Nv such that δ(x)
increases linearly from a limit of zero from u to p and then to q. By Remark 2, δ(p) = Θ(‖pu‖).
We have shown in property (i) that ‖pq‖ ≥ ε

3δ(p). By the linear increase in δ(·), we get
δ(q) = (1 + ‖pq‖/‖pu‖)δ(p) ≥ (1 + Θ(ε))δ(p). The next Steiner point after q is thus at distance
at least ε

3δ(q) ≥ ε
3 (1 + Θ(ε)) δ(p) from q. In other words, the distance between consecutive

Steiner points strictly outside Nu and Nv increases repeatedly by at least a factor 1 + Θ(ε).
By Remark 3, the distance between two consecutive Steiner points that are strictly outside Nu

is Ω( ε
2

W ‖uv‖) near u. Then, it increases to at most ε
6‖uv‖ in the interior of uv. The same holds
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for the sequence of Steiner points from Nv. Hence, there are O(log1+Θ(ε)
W
ε ) = O

(
1
ε log W

ε

)
Steiner points.

Lemma 3.2 Placing Steiner points on an edge takes O
(

1
ε log W

ε

)
time.

Proof. The placement of Steiner points on an edge uv begins with finding the interior point p
such that δ(p) is maximum. There are O(1) tetrahedra in the fat substar F of uv, so there are
O(1) edges and triangles in F that are incident to u or v. In O(1) time, we can determine the
edge or triangle σ that determines δ(x) for a point x ∈ uv near u. Similarly, we can determine
the edge or triangle σ′ that determines δ(x) for a point x ∈ uv near v. As discussed in the proof
of Lemma 3.1, σ and σ′ determine the maximum δ(p).

Finding the exact location of p∗ ∈ uv that maximizes δ(·) involves computing the medial
axis of σ and σ′ and then intersecting this medial axis with uv. Medial axis computation is
rather complex. Instead, it suffices to find an approximate location p̃ ∈ uv such that the edge-
ball Bp̃ = B(p̃, ε3δ(p̃)) contains p∗. Then, the function δ(·) still decreases linearly in the two
intervals uv \Bp̃ towards u and v, respectively, and so the proof of Lemma 3.1 still applies. We
find such a point p̃ by binary search. We begin with the midpoint q of uv. If q is closer to σ
than σ′, we recurse on the interval closer to v; otherwise, we recurse on the interval closer to u.
The recursion stops when the interval length is less than ε

3δ(q), q being the interval midpoint,
and we place the edge-ball Bq = B(q, ε3δ(q)). Since the binary search keeps the point p∗ that
maximizes δ(·) in the interval, the last q is the desired p̃ and Bp̃ contains p∗.

By Remark 2, δ(p∗) = Θ(‖p∗u‖) = Θ(‖p∗v‖), which implies δ(p∗) = Θ(‖uv‖). Since Bp̃
touches an edge or triangle incident to u or v, Bp̃ cannot be contained inside B(p∗, ε3δ(p

∗)).
So the radius ε

3δ(p̃) of Bp̃ is at least ε
3δ(p

∗) − ‖p∗p̃‖. Note that ‖p∗p̃‖ is at most half of the
length of the last interval. Thus, ε

3δ(p̃) ≥ ε
3δ(p

∗) − ‖p∗p̃‖ ≥ ε
3δ(p

∗) − ε
6δ(p̃). It follows that

δ(p̃) ≥ 2
3δ(p

∗) = Ω(‖uv‖). The binary search takes O(1) time per probe. The initial interval is
uv, and the recursion stops when the interval length is less than ε

3δ(p̃) = Ω(ε‖uv‖). Therefore,
there are O(log 1

ε ) probes, meaning that we can place the first edge-ball in O(log 1
ε ) time.

Subsequently, since δ(x) increases and then decreases from one endpoint of an edge to the
other endpoint, there are at most two gaps on the edge to be covered during the placement
of Steiner points. Therefore, after placing the first edge-ball, it takes O(1) time to place each
Steiner point subsequently.

Let t be a triangle of a fat tetrahedron. Since the vertex-balls and edge-balls on an edge
overlap significantly, we can show that for every point x in t that lies outside the vertex-balls
and edge-balls in the boundary of t, the point x is relatively far from the boundary of t.

Lemma 3.3 There exists a constant c > 0 such that for every triangle t of a fat tetrahedron
and for every point x ∈ t that lies outside vertex-balls and edge-balls in the boundary of t, the
distance between x and the boundary of t is at least cε2`/W , where ` is the longest edge length
of t.

Proof. The point x is closest to the boundary of t when x lies at the intersection of ∂Bp∩∂Bq∩t,
where p and q are two consecutive Steiner points or vertices on some edge e of t. There are
three cases depending on the locations of p and q.

Case 1: p and q are two Steiner points, and neither p nor q lies on the boundaries of the
vertex-balls at the endpoints of e. Without loss of generality, assume that δ(p) ≥ δ(q), so q lies
on the boundary of Bp by Lemma 3.1. As shown in the left image in Figure 4, the distance

between x and the edge e is ε
3δ(q)·sin

(
arccos δ(q)

2δ(p)

)
= δ(q)· ε3(δ(p)2− 1

4δ(q)
2)1/2/δ(p) ≥ ε

2
√

3
δ(q).
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Figure 4: In the left figure, the distance of x from the edge is δ(q) · ε3(δ(p)2− 1
4δ(q)

2)1/2/δ(p). In
the right figure, the point x is farther from the edge than the white dot which is the intersection
∂Bp ∩ ∂B′ ∩ t.

Since q is outside the vertex-balls at the endpoints of e, by Remarks 1 and 2, we have δ(q) =
Ω( ε

W ‖e‖), which is Ω(ε`/W ) because because all angles of t are bounded from above and below
by some constants. Therefore, the distance between x and e is Ω(ε2`/W ).

Case 2: p is a vertex-ball and q is a Steiner point in the boundary of Bp. Using the analysis in
Case 1, the distance between x and e is at least ε

2
√

3
δ(q), which is Ω(ε2`/W ) as δ(q) = Ω( ε

W ‖e‖)
by Remark 3.

Case 3: p and q are two Steiner points, and q lies on the boundary of the vertex-ball at an
endpoint u of e. By construction, Bp must overlap with the vertex-ball at u, and therefore,
q ∈ Bp. Also, δ(p) > δ(q) as δ(·) decreases linearly from p towards u. Let q′ be intersection
of e and the boundary of Bp that is closer to u. Refer to the right image in Figure 4. Let B′

be a copy of Bq with its center at q′. Let x and y be the intersection points ∂Bp ∩ ∂Bq ∩ t
and ∂Bp ∩ ∂B′ ∩ t, respectively. Clearly, the distance between from x to e is greater than the
distance from y to e. Using the analysis in Case 1, the distance between y and e is at least
ε

2
√

3
δ(q), which is Ω(ε2`/W ) as δ(q) = Ω( ε

W ‖e‖) by Remark 3.

The placement of Steiner points in a triangle uvw of a fat tetrahedron is slightly more
involved. In the interior of uvw, the value of δ(x) is determined by the triangles of at most two
fat tetrahedra incident to uvw. Consider one triangle t out of these candidates. Orient space so
that uvw is horizontal. The graph of the distance function from x to t is a plane that makes an
angle arctan(sin θ) with the horizontal, where θ is the dihedral angle between t and uvw (which
is bounded from below and above by some constants). The graph of δ(x) is thus a lower envelope
of planes. Moreover, this lower envelope H is supported by exactly three planes induced by
three triangles that share with uvw the edges uv, vw and uw. Let ` denote the longest edge
length of uvw. The maximum height of H is hmax = Θ(`) as the tetrahedra defining δ(x) have
bounded aspect ratios. For each point x in the interior of uvw that are close to and outside the
vertex-balls and edge-balls at the boundary of uvw, by Lemma 3.3, δ(x) ≥ cε2`/W for some
constant c > 0. Let H+ denote the portion of H at height hmin = cε2`/W 2 or above. We will
place Steiner points in the projection of H+ in uvw. By the geometry of H, a cross-section of
H bounds a triangle that has the same angles as uvw and projects to the interior of uvw.

Define h0 = hmax and for i ≥ 1, hi = hi−1/(1 + ε). Let Ai ⊂ uvw be the triangular annulus
that the portion of H between heights hi and hi+1 projects to. Both the inner and outer
boundaries of this annulus are similar to uvw. The area of Ai is Θ((hi − hi+1)(hi + hi+1)) =
Θ(εh2

i ). We place Steiner points in each Ai as follows. Initialize B = ∅. Make an arbitrary
point p ∈ Ai \ B a Steiner point. Define a triangle-ball Bp = B(p, ε3δ(p)). Add the interior of
Bp to B. Repeat until Ai \ B is empty.

Lemma 3.4 Let uvw be a triangle of a fat tetrahedron. The triangle uvw is covered by
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the union of Nu, Nv, Nw, and edge-balls and triangle-balls with centers in uvw. There are
O
(

1
ε2

log W
ε

)
Steiner points in uvw.

Proof. The construction ensures the coverage of uvw. For every pair of Steiner points p
and q in Ai, q lies outside Bp or p lies outside Bq, depending on whether p or q was placed
first. Therefore, ‖pq‖ ≥ ε

3 · min{δ(p), δ(q)}. The value of δ(x) in Ai is between hi and hi+1.
Therefore, if we place disks of radii ε

6hi+1 centered at the Steiner points in Ai, the disks are
disjoint. At least a constant fraction of each such disk lies inside Ai. Therefore, there are
O(εh2

i /(ε
2h2
i+1)) = O(1/ε) Steiner points in Ai. As i increases, hi decreases and approaches

hmin = Θ(ε2hmax/W
2). Observe that hi = (1 + ε)−ihmax. Hence, (1 + ε)−ihmax ≥ hmin, which

implies that i = O
(
log1+ε

W
ε

)
= O

(
1
ε log W

ε

)
. It follows that there are O

(
1
ε2

log W
ε

)
Steiner

points in uvw.

Lemma 3.5 Placing Steiner points in uvw takes O( 1
ε4

log W
ε ) time.

Proof. While placing Steiner points in Ai, we punch holes in Ai and the next Steiner point
is identified outside the holes. This can be done by constructing an arrangement of disks and
computing the depths of the arrangement cells along the way. Any point in a cell with depth
zero can be picked as the next Steiner point. As argued in the proof of Lemma 3.4, there are
O(1/ε) holes, so the arrangement has O(1/ε2) complexity and can be constructed in O(1/ε2)
time, meaning that we spend O(1/ε3) time per Ai. Hence, the total time is O( 1

ε4
log W

ε ).

It may be possible to improve the time complexity stated in Lemma 3.5 by maintaining the
arrangement of disks incrementally, instead of rebuilding from scratch whenever a new Steiner
point is placed. However, the time complexity in Lemma 3.5 is not a bottleneck in the entire
algorithm.

4 Steiner graph and snapping

The vertices of T and the Steiner points form the vertices of G. Before defining the edges of
G, we first define extended clusters. An extended cluster C∗ consists of the skinny tetrahedra
in a cluster C and the tetrahedra in contact with C. The tetrahedra in C∗ \ C are fat, and
therefore, there are O(κ) tetrahedra in C∗. If a boundary simplex σ of C∗ is in contact with
the boundary of C, then σ must also be a boundary simplex of T .

There are two kinds of edges in G. Each edge of the first kind connects two graph vertices
x and y in the same extended cluster C∗. The edge weight is 1 +O(ε) times the shortest path
cost in C∗ from x to y. We will show in Section 5 how to compute such an edge weight. Each
edge of the second kind connects two graph vertices in a vertex star free of skinny tetrahedra.
The edge weight is 1 +O(ε) times the shortest path cost in that vertex star, which can also be
computed by the method in Section 5. Notice that T is covered by the extended clusters and
vertex stars free of skinny tetrahedra. Due to the overlap among extended clusters and vertex
stars, we may construct multiple edges between two graph vertices, and if so, we keep the edge
between them with the lowest weight.

Assuming that G has been computed, we prove below that a shortest path in G is a (1+O(ε))-
approximate shortest path in T . We need three technical lemmas (Lemmas 4.1, 4.2, and 4.3)
that snap a path to vertices and Steiner points.

Lemma 4.1 Let v be a vertex of a fat tetrahedron. Let F be a fat substar of v. Let x be a point
in |F | such that ‖vx‖ ≥ δF (v)/2. Let P be a path such that a subpath of P in |F | connects x
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Figure 5: Three cases in the proof of Lemma 4.2.

to a point y ∈ Bv,F . We can convert P [x, y] to a path Q from x to y so that Q ⊂ |F |, Q passes
through v, and cost(Q) ≤ (1 +O(ε)) · cost(P [x, y]).

Proof. Since ‖vx‖ ≥ δF (v)/2, x 6∈ Bv,F . Let x′ be the first entry point of P [x, y] into Bv,F . We
replace P [x, y] by P [x, x′]∪x′v∪vy. Observe that ‖xx′‖ ≥ ‖vx‖−‖vx′‖ ≥ 1

2δF (v)− ε
3W δF (v) ≥

3−2ε
6 δF (v). Therefore, cost(x′v) ≤ W‖x′v‖ = ε

3δF (v) ≤ 2ε
3−2ε‖xx′‖ ≤ O(ε) · cost(P [x, x′]) ≤

O(ε) · cost(P [x, y]). Also, cost(vy) ≤W‖vy‖ ≤ ε
3δF (v), which is at most O(ε) · cost(P [x, y]) by

the analysis above. Therefore, cost(P [x, x′] ∪ x′v ∪ vy) ≤ cost(P [x, x′]) +O(ε) · cost(P [x, y]) ≤
(1 +O(ε)) · cost(P [x, y]).

Lemma 4.2 Let t be a triangle of a fat tetrahedron τ . Let p be a Steiner point in the interior
of t, and let Bp denote the triangle-ball centered at p. Let P be a path such that a subpath
of P in τ connects a point x in a boundary simplex of τ other than t to a point y ∈ Bp ∩ t.
We can convert P [x, y] to a path Q from x to y so that Q ⊂ τ , Q passes through p, and
cost(Q) ≤ (1 +O(ε)) · cost(P [x, y]).

Proof. P [x, y] ⊂ τ by assumption. Let x′ be the last entry point of P [x, y] into Bp. We
replace P [x, y] by P [x, x′] ∪ x′p ∪ py. To analyze the cost of P [x, x′] ∪ x′p ∪ py, retrace P [x, x′]
from x′ towards x until we hit a boundary simplex of τ other than t for the first time at a point
x̂. Note that δ(p) ≤ ‖px̂‖. So ‖x̂x′‖ ≥ ‖px̂‖ − ‖px′‖ ≥ δ(p)− ε

3δ(p) = 3−ε
3 δ(p). There are three

cases illustrated in Figure 5.
Case 1: P [x̂, x′] is a segment whose interior lies in the interior of τ . We have cost(x′p) ≤

ε
3ωτδ(p) ≤ ε

3−εωτ‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]) ≤ O(ε) · cost(P [x, y]). Similarly, cost(py) ≤
ε
3ωtδ(p) ≤ ε

3ωτδ(p) ≤ O(ε) · cost(P [x, y]).
Case 2: P [x̂, x′] is a segment whose interior lies in the interior of t. Then the interior of

P [x̂, y] lies in the interior of t. The analysis is similar to that in Case 1. We have cost(x′p) =
ε
3ωtδ(p) ≤ ε

3−εωt‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]) ≤ O(ε) · cost(P [x, y]). Similarly, cost(py) ≤
ε
3ωtδ(p) ≤ O(ε) · cost(P [x, y]).

Case 3: P [x̂, x′] consists of two segments x̂x′′ and x′′x′ whose interiors lie in the interiors of τ
and t, respectively. Then the interior of P [x′′, y] lies in the interior of t. If ‖x̂x′′‖ ≥ 1

2‖x̂x′‖, then
we adapt the analysis in Case 1 using the relation δ(p) ≤ 3

3−ε‖x̂x′‖ ≤ 6
3−ε‖x̂x′′‖. Otherwise,

‖x′′x′‖ ≥ 1
2‖x̂x′‖ and we adapt the analysis in Case 2 using the relation δ(p) ≤ 3

3−ε‖x̂x′‖ ≤
6

3−ε‖x′′x′‖.
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Lemma 4.3 Let e be an edge of a fat tetrahedron. Let F denote the fat substar of e. Let p be
a Steiner point in the interior of e, and let Bp denote the edge-ball centered at p. Let x be a
point in |F | such that ‖px‖ ≥ δ(p)/2. Let P be a path such that a subpath of P in |F | connects
x to a point y ∈ Bp ∩ t, where t is a triangle in F incident to e. Suppose that y lies outside
every triangle-ball Bq where q ∈ t. Then, we can convert P [x, y] to a path Q from x to y so
that Q ⊂ |F |, Q passes through p, and cost(Q) ≤ (1 +O(ε)) · cost(P [x, y]).

Proof. Since y lies outside every triangle-ball Bq where q ∈ t, y is at distance O( ε2

W 2 ‖e‖) from
e. Let y′ be the closest point in e to y. Since ‖px‖ ≥ δ(p)/2, x 6∈ Bp. Let x′ be the first entry
point of P [x, y] into Bp.

Let σ be the triangle or tetrahedron with the minimum weight among those incident to e
and visited by P [x, x′]. Suppose that P [x, x′] enters σ for the first time at a point a. We replace
P [x, y] by P [x, a] ∪ ap ∪ py′ ∪ yy′. Figure 6 illustrates the conversion.

py

y′

e
triangle t

triangle σ

x
a

x′
P [x, y]

Figure 6: The resulting path Q in the proof of Lemma 4.3.

The subpath P [a, x′] is contained in |F | ⊆ star(e). Since σ has the minimum weight among
the simplices incident to e and visited by P [x, x′] ⊇ P [a, x′], we conclude that

cost(P [a, x′]) ≥ ωσ‖ax′‖, cost(P [x, x′]) ≥ ωσ‖xx′‖.

Also,

‖xx′‖ ≥ ‖px‖ − ‖px′‖ ≥ 1

2
δ(p)− ε

3
δ(p) =

3− 2ε

6
δ(p).

Then, cost(ap) = ωσ‖ap‖ ≤ ωσ‖ax′‖ + ωσ‖px′‖ = ωσ‖ax′‖ + ε
3ωσδ(p) ≤ cost(P [a, x′]) +

2ε
3−2εωσ‖xx′‖ ≤ cost(P [a, x′]) + O(ε) · cost(P [x, x′]). Next, cost(py′) = ωe‖py′‖ ≤ ε

3ωσδ(p) ≤
2ε

3−2εωσ‖xx′‖ ≤ O(ε) ·cost(P [x, x′]). Also, cost(yy′) ≤W‖yy′‖ ≤ O(W · ε2
W 2 ‖e‖). Recall that p is

not inside the vertex-balls at the endpoints of e, and these vertex-balls have radius Ω(ε‖e‖/W ).
Therefore, δ(p) = Ω(ε‖e‖/W ) by Remark 2. Hence, cost(yy′) ≤ O(ε) · δ(p) ≤ O(ε) · ‖xx′‖ ≤
O(ε) · cost(P [x, x′]).

Let P be a path in T from a source vertex vs to a destination vertex vd. The next result
shows that P can be converted to a path from vs to vd in the Steiner graph G such that
cost(Q) ≤ (1 +O(ε)) · cost(P ).

Lemma 4.4 Let P be a path in T from vs to vd. We can convert P to a path Q in T from vs
to vd such that there exists nodes vs = z0, z1, . . . , zm = vd of Q with the following properties.

• For all i ∈ [0,m], zi is a vertex of the Steiner graph G.

• For all i ∈ [0,m− 1], Q[zi, zi+1] is contained in an extended cluster or a vertex star free
of skinny tetrahedron.

Moreover, cost(Q) ≤ (1 +O(ε)) · cost(P ). Hence, G gives a 1 +O(ε) approximation because G
contains the edges {zi, zi+1}, i ∈ [0,m− 1], with weight (1 +O(ε)) · cost(Q[zi, zi+1]).
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Proof. We first determine a sequence of points xi, simplices σi, and vertices ui, i ∈ [0,m], in
this order along P from vs to vd. We set x0 = σ0 = u0 = vs. For i = 1, 2, . . ., we determine xi,
σi, and ui as follows.

Suppose that ui−1 is disjoint from all clusters. If P [xi−1, vd] ⊆ star(ui−1), then set m = i
and σm = xm = vd. Otherwise, let xi be the first exit point of P [xi−1, vd] from star(ui−1) and
let σi be the boundary simplex of star(ui−1) of the lowest dimension that contains xi. The
simplex σi must be disjoint from ui−1; otherwise, σi would be in the boundary of T , meaning
that P [xi−1, vd] could not exit at xi ∈ σi.

The remaining possibility is that ui−1 is contained in a cluster Ci−1. Let C∗i−1 be the
corresponding extended cluster. If P [xi−1, vd] ⊆ C∗i−1, then set m = i and σm = xm = vd.
Otherwise, let xi be the first exit point of P [xi−1, vd] from C∗i−1 and let σi be the boundary
simplex of C∗i−1 of the lowest dimension that contains xi. The simplex σi must be disjoint from
Ci−1; otherwise, σi would be in the boundary of T and P [xi−1, vd] could not exit at xi ∈ σi.

After determining σi and xi, we determine ui as follows. If σi is a vertex, then ui = σi. If
σi is an edge, then ui is the endpoint of σi nearest to xi. If σi is a triangle, find the edge e of
σi nearest to xi and then set ui to be the endpoint of e nearest to xi−1. After determining ui,
if xi 6= vd, we increment i and repeat the above.

Throughout the determination of xi, σi and ui for i = 1, 2, . . . ,m, we maintain the following
two invariants:

• Invariant 1: For every vertex v of σi, if F is the fat substar of v that intersects P [xi−1, xi]
and x is the last entry point of P [xi−1, xi] into |F |, then ‖vx‖ ≥ δF (v)/2.

Proof. Let X be star(ui−1) or C∗i−1\Ci−1, whichever case is appropriate in determining σi,
xi and ui. Let σ be the simplex in F of the lowest dimension containing x. The simplex
σ belongs to F ∩X, and σi is separated from ui−1 by fat tetrahedra in F ∩X. If v is not
a vertex of σ, then σ is a boundary simplex of F in X and so ‖vx‖ ≥ δF (v) by definition.
If v is a vertex of σ, then either σ is contained in the interior of |F ∩ X| or σ is also a
boundary simplex of T . In either case, since P [xi−1, xi] enters |F | at x ∈ σ, we conclude
that x = xi−1 and σ = σi−1. As argued previously, σi is disjoint from ui−1, so v 6= ui−1,
which implies that σi−1 is an edge or triangle incident to both v and ui−1. In either case,
our method for determining ui−1 guarantees that ui−1 is closer to xi−1 than v. Therefore,
‖vx‖ = ‖vxi−1‖ ≥ ‖vui−1‖ − ‖ui−1xi−1‖ ≥ δF (v) − ‖ui−1xi−1‖ ≥ δF (v) − ‖vx‖. Hence,
‖vx‖ ≥ δF (v)/2.

• Invariant 2: For every edge e of σi and every Steiner point p ∈ e, ‖px‖ ≥ δ(p)/2 where x
is the last entry point of P [xi−1, xi] into the fat substar of e.

Proof. Let F denote the fat substar of e. Let X be star(ui−1) or C∗i−1 \ Ci−1, whichever
case is appropriate in determining xi, σi and ui. Let σ be the simplex in F of the lowest
dimension containing x. We use d(A,B) to denote the distance between two point sets
A and B. If the Steiner point p is disjoint from σ, then ‖px‖ ≥ d(p, σ) ≥ δ(p). Suppose
that p is incident to σ. Note that e is separated from ui−1 by fat tetrahedra in F ∩ X.
Therefore, σ 6= e, which implies that σ is a triangle incident to e. Either σ is contained in
the interior of |F ∩X| or σ is a boundary simplex of T . In either case, since P [xi−1, xi]
enters |F | at x ∈ σ, we conclude that x = xi−1 and σ = σi−1. As argued previously, σi
is disjoint from ui−1, which implies that ui−1 is a vertex of σi−1 opposite to the edge e.
Refer to Figure 7. Since ui−1 is not an endpoint of e, by our method for determining
ui−1, the point xi−1 must be closer to some edge e′ of σi−1 different from e. Then,
‖pxi−1‖ ≥ (‖pxi−1‖+ d(xi−1, e

′))/2 ≥ d(p, e′)/2 ≥ δ(p)/2.

After determining the sequence x0, x1, x2, . . . , xm, we transform P as follows. For every
i ∈ [1,m − 1], we apply Lemma 4.1, Lemma 4.2, or Lemma 4.3 to P [xi−1, xi] and σi. First, if
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ep

xi−1
triangle σi−1

ui−1

e′

Figure 7: Invariant 2 in the proof of Lemma 4.4.

xi ∈ Bv,F for some vertex v of σi and fat substar F of v, then we apply Lemma 4.1. (Note that
invariant 1 is required for invoking Lemma 4.1.) Otherwise, if σi is a triangle and xi ∈ Bp for
some Steiner point p in the interior of t, then we apply Lemma 4.2. If neither Lemma 4.1 nor
Lemma 4.2 is applicable, then Lemma 4.3 must be applicable, that is, there is a fat tetrahedron
τ incident to σi such that:

• σi is an edge of τ and xi ∈ Bp for some Steiner point p ∈ σi, or

• σi is a triangle of τ , xi ∈ Bp ∩ σi for some Steiner point p on an edge of σi, and xi lies
outside all triangle-balls with centers in σi.

Lemma 4.3 is applicable in either case. (Note that invariant 2 is required for invoking Lemma 4.2.)
For i ∈ [0,m − 1], let Yi denote star(ui) or C∗i , whichever is appropriate in determining xi+1.
Irrespective of whether Lemma 4.1, Lemma 4.2, or Lemma 4.3 is invoked on P [xi, xi+1] and
σi+1, we conclude that for i ∈ [0,m− 2],

(i) P [xi, xi+1] is converted to a path Qi from xi to xi+1 that makes a detour to a vertex or
Steiner point zi+1 ∈ σi+1.

(ii) The path Qi is contained inside |Yi|.

(iii) cost(Qi) ≤ (1 +O(ε)) cost(P [xi, xi+1]).

Define Qm−1 = P [xm−1, xm] = P [xm−1, vd], z0 = vs, and zm = vd. Property (iii) above implies
that

∑m−1
i=0 cost(Qi) ≤ (1 + O(ε)) cost(P ). By property (ii) above, for i ∈ [0,m − 2], Qi is

contained in |Yi|. Since Qm−1 = P [xm−1, xm], the subpath Qm−1 is contained in |Ym−1|. For
i ∈ [0,m− 1], observe that Qi ends at a vertex or Steiner point zi+1 in Yi. It implies that the
path Q =

⋃m−1
i=0 Qi can be viewed as

⋃m−1
i=0 Q[zi, zi+1] such that for i ∈ [0,m− 1], the subpath

Q[zi, zi+1] is contained in a vertex star free of skinny tetrahedron or an extended cluster. This
completes the proof.

5 Processing extended clusters and vertex stars

Let Γ be a connected set of O(κ) tetrahedra. Let p and q be two points in the union of vertices,
edges, and triangles in Γ. We present an algorithm to compute a (1 + O(ε))-approximate
shortest path in Γ from p to q.

5.1 Locally shortest path

For every triangle t ∈ Γ, its unit disk is the Euclidean disk Dt that is centered at the origin, lies
on a plane parallel to t, and has radius 1/ωt. The travel cost from a point x to a point y in t is
λ if changing the radius of Dt + x to λ/ωt puts y on the boundary of the shrunk or expanded
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min
∑m

i=0 zi +
∑m

i=1 z
′
i

subject to xi =
∑3

j=1 αi,jvi,j ∀ i ∈ [0,m+ 1] ∀ j ∈ [1, 3]

x′i =
∑3

j=1 α
′
i,jvi,j ∀ i ∈ [0,m+ 1] ∀ j ∈ [1, 3]

zi ≥ 〈x′i+1 − xi, nf 〉/〈nf , nf 〉 ∀ i ∈ [0,m] ∀ facet f of D∗τi
z′i ≥ 〈xi − x′i, nf 〉/〈nf , nf 〉 ∀ i ∈ [1,m] ∀ edge f of D∗σi
αi,j ≥ 0, α′i,j ≥ 0 ∀ i ∈ [0,m+ 1] ∀ j ∈ [1, 3]∑3

j=1 αi,j = 1 =
∑3

j=1 α
′
i,j ∀ i ∈ [0,m+ 1]

Figure 8: Linear programming system.

disk. To approximate Dt, we place Θ(1/
√
ε) points roughly uniformly on the boundary of Dt

as follows. Enclose Dt by a concentric unit square. Place points on the square boundary at
distance

√
ε apart. Project these points radially onto the boundary of Dt. Let D∗t denote the

convex hull of the points on the boundary of Dt. One can measure the travel cost from x to
y by shrinking or expanding D∗t + x instead. It is easy to check that D∗t ensures a 1 + O(ε)
approximation of the cost under Dt.

For every tetrahedron τ ∈ Γ, its unit ball Dτ is the Euclidean ball centered at the origin
with radius 1/ωτ . The travel cost in τ can be measured by shrinking or expanding Dτ as before.
We place Θ(1/ε) points roughly uniformly on the boundary of Dτ as follows. Enclose Dτ by
a concentric unit cube. Divide the facets of the unit cube into uniform grids so that each grid
box has side length

√
ε. Project the grid vertices radially onto the boundary of Dτ . Let D∗τ

be the convex hull of these points on the boundary of Dτ . It is easy to check that D∗τ gives a
1 +O(ε) approximation of the cost under Dτ .

Computing D∗t and D∗τ for all triangles and tetrahedra takes O
(
n
ε log 1

ε

)
time.

Let Σ = (σ1, σ2, · · · , σm) be a given simplex sequence. Let p and q be two points in some
tetrahedra incident to σ1 and σm, respectively. We show how to compute the locally shortest
path from p to q with respect to Σ under the modified metric by linear programming. Consider
the case that every σi is a triangle denoted by vi,1vi,2vi,3. The case of some σi being vertices or
edges can be handled similarly.

Let xix
′
i+1 be a possible path link where xi ∈ σi and x′i+1 ∈ σi+1. Let τi denote the

tetrahedron bounded by σi and σi+1. Using barycentric coordinates, the variable xi ∈ R3

satisfies the constraint xi =
∑3

j=1 αi,jvi,j for some non-negative variables αi,j ∈ R such that∑3
j=1 αi,j = 1. Similarly, the variable x′i+1 ∈ R3 satisfies x′i+1 =

∑3
j=1 α

′
i+1,jvi+1,j for some

non-negative variables α′i+1,j ∈ R such that
∑3

j=1 α
′
i+1,j = 1. For convenience, assume that

v0,j = p and vm+1,j = q for j ∈ [1, 3]. We need the facet g of D∗τi that contains the direction of
the vector x′i+1 − xi because the cost of xix

′
i+1 is equal to 〈x′i+1 − xi, ng〉/〈ng, ng〉, where 〈·, ·〉

denotes the inner product operator and ng denotes the vector that goes from the origin to a
point in the support plane of g such that ng ⊥ g. By the convexity of D∗τi , the facet f of D∗τi
that gives the largest 〈x′i+1 − xi, nf 〉/〈nf , nf 〉 is the correct facet g. Therefore, we introduce
a variable zi ∈ R and require zi ≥ 〈x′i+1 − xi, nf 〉/〈nf , nf 〉 for every facet f of D∗τi . Part of
the total path cost is

∑m
i=0 zi. The minimization ensures that zi = 〈x′i+1 − xi, ng〉/〈ng, ng〉

at the end. We also allow for potential critical refraction at σi+1, i.e., allow for the link
x′i+1xi+1 ⊂ σi+1. To capture the cost of x′i+1xi+1, we introduce another variable z′i+1 and
require z′i+1 ≥ 〈xi+1−x′i+1, nf 〉/〈nf , nf 〉 for every edge f of D∗σi+1

. The objective is to minimize∑m
i=0 zi +

∑m
i=1 z

′
i. The linear programming system is given in Figure 8.

12



P ∩ σ1

P ∩ σ2 P ∩ σ2

P ∩ σ3 P ∩ σ3 P ∩ σ3 P ∩ σ3

Figure 9: Visualizing a simplex sequence for a shortest path.

There are Θ(mε−1) constraints and Θ(m) variables. The coefficients in the constraints
xi =

∑3
j=1 αi,jvi,j and x′i =

∑3
j=1 α

′
i,jvi,j have magnitudes N or less because every coordinate

of vi,j has magnitude at most N . The vertex coordinates in D∗τi result from multiplying 1/ωτi
with the coordinates of the grid vertices on the unit cube. The grid box side length is

√
ε.

Therefore, O
(
log W

ε

)
bits suffice for a vertex coordinate in D∗τi . For every facet f of D∗τi , we

first compute an outward normal νf of f by taking cross-product using the vertices of f . The
coordinates of νf thus require O(log W

ε ) bits. Let u be a vertex of f . We solve the linear
equation 〈 1

ανf ,
1
ανf − u〉 = 0 for α ∈ R such that 1

ανf lies on the support plane of f , i.e.,
nf = 1

ανf . Thus, α requires O(log W
ε ) bits and so does nf . The same conclusion applies to the

constraints 〈xi−x′i, nf 〉/〈nf , nf 〉 for every edge f of D∗σi . In summary, the total number of bits

to encode the linear program is O
(
mε−1 log NW

ε

)
. The ellipsoid method [30] solves the above

linear program in O(m7ε−3 log2 NW
ε +m8ε−2 log2 NW

ε ) arithmetic operations.

5.2 Approximate shortest path

To compute the approximate shortest path in Γ from p to q, our strategy is to enumerate all
possible simplex sequences from p to q, use the method in Section 5.1 to compute a 1 + O(ε)
approximation of the locally shortest path with respect to each simplex sequence, and finally
select the shortest one among these locally shortest paths. The remaining questions are how
long a simplex sequence and how many simplex sequences we need to consider.

Consider a shortest path P in Γ from p to q. Let σ1, σ2, · · · be the simplices in Γ in non-
decreasing order of weights. We can assume that P∩σ1 is connected. Otherwise, we can shortcut
P by joining the two connected components in P ∩σ1 by a line segment in σ1 without increasing
the path cost. For a similar reason, we can assume that P ∩ σ2 has at most two connected
components. In general, P ∩ σi has at most 2i−1 connected components. This argument is
best visualized as arranging the connected components in a full binary tree with P ∩ σ1 at the
root, two nodes of P ∩ σ2 at the next level, and so on as illustrated in Figure 9. It follows
that the simplex sequence is at most 2O(κ) long. Consequently, there are at most 22O(κ)

simplex
sequences. There are O(κ

2

ε4
log2 W

ε ) pairs of vertices and Steiner points in an extended cluster
or vertex star free of skinny tetrahedra. We repeat the approximate shortest path computation
O(n · κ2

ε4
log2 W

ε ) times, invoking the result in Section 5.1 at most 22O(κ)
times with m = 2O(κ)

for each approximate shortest path computation.
The above processing completes the construction of the Steiner graph G which hasO( n

ε2
log W

ε )

vertices and O( n
ε4

log2 W
ε ) edges by Lemmas 3.1 and 3.4. We can run Dijkstra’s algorithm to

find the shortest path from vs to vd in G in O( n
ε2

log W
ε (log n

ε +log log W
ε )+ n

ε4
log2 W

ε ) time [16].
But this is dominated by the construction cost of G.

Theorem 5.1 Let ρ be an arbitrary constant. Let T be a simplicial complex of n tetrahedra
such that vertices have integral coordinates with magnitude at most N and tetrahedra have
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integral weights in the range [1,W ]. Let κ be the number of tetrahedra in the largest connected
component of tetrahedra whose aspect ratios exceed ρ. For all ε ∈ (0, 1) and for every pair of
source and destination vertices vs and vd in T , we can find a (1 + ε)-approximate shortest path

in T from vs to vd in O(22O(κ)
nε−7 log2 W

ε log2 NW
ε ) time.

6 Conclusion

We presented a (1 + ε)-approximation algorithm for the shortest path problem for weighted
regions in three dimensions. The novelty of this algorithm is that the time complexity depends
on combinatorial parameters only and it is sensitive to the size of the largest connected com-
ponent of skinny tetrahedra. There exists a constant C ≥ 1 such that if this size is at most
1
C log log n + O(1), then our running time is polynomial in n, 1/ε, and log(NW ), where n is
the total number of tetrahedra, N is the largest vertex coordinate magnitude, and W is the
maximum region weight. When the size of the largest connected component of skinny tetrahe-
dra is O(1), our running time is linear in n and polynomial in 1/ε and log(NW ). Our result
holds irrespective of the worst aspect ratio among the tetrahedra. It remains an open problem
to find a FPTAS for the shortest path problem for weighted regions in three dimensions.
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