
Shortest Paths on Polyhedral Surfaces and Terrains∗

Siu-Wing Cheng† Jiongxin Jin‡

Abstract

We present an algorithm to compute shortest paths on polyhedral surfaces under convex
distance functions such that critical refractions between any geodesic and any surface edge
can be avoided. Let n be the total number of vertices, edges and faces of the surface. Our
algorithm can be used to compute L1 and L∞ shortest paths on a polyhedral surface in
O(n2 log4 n) time. Given an ε ∈ (0, 1), our algorithm can find (1 + ε)-approximate shortest
paths on a terrain with gradient constraints and under a cost model that combines path

length and total ascent. The running time is O
(

1√
ε
n2 logn+ n2 log4 n

)
. This is the first

efficient PTAS for such a general setting of terrain navigation.

1 Introduction

There are numerous applications that require path planning on terrains and polyhedral surfaces
(e.g. [15, 17, 20, 21, 22, 29]). On a polyhedral surface of n vertices, edges and faces, Mitchell,
Mount and Papadimitriou [23] presented an algorithm that runs in O(n2 log n) time, which was
subsequently improved by Chen and Han [9] to O(n2). Varadarajan and Agarwal [32] proposed
two approximation algorithms that run in subquadratic time: 7(1+ε)- and 15(1+ε)-approximate
shortest paths can be found in O(n5/3 log5/3 n) andO(n8/5 log8/3 n) time, respectively. Schreiber
and Sharir [28] presented an O(n log n)-time algorithm for convex polyhedral surfaces.

Terrain navigation has been studied from the perspectives of minimizing energy in robotics
(e.g. [13, 26, 31]) or avoiding steep paths in spatial database and GIS (e.g. [22, 33]), but
either no complexity result is given or the complexities of the algorithms given depend on the
terrain geometry. De Berg and van Kreveld [6] pioneered the study of some height constrained
path query problems on terrains, and posed the handling of additional constraints as open
problems. The special case of finding a shortest descending path (SDP) has received attention
lately. Ahmed et al. [3] presented two algorithms to construct a (1+ ε)-approximate SDP. The

running times are O
(

n2L
ε� cosφ log nL

ε� cosφ

)
and O

(
n2L
ε� log2 nL

ε�

)
, where L is the largest edge length

in the terrain, � is the smallest distance of a vertex from a non-incident edge in the same terrain
face, and φ is the largest acute angle between a non-horizontal edge and a vertical line. Other
related results can be found in [3, 4, 5, 27]. Recently, we developed a (1 + ε)-approximate SDP
algorithm that runs in O(n4 log(n/ε)) time [10], which is the first bound that is polynomial in
n and log(1/ε) and independent of the terrain geometry. It seems hard to compute the exact
SDP and no such algorithm is known so far.

This paper presents an algorithm for a constrained shortest path problem on a polyhedral
surface with a special property. We call this problem the PolyPath problem. Each surface
triangle f is associated with a convex polygon Hf that induces a convex distance function df .
The length of a subpath in f is measured using df . The constraint is an input upper bound
on the number of links in the output path. The special property is that any critical refraction

∗Research supported by the Research Grant Council, Hong Kong, China (project no. 611812).
†Hong Kong University of Science and Technology. Email: scheng@cse.ust.hk
‡Google Inc. Email: jamesjjx@google.com

1

Figure 1: Assume that we are in the L1 metric. The bold path makes critical refractions at the
horizontal edge, which can be avoided using the dashed link without increasing the path cost.

between any geodesic and any surface edge can be avoided. That is, for every geodesic P ,
there is another geodesic Q with the same endpoints as P such that Q is not more costly
than P , Q passes through the same sequence of surface edges as P , and each of these edges
intersects Q transversally.1 Figure 1 gives an example. Given two vertices s and t and a
positive integer m, our algorithm returns the shortest path from s to t with m links or less in
O(hmn logmn+mn log2m log2 hm) time, where h is the maximum size of the convex polygons
associated with the surface triangles. An immediate corollary is that an L1 or L∞ shortest path
on a polyhedral surface can be computed in O(n2 log4 n) time.2

On terrains, we can optimize c1 ·Euclidean path length+ c2 · total ascent with an ε relative
error under gradient constraints for every positive constant c1 and every non-negative constant
c2. The total ascent is the total increase in heights of all ascending subpaths, which measures
the energy spent in increasing the potential energy. The weighted sum of the path length and
its total ascent gives rise to a convex distance function, which can be approximately induced
by a convex polygon of O(1/

√
ε) size. This allows us to reduce the problem to an instance of

PolyPath such that m = O(n) and h = O(1/
√
ε). Gradient constraints are specified by the

maximum ascent and descent gradients allowed in T . (The ascent and descent gradient bounds
may be different, and they apply to all surface triangles.) This only changes the convex distance
function slightly. Section 4 describes these reductions. In all, our algorithm can return a (1+ε)-

approximate shortest path in O
(

1√
ε
n2 log n+ n2 log4 n

)
time, which makes it the first PTAS

for such a general setting of terrain navigation. Our result implies that a (1 + ε)-approximate

SDP can be computed in O
(

1√
ε
n2 log n+ n2 log4 n

)
time.

There are several key ideas in solving the PolyPath problem. First, we discover how a
geodesic bends at a surface edge. In fact, there may be multiple ways for a geodesic to bend,
and we focus on a special type of geodesics in order to characterize the bending (Lemma 3.3).
Second, we show that a geodesic for an edge sequence σ is completely characterized by the angles
of incidence and exit at the edges in σ (Lemmas 3.5–3.7). A geodesic is thus preserved under
sliding3, which enables us to construct one geodesic for some edge sequence and generate from it
other geodesics with the same edge sequence. This makes it possible to design a combinatorial
algorithm that composes a shortest path by combining shorter geodesics. Lastly, we design an
efficient hierarchical scheme for combining geodesics (Section 3.2).

2 Preliminaries

Let T denote the input polyhedral surface with n vertices, edges and faces. W.l.o.g., assume that
each face of T is a triangle, and the source s and the destination t are vertices of T . Each face
f of T is associated with a convex polygon Hf , which contains the origin, lies in a plane parallel

1This property is not enjoyed by all convex distance functions because critical refractions are sometimes
unavoidable in shortest paths in the general case [11, 24].

2Not much is known about L1 and L∞ shortest paths on polyhedral surfaces. We presented an L1 shortest
path algorithm in [10] that runs in O(n3 log n) time.

3If critical refractions are allowed, it is difficult to deal with sliding a geodesic because one can slide the
subpaths before and after a critical refraction by different amounts.

2

to f , and induces the distance function df . We allow the origin to be on the boundary of Hf .
The cost of the directed segment pq ⊂ f is cost(pq) = df (p, q) = inf

{
λ > 0 : 1

λ(q − p) ∈ Hf

}
,

which can be computed in O(log |Hf |) time by binary search.
We use �u to denote a vector and

↪→
u to denote the unit vector in the same direction as �u.

Given �u and �v, θ(�u,�v) denotes the angle measured from �u to �v in counter-clockwise order, which
takes value in [0, 2π). The inner product of �u and �v is denoted by 〈�u,�v 〉.

All polygonal paths in this paper are oriented from their sources to their destinations. A
link of a polygonal path is a maximal segment in a face or on an edge of T , and its endpoints
are called nodes. We assume that every node is either a vertex or a point in the interior of an
edge because a node in the interior of a face can be removed by shortcutting without increasing
the path cost. By the requirement of the PolyPath problem on the convex distance functions,
we can further assume that every node in the interior of an edge is a transversal node, that is,
its two incident links lie in the interiors of two distinct faces.

Let pi, i ∈ [0, k], be the nodes in order along a path P . Let �vi = pi − pi−1 for i ∈ [1, k]. The
direction vector of P is (

↪→
v 1, . . . ,

↪→
v k). We can specify P as (p0, p1, . . . , pk) or as (p0, (

↪→
v 1, . . . ,

↪→
v k)).

The subpath of P from a point x to another point y is denoted by P [x, y]. The cost of P is
cost(P) =

∑
face f cost(P ∩ f). ‖P‖ denotes the Euclidean length of P .

The edges that P crosses in order is the edge sequence of P . It includes the edge containing
P ’s destination but not the edge containing P ’s source. A path may have multiple edge se-
quences if its interior passes though a vertex. For example, suppose that the edges e1, e2, . . . , ek
are incident to a vertex ν in circular order. If a path moves from the face bounded by e1 and ek
to ν onward to the face bounded by ei and ei+1, then one edge sequence contains the substring
e1e2 . . . ei, and another edge sequence contains the substring ekek−1 . . . ei+1.

A path P is a geodesic if it has the minimum cost among all paths with the same source,
destination, and edge sequence as P . The shortest path from s to t is the shortest geodesic
from s to t over all possible edge sequences.

3 Solving PolyPath

We first characterize the geodesics by their direction vectors in Section 3.1. Then we propose
an algorithm in Section 3.2 to solve the PolyPath problem.

3.1 Properties of geodesics

Let σ = (e1, e2, . . . , ek) be the edge sequence of some geodesic that starts from a point p0 on
the boundary of some face in T and ends at a point pk on the boundary of another face in
T . Thus, ei and ei+1 are distinct edges of the same face, and ei and ei+2 do not bound the
same face. Let e0 denote an edge adjacent to e1 that contains the source of the geodesic. For
i ∈ [1, k], let fi denote the face bound by ei−1 and ei.

For i ∈ [1, k], we define the positive and negative sides of a point on ei as follows. Orient ei
to obtain a directed segment aibi so that fi and fi+1 are on the left and right of aibi, respectively.
Let �ei denote the vector bi − ai. Given two points p, q ∈ ei, we say that q lies on the positive
or negative side of p if 〈q − p,�ei 〉 > 0 or 〈q − p,�ei 〉 < 0, respectively. The head and tail of the
oriented ei are the positive and negative endpoints of ei, respectively.

There may be multiple geodesics that start from p0, end at pk, and share the same edge
sequence σ. Let P = (p0, (

↪→
v 1, . . . ,

↪→
v k)) and let Q = (p0, (

↪→
w1, . . . ,

↪→
wk)) be two such geodesics.

We say that
↪→
v i is smaller than

↪→
wi if θ(�ei,

↪→
v i) < θ(�ei,

↪→
wi). The canonical geodesic from p0

and pk with edge sequence σ is the geodesic that has the lexicographically smallest direction
vector. Intuitively, the canonical geodesic hits every oriented ei at a point closest to the negative
endpoint of ei. This gives rise to the next lemma (proof in Appendix A.1).

3

Lemma 3.1. Let P = (p0, p1, . . . , pk) and Q = (q0 = p0, q1, . . . , qk = pk) be two geodesics from
p0 to pk with the same edge sequence. If P is a canonical geodesic, then for i ∈ [1, k − 1], qi
does not lie on the negative side of pi.

We will characterize a canonical geodesic via the derivative of its cost, which may not
change smoothly as its destination moves. Thus, we define the derivative using limit and
it depends on how the limit is approached. Recall that σ = (e1, . . . , ek) and e0 is an edge
adjacent to e1 containing the source p0 of P . Let σij = (ei+1, . . . , ej). For every point p ∈
ei, define a function Cp,σij(x) to be the cost of a geodesic with edge sequence σij from p
to a point x ∈ ej . For every point q ∈ ej , define the function Dq,σij (x) be the cost of a
geodesic with edge sequence σij from a point x ∈ ei to q. We use x′ → x+ and x′ → x−

to denote x′ approaching x from the positive and negative sides of x, respectively. Define:

∂C+
p,σij

(x) = limx′→x+

Cp,σij (x
′)−Cp,σij (x)

‖xx′‖ , ∂C−
p,σi,j

(x) = limx′→x−
Cσij (p,x)−Cp,σij (x

′)
‖xx′‖ , ∂D+

q,σij
(x) =

limx′→x+
Dq,σij (x

′)−Dq,σij (x)

‖xx′‖ , and ∂D−
q,σij

(x) = limx′→x−
Dq,σij (x)−Dq,σij (x

′)
‖xx′‖ .

Lemma 3.2. Cp,σij (x) and Dq,σij (x) are convex piecewise linear function in x. If y is on the
positive side of x in ej , then ∂C+

p,σij
(y) ≥ ∂C−

p,σij
(y) ≥ ∂C+

p,σij
(x) ≥ ∂C−

p,σij
(x). If y is on the

positive side of x in ei, then ∂D
+
q,σij

(y) ≥ ∂D−
q,σij

(y) ≥ ∂D+
q,σij

(x) ≥ ∂D−
q,σij

(x).

Proof. The function cost(x�−1x�) in x�−1 and x� is convex, piecewise linear. Since Cp,σij(x) =

min
{∑j

�=i+1 cost(x�−1x�) : xi = p, xj = x, x� ∈ e� for � ∈ (i, j)
}
, Cp,σij(x) is the minimization

of the cross-section of a convex, piecewise linear function. This implies the properties of Cp,σij ,
∂C+

p,σij
and ∂C−

p,σij
stated in the lemma. The same argument works for Dq,σij (x).

Our algorithm will form new geodesics by concatenating shorter ones. It is clear that if
we split a canonical geodesic (p0, . . . , pk) at pi, we obtain two shorter canonical geodesics.
Lemma 3.3 below shows that the converse is true under some conditions. Its proof is based on
the fact that pi cannot be perturbed to reduce the cost (Appendix A.2).

Lemma 3.3. If a path P = (p0, p1, . . . , pk) is a canonical geodesic with edge sequence σ, where
pi ∈ ei, then the following conditions hold for every i ∈ [1, k − 1].

(i) P [p0, pi] and P [pi, pk] are canonical geodesics with edge sequences σ0i and σik, respectively.

(ii) pi is the positive endpoint of ei or ∂C
+
p0,σ0i

(pi) + ∂D+
pk ,σik

(pi) ≥ 0.

(iii) pi is the negative endpoint of ei or ∂C
−
p0,σ0i

(pi) + ∂D−
pk,σik

(pi) < 0.

Conversely, if the conditions above hold for some i ∈ [1, k − 1], then P is a canonical geodesic
from p0 to pk with edge sequence σ.

By Lemmas 3.2 and 3.3, once two canonical geodesics diverge, they will never cross.

Lemma 3.4. Let P = (p0, . . . , pk) and Q = (q0, . . . , qk) be two canonical geodesics with edge
sequence σ such that pi and qi lie in the interior of ei for i ∈ [1, k − 1]. If θ(pi − pi−1, �ei) >
θ(qi − qi−1, �ei) for some i ∈ [1, k − 1], then θ(pj − pj−1, �ej) ≥ θ(qj − qj−1, �ej) for all j > i.

Lemma 3.5 below shows that when we slide a geodesic, the path cost changes linearly.

Lemma 3.5. Let P = (p0, . . . , pk) be a geodesic with edge sequence σ, where pi lies in the
interior of ei for i ∈ [1, k]. Let Q = (q0, . . . , qk) be another path such that qi ∈ ei for i ∈ [0, k]
and qi−1qi is parallel to pi−1pi for i ∈ [1, k]. For i, j ∈ [0, k] such that i < j, define δij and γij by
the relations ‖piqi‖ = δij · ‖pjqj‖ and cost(Q[qi, qj]) = cost(P [pi, pj]) + γij · 〈qj − pj,

↪→
ej 〉. Then,

δij and γij depend on the direction vector of P [pi, pj] only, δi−1,i and γi−1,i can be computed in
O(1) time, and for all � ∈ [i+ 1, j − 1], δij = δi�δ�j and γij = δ�jγi� + γ�j.

4

(a) (b)

ei

ek

pi

pk p′k

(c)

p′iei

ek

pi

pk p′k

p′i ei

ek

pi

pk p′k

p′ir

p0 p0 p0

r r

Figure 2: Three cases depending on the position of r relative to pi and p
′
i.

Proof. Let
↪→
v i be the direction of pi−1pi. By the sine law, δi−1,i = sin(θ(

↪→
v i,

↪→
e i−1))/ sin(θ(

↪→
v i,

↪→
e i

)). The edges ei−1 and ei share a negative endpoint a or a positive endpoint b. In the first case,
‖qi−1qi‖ = sin(θ(

↪→
e i,

↪→
e i−1)) · ‖aqi‖/ sin(θ(↪→v i,

↪→
e i−1)). In the second case, ‖qi−1qi‖ = sin(θ(

↪→
e i−1

,
↪→
e i)) · ‖qib‖/ sin(θ(↪→v i,

↪→
e i−1)). Thus, γi−1,i = ci · sin(θ(↪→e i, ↪→e i−1))/ sin(θ(

↪→
v i,

↪→
e i−1)), where ci is

the cost of a unit segment with direction
↪→
v i in the face bound by ei−1 and ei. So δi−1,i and γi−1,i

depend on
↪→
v i only. Assume that i < j−1. For all � ∈ (i, j), ‖piqi‖ = δi� ·‖p�q�‖ = δi�δ�j ·‖pjqj‖,

and cost(Q[qi, qj]) = cost(Q[qi, q�]) + cost(Q[q�, qj]) = cost(P [pi, p�]) + γi� · 〈q� − p�,
↪→
e � 〉 +

cost(P [p�, pj]) + γ�j · 〈qj − pj,
↪→
e j 〉 = cost(P [pi, pj]) + (δ�jγi� + γ�j) · 〈qj − pj,

↪→
e j 〉. So δij = δi�δ�j

and γij = δ�jγi�+γ�j. Inductively, δij and γij depend on the direction vector of P [i, j] only.

We want to show that ∂C+
p0,σ0k

, ∂C−
p0,σ0k

, ∂D+
pk ,σ0k

, and ∂D−
pk,σ0k

depend on the direction
vector only, i.e., not on the location of p0 and pk. Then, Lemmas 3.3 and 3.5 allow us to
form canonical geodesics by sliding and concatenating shorter ones. The first step is to prove
a conditional version of this result.

Lemma 3.6. Let P = (p0, . . . , pk) be a geodesic with edge sequence σ, where pi lies in the inte-
rior of ei for i ∈ [1, k]. Define δij and γij as in Lemma 3.5. If there exists i ∈ [1, k−1] such that
∂C+

p0,σ0i
and ∂C−

p0,σ0i
depend only on the director vector of P [p0, pi] and ∂D

+
pk,σik

and ∂D−
pk ,σik

depend only on the direction vector of P [pi, pk], then: (i) ∂C+
p0,σ0k

(pk) = min
{
∂C+

pi,σik
(pk) ,

δik · ∂C+
p0,σ0i

(pi) + γik
}
and ∂C−

p0,σ0k
(pk) = min

{
∂C−

pi,σik
(pk), δik · ∂C−

p0,σ0i
(pi) + γik

}
, and

(ii) ∂D+
pk ,σ0k

(p0) = min
{
∂D+

pi,σ0i
(p0),

1
δ0i
∂D+

pk ,σik
(pi) +

γ0i
δ0i

}
and ∂D−

pk,σ0k
(p0) = min

{
∂D−

pi,σ0i
(p0),

1
δ0i
∂D−

p0,σ0i
(pi) +

γ0i
δ0i

}
.

Proof. (Sketch) Consider the derivation of ∂C+
p0,σ0k

(pk) in (i). The derivation of ∂C−
p0,σ0k

(pk)
is symmetric. Take a point p′k ∈ ek on the positive side of pk and arbitrarily close to pk. For
j ∈ [i, k−1], let p′j be the point in ej such that p′jp

′
j+1 is parallel to pjpj+1. Since p

′
k is arbitrarily

close to pk, p
′
i is also arbitrarily close to pi. Therefore,

Cp0,σ0i(pi) +Cpi,σik
(p′k) = Cp0,σ0i(pi) + Cpi,σik

(pk) + ∂C+
pi,σik

(pk) · ‖pkp′k‖
= Cp0,σ0k

(pk) + ∂C+
pi,σik

(pk) · ‖pkp′k‖,
Cp0,σ0i(p

′
i) +Cp′i,σik

(p′k) = Cp0,σ0i(pi) + ∂C+
p0,σ0i

(pi) · ‖pip′i‖+ Cpi,σik
(pk) + γik · ‖pkp′k‖

= Cp0,σ0k
(pk) +

(
δik · ∂C+

p0,σ0i
(pi) + γik

)
· ‖pkp′k‖.

Let Q be a geodesic from p0 to p′k with edge sequence σ0k = σ. Let r be the node of Q
on ei. We are done if we can show that Cp0,σ0k

(p′k) is equal to Cp0,σ0i(pi) + Cpi,σik
(p′k) or

Cp0,σ0i(p
′
i) + Cp′i,σik

(p′k). There are three cases in Figure 2 depending on the position of r. We
discuss one case here and leave the rest to Appendix A.3. Suppose that r ∈ pip

′
i (Figure 2(c)).

Since ‖pir‖ and ‖rp′i‖ are arbitrarily small, Cp0,σ0k
(p′k) = Cp0,σ0i(r) +Dp′k,σik

(r) = Cp0,σ0i(pi) +

∂C+
p0,σ0i

(pi) · ‖pir‖ + Dp′k,σik
(p′i) − ∂D−

p′k,σik
(p′i) · ‖p′ir‖, which is a linear function in ‖pir‖ by

our assumption that ∂C+
p0,σ0i

and ∂D−
pk,σik

depend only on the direction vectors of P [p0, pi] and

5

P [i, k] respectively (hence ∂D−
p′k ,σik

(p′i) = ∂D−
pk,σik

(pi)). Thus, the last expression is minimized

when r = pi or r = p′i. Hence, Cp0,σ0k
(p′k) = Cp0,σ0i(pi) +Dp′k,σik

(pi) = Cp0,σ0i(pi) + Cpi,σik
(p′k)

or Cp0,σ0k
(p′k) = Cp0,σ0i(p

′
i) +Dp′k,σik

(p′i) = Cp0,σ0i(p
′
i) + Cp′i,σik

(p′k).
The correctness of (ii) can be proved in a similar way.

Lemma 3.6 clearly lends itself to an inductive proof to establish the same result uncondi-
tionally, as stated in Lemma 3.7 below. The proof is in Appendix A.4.

Lemma 3.7. Let P = (p0, . . . , pk) be a geodesic path with edge sequence σ, where pi lies in the
interior of ei for i ∈ [1, k]. Let δij and γij be defined as in Lemma 3.5. Then ∂C+

p0,σ0k
, ∂C−

p0,σ0k
,

∂D+
pk,σ0k

, and ∂D−
pk,σ0k

depend only on the direction vector of P . Moreover, the formulae in
Lemma 3.6 hold for all i ∈ [1, k − 1].

3.2 Algorithm

Chen and Han introduced the sequence tree to capture the edge sequences of geodesics on a
polyhedral surface in the L2 case [9]. The tree is grown until the number of tree levels meets
the input upper bound on the number of links allowed in the solution path. The best path
discovered from s to t is the shortest path desired. Constructing a new tree node involves
finding a new shortest path with a particular edge sequence. The key is to use the structural
properties in the last subsection to carry out this step and do it fast.

A sequence tree node α is a vertex-node or an edge-node which represents a vertex, denoted
να, or an edge of T , denoted eα. A face corner (f, ν) is the corner at a vertex ν of a face f . An
edge-node α annexes a face corner (f, ν) if eα is the edge of f opposite ν and the parent of α
does not correspond to another vertex or edge of f . (Since eα is opposite two face corners, the
second condition ensures that α annexes the face corner just included by the growing tree.)

The root corresponds to the source s. The edge-nodes on the tree path from the root to α
correspond to an edge sequence, denoted σα. Let α0 be the nearest ancestor vertex-node of α.
The edge-nodes on the tree path from α0 to α correspond to a suffix of σα, denoted σ̃α. The
edge sequences σα and σ̃α are used in the analysis, but they are not stored at α. In the case
that α is a vertex-node, Pα denotes the canonical geodesic from s to να that passes through
the edges in σα. We compute cost(Pα) and stores it at α, but Pα is used in the analysis only.

The sequence tree is grown in a breadth-first manner until the number of tree levels meets
the input upper bound m. When an edge-node annexing a face corner (f, ν) is expanded, it
gains at most one vertex-node corresponding to ν and two edge-nodes corresponding to the
edges of f incident to ν. When a vertex-node α is expanded, it gains at most one vertex-node
for each vertex adjacent to να and one edge-node for each edge opposite να. Multiple nodes
may correspond to the same edge or vertex. To control the tree size, Chan and Han introduced
the one-corner one-split property : at any time, at most one vertex-node corresponding to the
same vertex is allowed to have any child node; at most one edge-node annexing the same face
corner is allowed to have two child edge-nodes. This property ensures that at most O(n) tree
nodes are ever created at each level [9, Theorem 8].

A notion of dominance is need to maintain the one-corner one-split property. Let α and β
be two vertex-nodes corresponding to the same vertex ν or two edge-nodes annexing the same
face corner (f, ν). Let α0 and β0 be the nearest ancestor vertex-nodes of α and β, respectively.
Let P and Q be the canonical geodesics from να0 and νβ0 to ν that pass through the edges in σ̃α
and σ̃β, respectively. We say that α dominates β if cost(Pα0) + cost(P) < cost(Pβ0) + cost(Q),
or cost(Pα0) + cost(P) = cost(Pβ0) + cost(Q) but α is expanded before β in growing the tree.
Assume that α dominates β. Suppose they are vertex-nodes. If β has been expanded, we remove
all tree nodes descending from it; otherwise, we will not expand β. Suppose that α and β are
edge-nodes. There is an edge e incident to ν such that every geodesic from νβ0 to e through

6

the edges in σ̃β crosses P . If β has been expanded, we prune the child node of β corresponding
to e; otherwise, when we expand β, we will not generate a child node corresponding to e.

After we construct a new leaf α of the sequence tree, it takes O(logmn) amortized time
to test the dominance and prune the tree, modulo the time to compute the costs of geodesics:
cost(Pα) if α is a vertex-node, or the costs of geodesics from να0 to eα with edge sequence σ̃α if
α is an edge-node. Appendix B.1 describes the dominance testing and pruning. We give a proof
in [10, Lemma 3.1] that the pruning preserves a shortest path from s to t in the L∞ metric,
which is also applicable here. The correctness of our algorithm thus follows. In the rest of this
subsection, we describe how to compute the costs of geodesics when constructing a new leaf.

Edge-node creation. Let α be a new edge-node created at tree level �. Let α0 be the nearest
ancestor vertex-node of α at tree level k < �. Let (ek, . . . , e�) be the edges corresponding to the
edge-nodes on the tree path from α0 to α, with e� denoting eα and ek denoting an edge incident
to να0 . We do some processing at α to aid the future growth of the subtree rooted at α.

For all i ≥ 0 such that k ≤ � − 2i and 2i divides �, we compute a data structure Li
α to

represent the canonical geodesics from any point in e�−2i to some point in e�, which can be
represented by their direction vectors by Lemmas 3.3 and 3.7. The insight is that only some
critical direction vectors matter, and the rest can be linearly interpolated from them.

Let Iα,v ⊆ e�−2i be the interval of origins of canonical geodesics that reach e� with direction
vector v and edge sequence (e�−2i+1, . . . , e�).

4 Let Aα,v : Iα,v → R and aα,v : Iα,v → e� be
functions such that Aα,v(p) is the cost of the canonical geodesic from p to e� with direction
vector v and edge sequence (e�−2i+1, . . . , e�), and aα,v(p) is the destination of this geodesic.
Let Bα,v : aα,v[Iα,v] → R and bα,v : aα,v[Iα,v] → e�−2i be functions such that Bα,v(q) is
the cost of the canonical geodesic from e�−2i to q with direction vector v and edge sequence
(e�−2i+1, . . . , e�), and bα,v(q) is the source of this geodesic. These four functions are affine and
they can be stored in O(1) space and evaluated in O(1) time. The direction vectors in Li

α are
stored in lexicographic order.5 The following properties are enforced on Li

α:

• P1: Each direction vector in Li
α is that of some canonical geodesic from e�−2i to e�.

• P2: Any two adjacent direction vectors differ in exactly one entry. These two different
directions point to the same edge of the convex polygon defining the distance function for
the corresponding face.

• P3: Let v and w be two adjacent direction vectors. For any p ∈ Iα,v ∩ Iα,w and any t ∈
[0, 1], the cost of a geodesic from p to t aα,v(p)+(1−t)aα,w(p) is tAα,v(p)+(1−t)Aα,w(p).6

• P4: Let v and w be two adjacent direction vectors. For any q ∈ aα,v[Iα,v] ∩ aα,w[Iα,w]
and any t ∈ [0, 1], the cost of the geodesic from t bα,v(q)+ (1− t)bα,w(q) to q is tBα,v(q)+
(1− t)Bα,w(q).

The first direction vector in Li
α is stored in its full form. For any other direction vector,

we only store its first link, last link, and the difference from its predecessor in Li
α. By P2, the

storage required by Li
α is O(2i) plus the number of direction vectors in the list.

The construction of Li
α proceeds in increasing i. The base case is L0

α. Let H� denote the
convex polygon that induces the distance function for the face bounded by e�−1 and e�. L0

α

4Let P be the canonical geodesic from Iα,v to e� with direction vector v and edge sequence (e�−2i+1, . . . , e�).
By Lemma 3.7, we can slide P in both directions until it is stuck, and the path remains a canonical geodesic
during the sliding. Thus, Iα,v is an interval, and so is the image of Iα,v under aα,v.

5Two directions
↪→
v i and

↪→
wi for the links hitting ei are ordered by comparing θ(

↪→
e i,

↪→
v i) and θ(

↪→
e i,

↪→
wi).

6By Lemma 3.3, given two canonical geodesics from p to e� with adjacent direction vectors v and w, then any
linearly interpolation of the two different directions yield another direction vector for which there is a canonical
geodesic from p to e�. The same holds for two canonical geodesics with adjacent direction vectors v and w from
e�−2i to the same point in e�. Therefore, Iα,v ∩ Iα,w �= ∅ ⇐⇒ aα,v[Iα,v] ∩ aα,w[Iα,w] �= ∅.

7

consists of the direction vector (− ↪→
e �−1,

↪→
e �) or (

↪→
e �−1,− ↪→

e �) depending on whether e�−1 and
e� share a negative or positive endpoint, respectively, and every vector consisting of a single
direction that points to a vertex of H� and can be used to go from e�−1 to e�. For i > 0, let β be
the ancestor edge-node of α at level �−2i−1 (“midway” between α and α0), and let (u1, . . . ,ur)
and (v1, . . . ,vr′) be the sequences of direction vectors in Li−1

β and Li−1
α , respectively. Li−1

β has
been computed as β is an ancestor of α. Choose an arbitrary point p ∈ Iβ,uk

∩ Iβ,uk+1
. For

all k ∈ [1, r − 1], compute λβ,k =
Aβ,uk+1

(p)−Aβ,uk
(p)

∥
∥
∥aβ,uk

(p) aβ,uk+1
(p)

∥
∥
∥

. By P3, λβ,k is a constant, so λβ,k equals

∂C+
p,σ at aβ,uk

(p), where σ = (e�−2i+1, . . . , e�−2i−1), which is consistent with Lemma 3.7: ∂C+
p,σ

is independent of the source p and the destination. Similarly, take an arbitrary q ∈ aα,vk
[Iα,vk

]∩
aα,vk+1

[Iα,vk+1
], and for k ∈ [1, r′ − 1], compute πα,k =

Bα,vk+1
(q)−Bα,vk

(q)

‖bα,vk
(q) bα,vk+1

(q)‖ . By Lemma 3.3, Li
α

consists of every concatenation ujvk such that λβ,j + πα,k ≥ 0 and λβ,j−1 + πα,k−1 < 0. By
Lemma 3.2, λβ,j ≤ λβ,j+1 and πα,k ≤ πα,k+1, so we can scan λβ,j in increasing j and πα,k in
decreasing k to identify the good concatenations. We first find k0 ∈ [1, r′] such that λβ,1+πα,k0 ≥
0 and λβ,1 + πα,k0−1 < 0, and so u1vk0 is a good concatenation. Note that λβ,1 + πα,k < 0 for
all k < k0. Next, we find k1 ≤ k0 such that λβ,2 + πα,k1 ≥ 0 and λβ,2 + πα,k1−1 < 0. Thus,
λβ,2+πα,k ≥ 0 and λβ,1+πα,k−1 < 0 for all k ∈ [k1, k0], which makes u2vk a good concatenation
for all k ∈ [k1, k0]. Repeating the above gives Li

α. When adding a concatenation uv, we compute
the auxiliary information in O(1) time: Iα,uv = bβ,u[Iα,v∩aβ,u[Iβ,u]], Aα,uv = Aβ,u+Aα,v◦aβ,u,
aα,uv = aα,v ◦ aβ,u, Bα,uv = Bα,v + Bβ,u ◦ bα,v, and bα,uv = bβ,u ◦ bα,v, where the operator ◦
composes two functions. Appendix B.2 shows that the construction preserves P1–P4.

Lemma 3.8. Creating an edge-node at level � takes O(2ih) time, where 2i is the largest power
of 2 that divides �, and h is the maximum size of the convex polygons associated with the faces.

Proof. Let α be a new edge-node at level �. L0
α stores O(h) direction vectors. For i > 0, let

β be the edge-node at level �− 2i−1, the size of Li
α is at most the total size of Li−1

α and Li−1
β .

Inductively, we obtain a time bound of
∑i−1

j=0O(2jh) = O(2ih).

Compute a geodesic to a vertex. Suppose that we expand an edge-node α, which annexes
a face corner (f, ν). Let α0 be the nearest ancestor vertex-node of α at tree level �0 < �. Let
(e�0+1, . . . , e�) be the edge sequence corresponding to the edge-nodes on the tree path from α0

to α. We are to create a vertex-node β for ν and compute the cost of the canonical geodesic
Pβ from s to ν through the edges (e�0+1, . . . , e�).

For i = 1, 2, · · · , find the largest �i such that �i ≤ � and �i− �i−1 is a power of 2 that divides
both �i and �i−1. This gives a sequence �0 < �1 < . . . < �r = �, where r = O(log �). For i ≥ 1,
let ki = �i− �i−1 and let αi be the ancestor edge-node of α at level �i. We also use αr to denote
α. Let σi denote the edge sequence (e�0+1, . . . , e�i) for i ∈ [1, r]. Pβ is the concatenation of Pα0

and the canonical geodesic P from να0 to ν through the edges (e�0+1, . . . , e�). We already know
cost(Pα0). We compute cost(P) by combining the Lki

αi
’s in at most r + 1 stages. At the end of

the i-th stage, i ∈ [1, r], we fix the prefix Qi of P up to e�i .
7

Assume that Qi−1 is fixed. Let xi−1 denote its destination. Assume that we have com-
puted ∂C+

να0 ,σi−1
(xi−1) and ∂C

−
να0 ,σi−1

(xi−1). Consider the canonical geodesics from να0 through

(e�i−1+1, . . . , e�) with Qi−1 as a common prefix. By Lemmas 3.2 and 3.4, these geodesics spread
out from xi−1 to e� and form a fan that contains να. We want to construct a path R from xi−1

to some point y ∈ e�i such that Qi = Qi−1R and the canonical geodesics that spread out from
y to e� form a fan that contains να. Let ui−1 be the direction vector of Qi−1. The idea is to
find the direction vector v in Lki

αi
by binary search such that uv is the direction vector of Qi.

7We define the prefix Qr of P only up to e�r = e� instead of an edge of f incident to ν. It is because we will
apply Lemmas 3.5–3.7, which require the nodes the path other than its source to be in the interior of edges.

8

The binary search works as follows. Let v be the “median” direction vector in the sublist
of Lki

αi
that we are working on. If xi−1 �∈ Iαi,v, we remove half of the sublist of Lki

αi
and recurse.

Suppose that xi−1 ∈ Iαi,v. We find the smallest direction vector w and the largest direction
vector w′ such that ui−1vw and ui−1vw

′ extend Qi−1 to two canonical geodesics through
(e�i−1+1, . . . , e�) and the face f . (We will describe how to find w and w′ shortly.) If these two
geodesics lie on the same side of να, by Lemma 3.4, we can remove half of the sublist of Lki

αi
and

recurse. If these two geodesics sandwich να, then ui−1v extends Qi−1 to Qi. The destination of
Qi is y = aαi,v(xi−1) and cost(Qi) = cost(Qi−1)+Aαi,v(xi−1). By Lemmas 3.5–3.7, ∂C+

να0 ,σi
(y)

and ∂C−
να0 ,σi

(y) can be computed in O(1) time from ∂C+
να0 ,σi−1

(x) and ∂C−
να0 ,σi−1

(x). Then we
fix the next prefix Qi+1. The binary search may also finish with two adjacent direction vectors
in Lki

αi
without fixing Qi, a terminating case that we discuss after the next paragraph.

How do we find the smallest and largest direction vectors w and w′? By Lemma 3.3,
we find the smallest direction vector wi+1 in Lki+1

αi+1 by binary search such that vwi+1 is the
direction vector of some canonical geodesic from xi−1 through (e�i−1+1, . . . , e�i+1

). Let y =
aαi,v(xi−1) and let z = aαi+1,wi+1(y). We apply Lemmas 3.5–3.7 to compute ∂C+

να0 ,σi+1
(z)

and ∂C−
να0 ,σi+1

(z) in O(1) time from ∂C+
να0 ,σi

(y) and ∂C−
να0 ,σi

(y). Then, we find the smallest

direction vector wi+2 in Lki+2
αi+2 by binary search and extend to vwi+1wi+2. Repeating the

above gives wi+1wi+2 . . .wr. Finally, we apply pick the smallest direction
↪→
wr+1 according to

Lemma 3.3 that extends wi+1wi+2 . . .wr through f , and wi+1wi+2 . . .wr (
↪→
wr+1) is the desired

w. The largest direction vector w′ is obtained symmetrically.
Recall the terminating case that Qi cannot be fixed and the binary search finishes with two

adjacent direction vectors v and v′ in Lki
αi
. We find the smallest direction vector w as before

to extend v and v′ through (e�i+1, . . . , e�) and f . Note that vw and v′w extend Qi−1 to two
canonical geodesics that sandwich ν. The last direction

↪→
wr+1 in w brings us from ν to a point

z ∈ e�, and the cost is cost(zν). We continue to bαr ,wr(z) ∈ e�r−1 and the cost accumulates
to cost(zν) + Bαi,wr(z), and so on to a point y ∈ e�i between aαi,v(xi−1) and aαi,v′(xi−1),
where xi−1 is the destination of Qi−1. Let C be the cost of the path that we have retraced
from ν to e�i . Suppose that y = (1 − t)aαi,v(xi−1) + t aαi,v′(xi−1). By P3 and Lemma 3.3,
cost(P) = cost(Qi−1) + (1− t)Aαi,v(xi−1) + tAαi,v′(xi−1) + C.

Another terminating case is that we proceed all the way to stage r and fix Qr. Then,
cost(P) = cost(Qr) + cost(xrν), where xr is the destination of Qr.

Theorem 3.1. Let T be a polyhedral surface with n vertices in an instance of PolyPath.
Given a source s, a destination t and an integer m, the shortest path from s to t on T with no
more than m links can be found in O(hmn logmn + mn log2m log2 hm) time, where h is the
maximize size of the convex polygons that define the distance functions in the faces of T .

Proof. (Sketch) The correctness follows from Lemma B.2 that the pruning of the sequence
tree preserves shortest paths. The details are given in Appendix B.3. We spend O(logmn)
amortized time in each invocation of dominance testing and pruning (Appendix B.1). At most
O(mn) tree nodes are created and thus O(mn logmn) total time is spent.

Divide the edge-nodes into O(logm) groups such that an edge-node is in group i if its level is
a multiple of 2i but not 2i+1. Group i contains O(mn/2i) edge-nodes. By Lemma 3.8, creating
a node in group i takes O(2ih) time. So it takes O(hnm logm) time to create all the edge-nodes.

To compute the cost of a geodesic for a vertex-node, we fix O(logm) prefixes Qi’s. To
extend Qi−1 to Qi, we binary search in Lki

αi
in O(log 2ih) = O(log �h) = O(log hm) probes by

Lemma 3.8. Each probe requires O(log �) = O(logm) binary searches among the lists Lki+1
αi+1 ,

Lki+2
αi+2 , So it takes O(log2m log2 hm) time to compute the cost of a geodesic. The total

time spent on all vertex-nodes is thus O(mn log2m log2 hm). We can reconstruct the direction
vector of the shortest path in similar way as in dealing with the terminating case of not fixing
some Qi. So constructing the path takes only linear time, i.e. O(m).

9

4 Applications

Under the L1 and L∞ metrics, h = O(1). Under the Lp metric for some p ≥ 2, Dudley’s
result [16] allows us to approximate the “unit disk” by a polygon of O(1/

√
ε) vertices such that

the polygon diameter is approximated with an ε relative error, i.e., h = O(1/
√
ε). In the above

cases, m = O(n) because there exists a shortest path that visits a face no more than once.

Theorem 4.1. Given a polyhedral surface of size n, the L1 and L∞ shortest paths between two
vertices can be computed in O(n2 log4 n) time, and for every constant p ≥ 2 and every ε ∈ (0, 1),

a (1 + ε)-approximate Lp shortest path can be computed in O
(

1√
ε
n2 log n+ n2 log4 n

)
time.

ϕφf

len
Sf

Figure 3: Left: The face f makes an angle φf with the horizontal, and the ascent is len ·
sinϕ sinφf . Right: The bold segment represents the clipping.

Consider path planning on a terrain with the cost function c1 · Euclidean length + c2 ·
total ascent for some constants c1 > 0 and c2 ≥ 0. Refer to the left image in Figure 3. The
ascent within a face f is len · sinϕ sinφf , where len is the distance travelled in f , φf is the
gradient of a face f , and ϕ is the angle between the travel direction and the horizontal. Let Sf
denote the “unit disk” induced. On the uphill side, the boundary of Sf satisfies the equation
1 = (c1 + c2 sinϕ sin φf) len; on the downhill side, the boundary of Sf is the half-circle with
radius 1/c1. Sf is convex with bounded aspect ratio, so we can approximate it by Dudley’s
result [16] to obtain a PolyPath problem instance with h = O(1/

√
ε) and m = O(n).

We can incorporate uphill gradient constraints. Let ψ be the input limit on the uphill path
gradient. Let pq be an oriented segment in the interior of f that makes an angle larger than
ψ with the horizontal. We can traverse a zigzag path from p to q in which each link makes an
angle ψ with the horizontal. The path length is equal to the height difference between p and q
divided by sinψ, irrespective of the exact zigzag pattern. Each link can be as short as we wish,
and the zigzag path can stay inside f . Under this constraint, the top part of Sf that makes an
angle at least ψ with the horizontal should be clipped. Refer to the right image in Figure 3.
We can similarly handle downhill gradient constraints.

The above suggests that we can transform a shortest path P such that it visits a face no
more than once. There are some technical issues though. Suppose that P visits f twice at
points p and q. If p is in the interior of an edge, we may need to transform P to move from p to
a nearby point p′ ∈ f and then move from p′ to q by a zigzag path in f . Luckily, we can make
cost(pp′) negligible. If q is a vertex of f , it may be impossible to move from the interior of f
straight to q. In this case, P enters q from another face f ′′. We transform P so that it moves
uphill from a point q′ near q on an edge of f to a point q′′ near q on an edge of f ′′ and then to
q, such that every link in the detour has uphill gradient ψ. The detour cost is negligible, and
such detours around vertices introduce at most O(n) extra links. Thus, after transforming, the
path can be partitioned into two types of subpaths such that a subpath of the first type lies
within a face of T and a face does not contain two subpaths of the first type, and the subpaths
of the second type have O(n) links and negligible cost altogether. This produces an instance of
PolyPath with h = O(1/

√
ε) and m = O(n). Appendix C gives the details.

Theorem 4.2. Given a source s and a destination t on a polyhedral terrain of size n, we can
find a (1+ε)-approximate shortest path under the cost function of c1 length+ c2 ascent for some
constants c1 > 0 and c2 ≥ 0, where length is the Euclidean path length and ascent is the total

ascent. Gradient constraints can be imposed. The running time is O
(

1√
ε
n2 log n+ n2 log4 n

)
.

10

References

[1] P.K. Agarwal, S. Har-Peled, M. Sharir, and K.R. Varadarajan. Approximating shortest
paths on a convex polytope in three dimensions. Journal of ACM, 44 (1997), 567–584.

[2] M. Ahmed. Constrained Shortest Paths in Terrains and Graphs. PhD thesis, University
of Waterloo, Canada, 2009.

[3] M. Ahmed, S. Das, S. Lodha, A. Lubiw, A. Maheshwari and S. Roy. Approximation
algorithms for shortest descending paths in terrains. Journal of Discrete Algorithms, 8
(2010), 214–230.

[4] M. Ahmed and A. Lubiw. Shortest descending paths through given faces. Computational
Geometry: Theory and Applications, 42 (2009), 464–470.

[5] M. Ahmed and A. Lubiw. Shortest descending paths: towards an exact algorithm. Inter-
national Journal of Computational Geometry and Applications, 21 (2011), 431–466.

[6] M. de Berg and M. van Kreveld. Trekking in the Alps without freezing or getting tired.
Algorithmica, 18 (1997), 306–323.

[7] J. Canny and J.H. Reif. New lower bound techniques for robot motion planning problems.
Proceedings of the 28th Annual IEEE Symposium on Foundation of Computer Science,
1987, 49–60.

[8] T. Chan. Optimal output-sensitive convex hull algorithm in two and three dimensions.
Discrete and Computational Geometry, 16 (1996), 361–368.

[9] J. Chen and Y. Han. Shortest paths on a polyhedron, part I: computing shortest paths.
International Journal of Computational Geometry and Applications, 6 (1996), 127–144.

[10] S.-W. Cheng and J. Jin. Approximate shortest descending paths. Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2013.

[11] S.-W. Cheng, H.-S. Na, A. Vigneron, and Y. Wang. Approximate shortest paths in
anisotropic regions. SIAM Journal on Computing, 38 (2008), 802–824.

[12] J. Choi, J. Sellen, and C.-K. Yap. Approximate Euclidean shortest path in 3-space. Pro-
ceedings of the 10th Annual Symposium on Computational Geometry, 1994, 41–48.

[13] S. Choi, J. Park, E. Lim, and W. Yu. Global path planning on uneven elevation maps.
Proceedings of the 9th International Conference on Ubiquitous Robots and Ambient Intel-
ligence, 2012, 49–54.

[14] K.L. Clarkson. Approximation algorithms for shortest path motion planning. Proceedings
of the 19th Annual ACM Symposium on Theory of Computation, 1987, 56–65.

[15] K. Deng, X. Zhou, H.T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution surface
distance model for k-nn query processing. VLDB Journal, 17 (2008), 1101–1119.

[16] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. Ap-
proximation Theory, 10(3):227–236, 1974.

[17] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin. Procedural generation of roads. Euro-
graphics, 2010.

11

[18] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the
plane. SIAM Journal on Computing, 28 (1999), 2215–2256.

[19] N. Karmarkar. A new polynomial time algorithm for linear programming. Combinatorica,
4 (1984), 373–395.

[20] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts.
SIGGRAPH, 2003, 954–961.

[21] M. van Kreveld. On quality paths on polyhedral terrains. IGIS’94, LNCS 884, 1994, 113–
122.

[22] L. Liu and R. C.-W. Wong. Finding shortest path on land surface. SIGMOD’11, 433–444.

[23] J.S.B. Mitchell, D.M. Mount and C.H. Papadimitriou. The discrete geodesic problem.
SIAM Journal on Computing, 16 (19897), 647–668.

[24] J.S.B. Mitchell and C.H. Papadimitriou. The weighted region problem: finding shortest
paths through a weighted planar subdivision. Journal of ACM, 38 (1991), 18–73.

[25] C.H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. Informa-
tion Processing Letters, 20 (1985), 259–263.

[26] N.C. Rowe and R.S. Ross. Optimal grid-free path planning across arbitrarily contoured
terrain with anisotropic friction and gravity effects. IEEE Transactions on Robotics and
Automation, 6 (1990), 540–553.

[27] S. Roy, S. Das, and S.C. Nandy. Shortest monotone descent path problem in polyhedral
terrain. Computational Geometry: Theory and Applications, 27 (2007), 115–133.

[28] Y. Schreiber and M. Sharir. An optimal-time algorithm for shortest paths on a convex
polytope in three dimensions. Proceedings of the 22nd annual symposium on Computational
geometry, 2006, 30–39.

[29] C. Shahabi, L.-A. Tang, and S. Xing. Indexing land surface for efficient knn query. PVLDB,
1 (2008), 1020–1031.

[30] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM Journal on
Computing, 15 (1996), 193–215.

[31] Z. Sun and J.H. Reif. On finding energy-minimizing paths on terrains. IEEE Transactions
on Robotics, 21 (2005), 102–114.

[32] K.R. Varadarajan and P.K. Agarwal. Approximating shortest paths on a non-convex
polyhedron. SIAM Journal on Computing, 30 (2001), 1321–1340.

[33] C. Yu, J. Lee, and M.J. Munro-Stasiuk. Extensions to least-cost path algorithms for road-
way planning. International Journal of Geographical Information Science, 17 (2003), 361–
376.

A Missing proofs

A.1 Proof of Lemma 3.1

Let j be the smallest integer such that pj �= qj. Since P is the canonical geodesic and
P [p0, pj−1] = Q[q0, qj−1], pj must be on the negative side of qj. If for all i > j, pi = qi or

12

pi is on the negative side of qi, then we are done. Otherwise, let i be the smallest integer such
that pi is on the positive side of qi. Then pi−1pi must cross qi−1qi, say at x. Since both P and
Q are geodesic paths, P [x, pk] and Q[x, pk] are both geodesics and have the same cost.

cost(P [p0, pi−1]) + dfi(pi−1qi) + cost(Q[qi, pk]) ≤ cost(P [p0, x]) + cost(Q[x, pk]) = cost(P)

We obtain a new geodesic R = (p0, p1, . . . , pi−1, qi, qi+1, . . . , qk). Note that θ(�ei, qi − pi−1) <
θ(�ei, pi− pi−1). Therefore, the direction vector of R is lexicographically smaller than that of P ,
contradicting the assumption that P is a canonical geodesic.

A.2 Proof of Lemma 3.3

Suppose that P is a canonical geodesic. Then P [p0, pi] and P [pi, pk] are canonical geodesics
as well. If pi is not the positive endpoint of ei, pick a point p′i on the positive side of pi and
arbitrarily close to pi. By the definition of the functions ∂C+

p0,σ0i
and ∂D+

pk,σik
, we obtain

Cp0,σ0i(p
′
i) +Dpk,σik

(p′i)− Cp0,σ0i(pi)−Dpk,σik
(pi)

=
(
∂C+

p0,σ0i
(pi) + ∂D+

pk,σik
(pi)

)
· ‖p′ipi‖.

Since P is a geodesic, Cp0,σ0i(p
′
i) + Dpk,σik

(p′i) ≥ Cp0,σ0i(pi) + Dpk,σik
(pi), which implies that

∂C+
p0,σ0i

(pi) + ∂D+
pk,σik

(pi) ≥ 0. If pi is not the negative endpoint of ei, we pick p′i ∈ ei on the
negative side of pi and sufficiently close to pi. Then,

Cp0,σ0i(pi) +Dpk,σik
(pi)− Cp0,σ0i(p

′
i) +Dpk,σik

(p′i)
=

(
∂C−

p0,σ0i
(pi) + ∂D−

pk,σik
(pi)

)
· ‖p′ipi‖.

By Lemma 3.1, Cp0,σ0i(p
′
i)+Dpk ,σik

(p′i) > Cp0,σ0i(pi)+Dpk ,σik
(pi), and therefore, ∂C−

p0,σ0i
(pi)+

∂D−
pk,σik

(pi) < 0.
Conversely, suppose that the three conditions are satisfied for some i ∈ [0, k]. Let p′i be the

intersection point between ei and the canonical geodesic from p0 to pk with edge sequence σ.
If p′i = pi, we are done. Suppose that p′i �= pi.

Consider the case of p′i lying on the positive side of pi. By Lemma 3.2, Cp0,σ0i and Dpk,σik

are convex functions. Therefore,

Cp0,σ0i(p
′
i) ≥ Cp0,σ0i(pi) + ∂C+

p0,σ0,i
(pi) · ‖pip′i‖

Dpk,σik
(p′i) ≥ Dpk,σik

(pi) + ∂D+
pk,σik

(pi) · ‖pip′i‖

Combining these two inequalities and condition (ii) in the lemma gives

Cp0,σ0i(p
′
i) +Dp0,σ0i(p

′
i) ≥ Cp0,σ0i(pi) +Dp0,σ0i(pi),

which shows that P is also a geodesic. However, pi is on the negative side of p′i, which is a
contradiction to Lemma 3.1.

Consider the case of p′i lying on the negative side of pi. By the convexity argument again,
we obtain

Cp0,σ0i(p
′
i) ≥ Cp0,σ0i(pi) + ∂C−

p0,σ0,i
(pi) · ‖pip′i‖

Dpk,σik
(p′i) ≥ Dpk,σik

(pi) + ∂D−
pk,σik

(pi) · ‖pip′i‖

But then these two inequalities and condition (iii) in the lemma imply that

Cp0,σ0i(p
′
i) +Dp0,σ0i(p

′
i) > Cp0,σ0i(pi) +Dp0,σ0i(pi).

This is impossible because P cannot be shorter than a geodesic.

13

A.3 Proof of Lemma 3.6

Consider the derivation of ∂C+
p0,σ0k

(pk) in (i). The derivation of ∂C−
p0,σ0k

(pk) is symmetric. Take
a point p′k ∈ ek on the positive side of pk and arbitrarily close to pk. For j ∈ [i, k], let p′j be the
point in ej such that p′jp

′
j+1 is parallel to pjpj+1. Since p′k is arbitrarily close to pk, p

′
i is also

arbitrarily close to pi. Therefore,

Cp0,σ0i(pi) +Cpi,σik
(p′k) = Cp0,σ0i(pi) + Cpi,σik

(pk) + ∂C+
pi,σik

(pk) · ‖pkp′k‖
= Cp0,σ0k

(pk) + ∂C+
pi,σik

(pk) · ‖pkp′k‖,
Cp0,σ0i(p

′
i) +Cp′i,σik

(p′k) = Cp0,σ0i(pi) + ∂C+
p0,σ0i

(pi) · ‖pip′i‖+ Cpi,σik
(pk) + γik · ‖pkp′k‖

= Cp0,σ0k
(pk) +

(
δik · ∂C+

pi,σik
(pk) + γik

)
· ‖pkp′k‖.

Let Q be a geodesic path from p0 to p′k with edge sequence σ0k = σ. Let r be the node of Q
on ei. We prove (ii) by showing that Cp0,σ0k

(p′k) is equal to either Cp0,σ0i(pi) + Cpi,σik
(p′k) or

Cp0,σ0i(p
′
i) +Cp′i,σik

(p′k). There are three cases as shown in Figure 2 depending on the position
of r.

Suppose that r is on the negative side of pi. See Figure 2(a). Q[r, p′k] and P [pi, pk] must
cross in this case, say at point x. Since both P and Q are geodesics, their subpaths are also
geodesics. Therefore, cost(P [p0, x]) = cost(Q[p0, x]), which yields Cp0,σ0k

(p′k) = cost(Q) =
cost(P [p0, x]) + cost(Q[x, p′k]) ≥ Cp0,σ0i(pi) + Cpi,σik

(p′k). A geodesic to p′k cannot be longer
than any path to p′k via pi. Therefore, Cp0,σ0k

(p′k) = Cp0,σ0i(pi) +Cpi,σik
(p′k).

Suppose that r is on the positive side of p′i. See Figure 2(b). Since Cp0,σ0i is a convex function
by Lemma 3.2, Cp0,σ0i(r) ≥ Cp0,σ0i(pi) + ∂C+

p0,σ0i
(pi) · ‖pir‖ = Cp0,σ0i(p

′
i) + ∂C+

p0,σ0i
(pi) · ‖p′ir‖,

where the last equality follows from the fact that p′i is arbitrarily close to pi. Because p
′
jp

′
j+1 is

parallel to pjpj+1 for all j ∈ [i, k − 1], we obtain ∂D+
p′k,σik

(p′i) = ∂D+
pk,σik

(pi) by the assumption

that ∂D+
pk,σik

depends on the direction vector of P [i, j] only. So Dp′k,σik
(r) ≥ Dp′k,σik

(p′i) +
∂D+

p′k,σik
(p′i) · ‖p′ir‖ = Cp′i,σik

(p′k) + ∂D+
pk,σik

(pi) · ‖p′ir‖. Combining the two inequalities above

gives

Cp0,σ0k
(p′k) = Cp0,σ0i(r) +Dp′k,σik

(r)

≥ Cp0,σ0i(p
′
i) + ∂C+

p0,σ0i
(pi) · ‖p′ir‖+ Cp′i,σik

(p′k) + ∂D+
p′k,σik

· ‖p′ir‖

= Cp0,σ0i(p
′
i) + Cp′iσik

(p′k) +
(
∂C+

p0,σik
(pi) + ∂D+

pk,σik
(pi)

)
· ‖p′ir‖

≥ Cp0,σ0i(p
′
i) + Cp′iσik

(p′k). (∵ Lemma 3.3)

Suppose that r ∈ pip
′
i. See Figure 2(c). Since ‖pir‖ and ‖rp′i‖ are arbitrarily small,

Cp0,σ0k
(p′k) = Cp0,σ0i(r)+Dp′k ,σik

(r) = Cp0,σ0i(pi)+∂C
+
p0,σ0i

(pi)·‖pir‖+Dp′k ,σik
(p′i)−∂D+

p′k ,σik
(p′i)·

‖p′ir‖. The last expression is a function linear in ‖pir‖ by our assumption that ∂C+
p0,σ0i

and ∂D+
pk ,σik

depend only on the direction vectors of P [p0, pi] and P [i, k] respectively (hence

∂D+
p′k,σik

(p′i) = ∂D+
pk ,σik

(pi)). Therefore, the last expression is minimized when r = pi or

r = p′i. It follows that either Cp0,σ0k
(p′k) = Cp0,σ0i(pi) + Dp′k,σik

(pi) = Cp0,σ0i(pi) + Cpi,σik
(p′k)

or Cp0,σ0k
(p′k) = Cp0,σ0i(p

′
i) +Dp′k,σik

(p′i) = Cp0,σ0i(p
′
i) + Cp′i,σik

(p′k).
The correctness of (ii) can be proved in a similar way.

A.4 Proof of Lemma 3.7

We first show that ∂C+
pi−1,(ei)

(pi) depends only on the direction of pi−pi−1. Divide all directions

into cones, each being the set of directions from the origin to all points in one edge of the polygon
Hfi defining the distance function for the face f bound by ei−1 and ei.

If pi − pi−1 points to a vertex of Hfi , there are two cones that contain pi − pi−1. We use �−
to denote the support line of the edge of Hfi defining the cone that comes first in anticlockwise

14

pi − pi−1

�wi,+
= �wi,−

pi − pi−1
�wi,+ �wi,−

O O

Figure 4: Left: The ray in the direction of pi−pi−1 crosses the boundary of Hfi at a point that
is not a vertex. �wi,− = �wi,+. Right: The ray in the direction of pi − pi−1 crosses the boundary
of Hfi at a vertex, so �wi,− and �wi,+ are defined by the edges of Hfi incident to that vertex.

order among these two cones, and �+ denotes the support line of the edge of Hfi that defines
the other cone. If pi− pi−1 points to the interior of an edge of Hfi , then both �+ and �− denote
the support line of this edge. Let �wi,+ and �wi,− be the vectors that are orthogonal to �+ and
�−, respectively. See Figure 4.

Then cost(pi−1p
′
i) = 〈p′i−pi−1, �wi,+ 〉/‖�wi,+‖ and cost(pi−1pi) = 〈pi−pi−1, �wi,+ 〉/‖�wi,+‖. So

∂C+
pi−1,(ei)

(pi) = 〈↪→e i, �wi,+ 〉/‖�wi,+‖, which only depends on the direction of pi − pi−1. Similarly,

one can verify that

∂C−
pi−1,(ei)

(pi) =
〈↪→e i, �wi,− 〉
‖�wi,−‖

, ∂D+
pi,(ei)

(pi−1) = −〈↪→e i−1, �wi,+ 〉
‖�wi,+‖

, ∂D−
pi,(ei)

(pi−1) =
〈↪→e i−1, �wi,− 〉

‖�wi,−‖
.

They all depend on the direction of pi − pi−1 only.
∂C+

p0,σ01
(p1) and ∂C−

p0,σ01
(p1) depend only on the direction of p1 − p0 by the discussion

above. Applying Lemma 3.6(ii) with i = 1 and k = 2 shows that ∂C+
p0,σ02

(p2) and ∂C
−
p0,σ02

(p2)
depend only on the directions of p1 − p0 and p2 − p1. By repeatedly applying Lemma 3.6(ii)
with k = i + 1, one can show that ∂C+

p0,σ0j
(pj) and ∂C−

p0,σ0j
(pj) depend only on the direction

vector of P [p0, pj].
Analogously, using Lemma 3.6(iii), we can show that ∂D+

pk,σjk
(pj) and ∂D

−
pk,σjk

(pj) depend
only on the direction vector of P [pj , pk]. Thus, the conditions on Lemma 3.6(i) and (ii) can be
removed.

A.5 Proof of Lemma 3.4

Without loss of generality, assume that θ(p�−p�−1, �e�) = θ(q�−q�−1, �e�) for � < i. By Lemma 3.7,
we can assume that p0 = q0. So q� = p� for � < i and qi is on the positive side of pi.
By Lemma 3.2, ∂C+

p0,σ0i
(qi) ≥ ∂C−

p0,σ0i
(qi) ≥ ∂C+

p0,σ0i
(pi) ≥ ∂C−

p0,σ0i
(pi), which enforces that

θ(pi+1 − pi, �ei+1) ≥ θ(qi+1 − qi, �ei+1) by applying Lemma 3.3 with k = i + 1. Then qi+1

is also on the positive side of the pi+1, and therefore ∂C+
p0,σ0,i+1

(qi+1) ≥ ∂C−
p0,σ0,i+1

(qi+1) ≥
∂C+

p0,σ0,i+1
(pi+1) ≥ ∂C−

p0,σ0,i+1
(pi+1). Repeating the argument, one can show θ(pj − pj−1, �ej) ≥

θ(qj − qj−1, �ej) for all j > i.

B Missing details of the algorithm

B.1 Dominance checking and tree pruning

The vertex-node case is easy. For each vertex of T , we record the current corresponding vertex-
node β that dominates all other vertex-nodes that correspond to vβ . When a new vertex-node
α corresponding to vβ is created, we compare α and β to see which of the two dominates the
other. Thus, it takes only O(1) time modulo the time for computing the geodesic cost from s
to vα with edge sequence σα.

15

It takes more time to handle edge-nodes. For every face corner (f, v), we record the edge-
node β that annexes (f, v) and dominates all other edge-nodes annexing (f, v). We say that
β occupies (f, v). Suppose that a new edge-node α annexing (f, v) is generated. Let α′ and
β′ be the nearest proper ancestor vertex-nodes of α and β, respectively. Let P and Q be the
geodesics from vα′ and vβ′ to v through the edges in σ̃σ and σ̃β, respectively. We must have
computed and recorded cost(Pβ′)+cost(Q) beforehand as β occupies (f, v). Therefore, modulo
the time to compute cost(P), we can compare cost(Pα′) + cost(P) with cost(Pβ′) + cost(Q) to
decide the dominance in O(1) time. Without loss of generality, assume that α dominates β.
Then, α replaces β as the edge-node that occupies (f, v).

To decide which child edge-node of β to prune, we need to refine the notion of dominance.
Consider the two edge sequences σα and σβ. Let e denote the first edge in the longest common
suffix of σα and σβ .

• If σα is not a suffix of σβ, let eα be the edge in σα before e. Then α dominates β on the
positive side (resp. negative side) if eα and e share the positive (resp. negative) endpoint.

• If σα is a suffix of σβ, let eβ be the edge in σβ before e, and α dominates β on the positive
side (resp. negative side) if eβ and e share the negative (resp. positive) endpoint.

Correspondingly, we use e+ and e− to denote the two edges of f incident to v such that v is the
positive and negative endpoints of e+ and e−, respectively. Suppose that α dominates β on the
positive side. If β has been already expanded, we delete the child edge-node of β corresponding
to e+ as well as its descendants. If β has not yet been expanded, we will not let β gain a child
edge-node corresponding to e+. The pruning is symmetric for the case of α dominating β on
the negative side.

Recall that we do not explicitly store σβ for a tree node β. So we cannot just trace σα and
σβ to decide whether α dominates β on the positive or negative side. This tracing could be
time-consuming anyway. Instead, we introduce some auxiliary data structures for making this
decision. For every face corner (f, v), we maintain a ordered list of edge-nodes annexing it.
Note that these edge-nodes correspond to the same edge e of f , and e is oriented consistently
with respect to these edge-nodes. Let u+ and u− be the positive and negative endpoints of e,
respectively. Let α′ and β′ be the parent nodes of α and β, respectively. Let g = wu+u− be
the face of T that shares e with f . The ordering of two edge-nodes α and β in the ordered list
for (f, v) is determined as follows.

• Suppose that α′ and β′ annex different face corners of g. If eα′ and e share the common
positive endpoint u+, then α precedes β in the ordered list for (f, v). Otherwise, eα′ and
e share the common negative endpoint u−, and β precedes α in the ordered list for (f, v).

• If α′ and β′ are edge-nodes annexing the same corner of g, and α′ precedes β′ in the
ordered list for that face corner, then α precedes β in the ordered list for (f, v).

• If α′ is an edge-node annexing (g, u+) and β′ is a vertex-node corresponding to w, then
α precedes β in the ordered list for (f, v).

• If α′ is a vertex-node corresponding to w and β′ is an edge-node annexing (g, u−), then
α precedes β in the ordered list for (f, v).

Assume that α dominates β. If α precedes β in the ordered list for (f, v), then α dominates
β on the positive side; otherwise, α dominates β on the negative side. The rules above are
based on the information at the parents of α and β in such a way that the decision process is
equivalent to tracing σα and σβ. This explains the correctness. Since an edge-node annexing
(f, v) can change, we need to represent the sorted list for (f, v) with a balanced binary search
tree. The sorted list is no more than the tree size which is O(mn). Therefore, the dominance
testing can be done in O(logmn) time.

16

B.2 Preservation of properties P1–P4

Lemma B.1. For any i ≥ 0, Li
α satisfies P1–P4.

Proof. Consider the base case of i = 0. P1 clearly holds because any direction vector added has
only one link. P2 also holds by the choices of directions picked by the algorithm. Suppose that
vj = (

↪→
v j) and vj+1 = (

↪→
v j+1) are two adjacent direction vectors. The direction of the oriented

segment from p to any point between aα,vj(p) and aα,vj+1(p) lies between
↪→
v j and

↪→
v j+1. Since

↪→
v j and

↪→
v j+1 point to the same edge of the convex polygon that defines the distance function,

the cost of the segment from p to a point between aα,vj(p) and aα,vj+1(p) is a linear interpolation
of Aα,vj(p) and Aα,vj+1(p). Therefore, P3 holds. P4 can be proved similarly.

Consider the case of i > 0. Let � be the level of α. Let β be the ancestor edge-node of α at
level �− 2i−1. Assume that P1–P4 hold for both Li−1

α and Li−1
β . P1 holds for Li

α by the order
in which good concatenations are added.

Consider P2. Any two successive concatenations added to Li
α share either a prefix, i.e. uv

and uv′, or a suffix, i.e. uv and u′v. By P2, u and u′ differ in exactly one entry, and so do v
and v′. It follows that P2 is also satisfied by uv and uv′ and uv and u′v.

Consider P3. Take any two adjacent direction vectors in Li−1
α and Li−1

β . They differ at

one entry by P2 and we can write them as u = w (
↪→
w0)w

′ and v = w (
↪→
w1)w

′. Let P and Q
be the canonical geodesics from p to aα,u(p) and aα,v(p) respectively. Consider the canonical
geodesic R from p to a point q = (1 − t)aα,u(p) + t aα,v(p) for some t ∈ [0, 1]. By Lemma 3.3,
the direction vector of R is w (

↪→
w)w′, where ↪→

w lies between
↪→
w0 and

↪→
w1. Let rx, ry and rz

be the segments of P , R and Q, respectively, that have directions
↪→
x ,

↪→
y and

↪→
z , respectively.

Because R[y, q], P [x, aα,u(p)] and Q[z, aα,v(p)] have the same direction vector, we get y =
(1 − t)x + tz, and cost(R[y, q]) = (1 − t) cost(P [x, aα,u(p)]) + t cost(Q[z, aα,v(p)]). By P2,
cost(ry) = (1− t) cost(rx) + t cost(rz). Therefore, cost(R) = (1− t) cost(P) + t cost(Q).

P4 can be proved similarly.

B.3 Correctness of the algorithm

The following lemma was originally proved for L∞ metric. But the proof only uses the triangle
inequality, so the result can be naturally generalized to the distance functions defined in this
paper.

Lemma B.2 ([10, Lemma 3.1]). Let α and β be two edge-nodes annexing the same face corner
(f, ν) such that α dominates β on the positive side (resp. negative side). Let e be the edge in f
whose negative (resp. positive) endpoint is ν.

(i) α is not a descendant of β.

(ii) Let α′ and β′ be the nearest proper ancestor vertex-nodes of α and β, respectively. For
every point x ∈ e and every geodesic Q with edge sequence σ̃β ·(e) from νβ′ to ν, the geodesic
P with edge sequence σ̃α · (e) from να′ to ν satisfies cost(Pα′) + cost(P) ≤ cost(Pβ′) +
cost(Q), and if they are equal, then α is expanded before β.

Consider the correctness of the algorithm. Let P0 be the shortest path from s to t with no
more than m links. By the requirement of the PolyPath problem, we can assume that every
node of P0 is either a transversal node or a vertex of T . If there are multiple choices for P0, we
pick P0 to be one that has the fewest nodes.

The sequence tree is grown to contain the prefix of P0 until the vertex-node corresponding
to t is reached or an edge-node α0 is dominated by some other edge-node β such that the child
node of α0 that would contain a longer prefix of P0 is pruned. In the former case, the sequence
tree captures the edge sequence of P0, and the algorithm computes the cost of the geodesic
with respect to that edge sequence, so we are done. Consider the latter case. Let x be the

17

intersection point between P0 and the edge corresponding to α0 and β. By Lemma B.2, β
contains a path Q to x that is at least as good as P [s, x]. Let P1 = Q · P [x, t]. By our choice
of P0, cost(P1) = cost(P0), P1 has the same number of nodes as P0, and β is at the same depth
as α0 but expanded earlier. Note that β cannot be dominated by any other edge-node. The
subtree of β grows to contain P1, or a descendant α1 of β is dominated by some other edge-node
and the child of α1 that would contain a longer prefix of P1 is pruned. We can then repeat the
analysis above, which can happen at most m times. The correctness thus follows.

C Reduction to a PolyPath instance

Let P be a shortest path s to t that satisfies the gradient constraints. Consider the intersections
between P and a face f. Let p be the first point of entry. Let q be the last point of exit. For
now assume that neither p nor q is a vertex of f . Let p0 and q0 be in the interior of f arbitrarily
close to p and q, respectively, such that we can move from p to p0 and from q0 to q with uphill
gradient ψ. We assume that the gradient of pq exceeds ψ; otherwise, we can connect p and q
and skip P .

Without loss of generality, assume that q is higher than p. Let ψ be the ascent gradient
bound. Let p′ be the last point on P after p such that p and p′ have the same height. That is,
the subpath after p′ never drops below the height of p. Let P ′ be the longest ascending subpath
of P that starts at p′ and does not go above the height of q. Let x be the other endpoint of P ′.

Let y be the point on the segment pq ⊂ f that has the same height as x. We can follow a
zigzag path from p to p0 and then to y, and the length of this path is H/(sinψ), where H is the
height difference between p and y. The subpath of P ′ from p′ to x cannot be shorter because
the same height difference H is covered with a ascent gradient no greater than ψ. It follows
that the subpath of P from p to x is not shorter than the zigzag path length from p to y. At
the same time, the ascent of the zigzag path is the smallest possible because it does not goes
monotonically upward.

We can repeat the above argument to the next ascending subpath of P that rises above the
point x. Eventually, we reach the conclusion that the a zigzag path from p to q is as long as P ,
and this zigzag path has the smallest ascent possible.

If p or q is a vertex of f , then we may have to first detour as described in the paragraph in
Section 4 preceding Theorem 4.2 before applying the detour in the above. Again, the detour
cost is negligible.

We have already described in Section 4 how our approximate terrain navigation problem
gives rise to a convex distance function induced by a convex polygon of O(1/

√
ε) vertices. We

have argued in the above that there exists a path with cost arbitrarily close to the optimum,
and it can be partitioned into subpaths of two types such that a subpath of the first type lies
within a face of T and a face does not contain two subpaths of the first type, and the subpaths
of the second type have O(n) links and negligible cost altogether. Although a subpath of the
first type has many links due to the zigzag, zigzagging is only needed for the physical path
on the terrain. Under the convex distance function metric induced by the problem, the zigzag
path from p to q is replaced by an oriented segment from p to q. Similarly, a subpath of the
second type may also zigzag within a face, and the zigzagging is replaced by a single oriented
segment under the convex distance function metric. This produces an instance of PolyPath
with h = O(1/

√
ε) and m = O(n).

18

