
A Fast and Simple Surface Reconstruction Algorithm∗

Siu-Wing Cheng† Jiongxin Jin‡ Man-Kit Lau†

Abstract

We present an algorithm for surface reconstruction from a point cloud. It runs in
O(n log n) time, where n is the number of sample points, and this is optimal in the pointer
machine model. The only existing O(n log n)-time algorithm is due to Funke and Ramos,
and it uses some sophisticated data structures. The key task is to extract a locally uniform
subsample from the input points. Our algorithm is much simpler and it is based on a variant
of the standard octree. We built a prototype that runs an implementation of our algorithm
to extract a locally uniform subsample, invokes Cocone to reconstruct a surface from the
subsample, and adds back the samples points absent from the subsample via edge flips. In
our experiments with some non-uniform samples, the subsample extraction step is fast and
effective, and the prototype gives a 51% to 68% speedup from using Cocone alone. The
prototype also runs faster on locally uniform samples.

∗Research supported by the Research Grants Council, Hong Kong, China (project no. 612109). A preliminary
version appeared in Proceedings of the 28th Annual Symposium on Computational Geometry, 2012.
†Department of Computer Science and Engineering, HKUST, Hong Kong, {scheng,lmkaa}@cse.ust.hk
‡Google Inc., jamesjjx@google.com



1 Introduction

The problem of reconstructing surfaces from an unorganized point cloud in R3 arises in many
applications such as reverse engineering, medical imaging, computer graphics and cartography.
Given a point cloud sampled from object surfaces, which is often captured by using laser range
scanners or medical images like CT or MRI scans, a reconstruction of the surfaces is sought that
is faithful. The problem was first studied by researchers in computer graphics and computer
vision (e.g., [1, 17, 26]). Many of such algorithms are effective in practice, but do not come with
theoretical guarantees.

Amenta and Bern [2] proved that restricted Delaunay triangulation is a good reconstruction.
Amenta, Choi, Dey and Leekha [3] developed the first provably correct algorithm, and the
output reconstruction consists of Delaunay triangles. When the sample is dense enough, the
output approximates the unknown surfaces well in the sense that their normal deviation and
Hausdorff distance are small, and they are homeomorphic. The algorithm of Amenta, Choi, Dey,
and Leekha [3], known as the Cocone algorithm, also has a successful implementation. There is
another Delaunay-based reconstruction algorithm by Amenta, Choi and Kolluri that uses power
diagram and weighted Delaunay triangulation [4]. Simplicial reconstructions of manifolds in
higher dimensions have been studied [8, 9, 14]. Researchers have also studied reconstructions
as zero-sets of implicit functions [7, 13]. More results on surface reconstruction can be found
in [18].

The algorithms in [2, 3, 4] compute the 3D Delaunay triangulation or Voronoi diagram or
their weighted versions. Let n denote the number of input sample points. The 3D Voronoi
diagram can be constructed in O(n2) time [12], and the fastest output-sensitive algorithm runs
in O((n+ f) log2 n) time, where f is the output size [11]. If the surface is smooth and generic1

and the sample is uniform, Attali, Boissonnat, and Lieutier [6] showed that the 3D Voronoi
diagram has O(n log n) complexity. However, in the case of non-generic smooth surfaces (e.g.
sphere, a smooth surface with a cylindrical part), Erickson [22] proved that the 3D Voronoi
diagram can have Ω(n

√
n) complexity even if the sampling is uniform.

Given a locally uniform sample, Dey, Funke, and Ramos [19] showed that the Cocone algo-
rithm [3] can be modified to run in O(n log n) time. This modified Cocone algorithm uses an
approximate nearest neighbor searching data structure. For a locally uniform sample, Dumitriu,
Funke, Kutz and Milosavljević [20, 21] developed a reconstruction algorithm that requires very
little geometry (only the distances among the sample points), and therefore, the robustness is
greatly enhanced. Subsequently, Funke and Ramos [24] obtained a reconstruction algorithm that
runs in O(n log n) time, which is optimal in the pointer machine model. The algorithm employs
several sophisticated data structures such as the well-separated pair decomposition, approximate
directional nearest neighbor searching, and approximate range searching. No implementation
has been reported so far. The key task of the algorithm of Funke and Ramos is to extract a
locally uniform subsample from the input points.

Our main result is an algorithm to extract a locally uniform subsample from a dense in-
put sample that does not use any sophisticated data structure. After building a variant of the
standard octree in O(n log n) time, the extraction works in O(n) time by traversing the octree.
Then, reconstructing from the subsample takes O(n log n) time using the modified Cocone al-
gorithm [19], and adding back the sample points not in the locally uniform subsample can be
done in O(n log n) time as shown by Funke and Ramos [24]. The underlying surfaces are as-
sumed to be smooth, but they need not be generic. In reconstructing from the locally uniform
subsample, the octree also allows us to do without the approximate nearest neighbor searching

1There are several technical conditions for genericity as stated in [6], one of which is that if a ball is interior-
disjoint from the surface, the ball does not touch the surface at more than a constant number of points.

1



data structure used in the modified Cocone algorithm [24]. We built a prototype that runs an
implementation of our subsample extraction algorithm, invokes Cocone to reconstruct a surface
from the subsample, and adds back the remaining samples points via edge flips. In our exper-
iments with non-uniform samples, the subsample extraction step is fast and effective, and the
prototype is 51% to 68% faster than running Cocone alone. The prototype also runs faster on
locally uniform samples.

2 Background and Overview

2.1 Background

We use d(·, ·) to denote the Euclidean distance between two geometric objects. Let B(c, r)
denote the ball centered at a point c with radius r. Let B∞(c, r) denote the axis parallel box
with center c and side length 2r.

Let M be an m-dimensional smooth compact manifold without boundary in Rd for some
k ∈ [1, d− 1]. The manifoldM may have multiple connected components. The medial axis of Σ
is the closure of the set of points in R3 that have two or more closest points inM [2, 23]. The
local feature size of a point x ∈ Σ, denoted by f(x), is the distance between x and the medial
axis.

Definition 1. Let P be a discrete point set drawn from M. We call P an ε-sample for some
ε ∈ (0, 1) if d(x, P ) ≤ εf(x) for every point x ∈ Σ.

Definition 2. Let P be an ε-sample of M. For all p ∈ P , define rp to be the radius of the
largest ball that is centered at some point inM, contains p in its boundary, and does not contain
any point in P in its interior. We call P locally uniform if there exist constants κuni > 1 and
c ≥ 1 such that for every point p ∈ P , |B(p, κunirp) ∩ P | ≤ c.

Our definition of local uniformity is weaker than that in [24], but it suffices for our purposes.
In the case that the manifold is two-dimensional and embedded in R3, we denote the manifold

by Σ, call each connected component in Σ a surface, and use np to denote the outward unit
normal at a point p ∈ Σ. The following results concerning samples of surfaces in R3 will be
useful.

Lemma 2.1 ([3, 5, 18, 25]). Let Σ be a two-dimensional smooth compact manifold without
boundary in R3. Let p, q and r be three arbitrary distinct points in Σ. The following properties
hold for sufficiently small ε.

(i) If d(p, q) ≤ εf(p), the acute angle between the support lines of np and pq is at least
π/2−O(ε), and ∠(np,nq) = O(ε).

(ii) If the circumradius of pqr is at most εf(p), the acute angle between the support lines of
np and the normal of pqr is O(ε).

(iii) For all point x on the tangent plane at p, if d(p, x) ≤ εf(p), then d(x,Σ) = O(εd(p, x)).

Most provably correct surface reconstruction algorithms in the literature produce triangu-
lated closed surfaces from an ε-sample, and the output surfaces satisfy some desirable properties.
To facilitate the subsequent discussion, we define a faithful reconstruction as follows.

Definition 3. Let P be an ε-sample of a 2-manifold Σ in R3. A faithful reconstruction T is
a set of triangulated surfaces with vertices in P that satisfy the following properties: (i) T is
homeomorphic to Σ; (ii) the Hausdorff distance between T and Σ is O(ε); (iii) for every triangle
τ in T and for every vertex p of τ , the normal of τ makes an O(ε) angle with np.

2



The restricted Delaunay triangulation of an ε-sample plays a key role in surface reconstruction
as it is known to be a faithful reconstruction of Σ when ε is sufficiently small. A vertex, edge,
and triangle in the 3D Delaunay triangulation is a restricted Delaunay vertex, edge, and triangle
with respect to Σ if its dual Voronoi cell, face, and edge intersects Σ. The restricted Delaunay
triangulation cannot be computed though unless Σ is unknown.

For all point p ∈ Σ, the cocone at p is the set of points x ∈ R3 such that the acute angle
between px and the support line of the estimated normal at p is at least π

2 − θ for some constant
θ ∈ (0, π/8) fixed a priori. The Cocone algorithm collects Delaunay triangles whose dual Voronoi
edges intersect the cocones at the sample points, followed by a manifold extraction step. The
choice of θ depends on the target ε for which the surface reconstruction algorithm works.

2.2 Overview of our algorithm

Our algorithm has two high-level steps as listed below, where were also taken by the algorithm
of Funke and Ramos [24].

• Step 1: Select a subset UP ⊆ P such that UP is a locally uniform O(ε)-sample of Σ.

• Step 2: For each sample point p ∈ UP , estimate the surface normal at p and construct
the Delaunay triangles incident to p (with respect to UP ) such that the dual Voronoi edge
of each such triangle τ intersects the cocones at all three vertices of τ . Then, traverse all
such triangles to extract a surface triangulation M by a simple linear time search [3].

Step 1 is the hardest. All aforementioned sophisticated algorithmic tools such as well-
separated pair decomposition, approximate direction nearest neighbor searching, and approxi-
mate range searching are employed for this purpose. Our first contribution is a variant of the
standard octree that allows us to perform step 1 in O(n log n) time.

In step 2, we need to determine the candidate triangles and extract a manifold from these
triangles as in the Cocone algorithm. We want to avoid computing the 3D Delaunay triangulation
of UP because this would take more than O(n log n) time. We will argue later in Section 4.3 that
the candidate triangles can only connect p to other sample points within a distance αr′p from p
for some appropriate constant α > 1, where r′p is the radius of the largest ball that is centered at
some point in Σ, contains p in its boundary, and does not contain any point of UP in its interior.
Since UP is locally uniform, if we can ensure that α ≤ κuni, then there are only O(1) points of
UP in B(p, αr′p). Therefore, by computing the 3D Delaunay triangulation of p and these O(1)
points, step 2 takes only O(1) time for each p ∈ UP , provided that we can estimate the surface
normal at p and identify the sample points within a distance αr′p from p.

The triangulation M is a provably good reconstruction of Σ. The only downside is that it
does not include all points in P . Funke and Ramos [24] proposed to include all points in P by
computing the Delaunay triangulation of P restricted to M in O(n log n) time. The readers are
referred to [24] for details.2

The Cocone algorithm [3] and other quadratic time algorithms in [2, 4] need to invoke a
3D Delaunay triangulation or 3D Voronoi diagram algorithm. In comparison, the 3D Delaunay
construction in step 2 is no harder.

In addition to selecting a locally uniform O(ε)-sample UP ⊆ P , our octrees also allow us to:
(i) estimate np at each point p ∈ P in step 2 above, and (ii) collect the set UP ∩ B(p, αr′p) for
every p ∈ UP in step 2 above. The algorithmic details will be given later in Section 4.3.

2In computing the Delaunay triangulation of P restricted to M as described in [24], the sets P ∩ B(p, αrp)
for every p ∈ UP are needed, where α is some appropriate constant. Our octree can be used to return these sets
efficiently.

3



Our main result is concerned with step 1, the extraction of a locally uniform subsample UP
from P . The following observation motivates our approach.

Lemma 2.2. Let P be an ε-sample of M. Let R be a compact subset of Rd. Suppose that R
contains at least one sample point in P . Then at least one of the following properties is valid
for a small enough ε:

(i) d(R, P \R) ≤ 4εf(p) for some sample point p ∈ P ∩R.

(ii) For each connected component S of M, either R contains P ∩ S, or R is disjoint from
P ∩ S.

Proof. Suppose that condition (ii) does not hold for some connected S of M. That is, P ∩ S
has some points in R and some points not in R. Let US =

⋃
p∈P∩S B(p, 1.5εf(p)).

Since P is an ε-sample, for every point x ∈ Σ, d(x, P ) ≤ εf(x). Let p be the nearest
neighbor of x in P . As f is 1-Lipschitz, f(x) ≤ f(p)+d(x, p) ≤ f(p)+εf(x), which implies that
f(x) ≤ f(p)/(1− ε) < 1.5f(p) when ε < 1/3. Therefore, S ⊆ US and hence US is connected for
a small enough ε.

The connectedness of US implies the existence of p, q ∈ P ∩ S such that p ∈ R, q /∈ R,
and d(p, q) ≤ 1.5εf(p) + 1.5εf(q). As f(q) ≤ f(p) + d(p, q), we have d(R, P \ R) ≤ d(p, q) ≤

3ε
1−1.5εf(p) ≤ 4εf(p) for ε ≤ 1/6, satisfying condition (i) in the lemma.

In the sequel, R will be some octree cells with a high concentration of sample points, and
Lemma 2.2 helps us to decide whether R contains a surface or the sample points in R should be
decimated to achieve local uniformity.

Consider a 2-manifold Σ ⊂ R3 and the special case of Σ being connected (i.e., only one
surface). We start with a smallest axis-aligned bounding cube of P and build an octree by
repeated splitting. The splitting continues until for every leaf cell C, the sample points in P ∩C
concentrate in an octree cube C ′ of one-eighth the side length of C, called the core of C. Since
there is only one surface, Lemma 2.2(ii) cannot hold with R = C ′. Then, Lemma 2.2(i) applies
with R = C ′. In the simplest situation that C ′ does not touch the boundary of C, by the octree
alignment, the distance between the boundaries of C ′ and C is at least the side length of C ′,
and this implies that the side lengths of C ′ and C are O(ε) times the local feature size of some
point in C ′. Thus, the side length of C is a local length scale that reflects the local sampling
density. We smooth the different local length scales induced by different octree leaf cells, and
use the smoothed scales to prune P to a locally uniform subsample UP . In general, the core C ′

of a leaf cell C can touch the boundary of C, and it may be in contact with the cores of some
other leaf cells. We need to group the cores into clusters, and apply Lemma 2.2 with R equal
to a cluster.

When there are several surfaces in Σ, some sample points may concentrate in a cluster
X because they lie on some surfaces in Σ that lie (almost) entirely inside X. It is wrong
to decimate the sample points in X. Fortunately, Lemma 2.2(i) does not hold with R = X.
Then Lemma 2.2(ii) implies that the sample points in X can be treated as the input for an
independent instance of the surface reconstruction problem, which can be solved recursively. Of
course, nobody can foretell whether Lemma 2.2(i) holds or not. We first recursively reconstruct
from the sample points in X. If the reconstruction is successful, we ignore the sample points in
X because the surfaces containing these points have been reconstructed. If the reconstruction
fails, it is safe to decimate the sample points in X.

4



C1

C2

C3

C4

C5

Figure 1: Five leaf cells are shown. C5 is empty, so it does not have a core. The cores of other leaf
cells are shown in gray: core(C1) alone is a cluster, and the union core(C2)∪ core(C3)∪ core(C4)
is another cluster.

3 Octree Decomposition

For generality, we describe our octree decomposition in Rd for d ≥ 2 for a sample P drawn from
a smooth, compact and boundaryless manifold M with dimension k ∈ [1, d − 1]. Construct a
smallest axis-aligned bounding box of P . By scaling, we assume that this bounding box is [0, 1]d.
Given a box C in Rd, we denote its side length by `C . We call a box C ⊆ [0, 1]d canonical if
`C = 2−i for some integer i ≥ 0, and the coordinates of the corners of C are integral multiples
of 2−i. If we divide C into 2d equal boxes, we obtain the canonical boxes inside C of the next
smaller size 2−i−1.

3.1 The top-level octree

The bounding box [0, 1]d of P is the root and the only leaf cell of the initial octree. A canonical
box C is splittable if two points in P ∩C lie in the interior of two distinct canonical boxes in C
with side length 2−d`C . Two canonical boxes are neighbors if their interiors are disjoint and their
boundaries are in contact, possibly at a corner only. The initial octree is grown by invoking the
following two rules alternately.

• Splitting rule: As long as there is a splittable leaf cell C, split C into 2d octree cells of side
length 1

2`C and make them the children of C in the octree.

• Balancing rule: As long as there are two neighboring leaf cells C and C ′ such that `C >
2`C′ , split C as described in the splitting rule.

The splitting rule is applied first until no leaf cell is splittable. The balancing rule is then applied
until the tree is balanced, i.e., every two neighboring leaf cells differ in side lengths by at most a
factor two. We apply the two rules alternately until the tree stops growing, which must happen
because, in the worst case, every leaf cell contains a single point and is non-splittable, and then
the tree will stop growing after another round of balancing.

Let TP be the resulting octree. We add pointers between neighboring cells in TP that have
the same side length. These pointers provide access to cells of similar sizes near a given cell.
A cell is empty if it contains no point in P . For every non-empty leaf cell C, since C is not
splittable, P ∩C is contained in a canonical box with side length 2−d`C inside C. We call it the
core of C, denoted core(C). Two cores are connected if their boundaries are in contact, possibly
at a corner only. Each connected component of cores is called a cluster. An isolated core is a
cluster by itself. Figure 1 gives an example.

5



Lemma 3.1 below proves that every cluster contains a constant number of cores of similar
sizes, and every leaf cell is small with respect to the local feature size. The lemma is stated for
any subset Q ⊆ P that satisfies a conformity condition in Definition 4 below.

Definition 4. Let Q be a subset of P . We say that P conforms to TQ if the following conditions
are satisfied.

(i) For every cell C in TQ, either Q ∩ C = ∅ or Q ∩ C = P ∩ C;

(ii) If Q 6= P , then d(Q,P \Q) is at least 2−d−2 times the side length of the root cell of TQ.

Note that P conforms to TP trivially.

Lemma 3.1. Let P be an ε-sample of M. Let Q be an arbitrary subset of P . Let TQ be the
octree constructed for Q by applying the splitting and balancing rules alternately. TQ has the
following properties.

(i) The side lengths of two neighboring leaf cells differ by at most a factor two.

(ii) Every pair of leaf cells whose cores are in the same cluster are neighbors. Hence, each
cluster consists of at most 2d cores, and the side lengths of two cores in the same cluster
differ by at most a factor two.

(iii) Suppose that P conforms to TQ. For every non-empty leaf cell C of TQ, let X denote
the cluster that contains core(C), if Q ∩ X and Q \ X contain sample points from the
same connected component of M, then for a small enough ε, `C ≤ 2d · 20εf(p) for every
p ∈ Q ∩ C.

Proof. Property (i) follows from the octree construction. Let X be a cluster. Define X =
{non-empty leaf cell C : core(C) ⊆ X}. We show that every two cells in X are neighbors, and
then (ii) follows.

Let K be a maximal subset of X such that the cores of cells in K are connected and every
two cells in K are neighbors. If K = X , we are done. Otherwise, we can find a cell C1 ∈ X \ K
such that core(C1) is connected to the core of some cell in K. Pick C2 ∈ K that maximizes
w = d∞(C1, C2), where d∞ denotes the L∞ distance function. We have w > 0 by the maximality
of K. Take an axis-aligned slab L of width w that separates C1 and C2. Let KL ⊆ K be the
subset of cells that overlap with this slab. Let `min and `max be the side lengths of the smallest
and largest cells in KL, respectively.

We first show that |KL| ≤ 2d−1. Take the hyperplane H that bounds the slab L and contains
a boundary facet of C2. Notice that {H ∩ core(C) : C ∈ KL} is a collection of disjoint (d− 1)-
dimensional boxes that have a non-empty common intersection in H. One can pack at most
2d−1 boxes in such a configuration. Figure 2(a) shows a two-dimensional example in which 2d−1

cells in KL share a common vertex of C2.
We claim that w ≥ `max/2. Let C be the largest cell in KL. If C1 is not a neighbor of C,

then w ≥ d∞(C,C1) ≥ `C/2 = `max/2. Suppose that C1 is a neighbor of C. Then `C1 ≥ `C/2.
Also, C2 and C are neighbors as they belong to K, so `C2 ≥ `C/2. The octree alignment implies
that d∞(C1, C2) ≥ min{`C1 , `C2} ≥ `C/2 = `max/2.

Suppose that |KL| < 2d−1 or w ≥ `max. Since the cores of the cells in X are connected,
the gap between C1 and C2 is bridged by the cores of the cells in KL. The side lengths of
cores of cells in KL are at most 2d`max. Then d∞(C1, C2) ≤ |KL|2−d`max. If |KL| < 2d−1,
then d∞(C1, C2) < `max/2 ≤ w. Otherwise, w ≥ `max by assumption and |KL| = 2d−1, so
d∞(C1, C2) = `max/2 < w. In either case, we obtain a contradiction to the definition of w. The
remaining possibility is that |KL| = 2d−1 and w = `max/2. If `min < `max, then `max = 2`min.

6



`max `max

(a) (b)

w

C1

C2

w

`min

C1

C2

Figure 2: The shaded boxes are cells in KL. In (a), these cells share the lower left vertex of C2.
In (b), C1 is at L∞-distance `max from the left shaded box.

At least one cell in KL has side length `min and its core has side length at least 2−d`min. But
then

d∞(C1, C2) ≤ (|KL| − 1)2−d`max + 2−d`min

≤ 2d−1 − 1 + 1/2

2d
`max

< `max/2

= w.

Again, this contradicts the definition of w. If `min = `max, then since |KL| = 2d−1, the cores in
{core(C) : C ∈ KL} form a full packing of disjoint boxes of equal sizes around a single point.
Therefore, there exits a cell in KL that is at L∞ distance `max > w from C1. Refer to Figure 2(b)
for an illustration. This contradicts the choice of C2 to maximize d∞(C1, C2). This establishes
property (ii).

Consider (iii). If Q∩X and Q\X contain sample points from the same connected component
S, then P ∩X and P \X contain sample points from S too as P conforms to TQ by assumption.
Lemma 2.2(i) implies that d(X,P \ X) ≤ 4εf(q) for some q ∈ P ∩ X = Q ∩ X. Let C be
an arbitrary non-empty leaf cell such that core(C) ⊆ X. By (ii), the smallest core in X has
side length at least 1

2`core(C). Since the distance between X and any core not in X is at least
half of the side length of the smallest core in X, we have 1

4`core(C) ≤ d(X,P \X) ≤ 4εf(q), or
equivalently,

`core(C) ≤ 24εf(q). (3.1)

Take any p ∈ Q ∩ C = Q ∩ core(C). By (i) and (ii), the cells containing p and q are neighbors,
and their side lengths are within a factor of two. Therefore, the difference between p and q in any
coordinate is at most 2d+1`core(C) ≤ 2d+5εf(q). It follows that d(p, q) ≤ 2d+4

√
dεf(q). Then,

the 1-Lipschitzness of local feature size implies that f(q) ≤ f(p)+d(p, q) ≤ f(p)+2d+4
√
dεf(q).

Therefore, for a small enough ε, we get f(q) ≤ 5
4f(p). Substituting this inequality into (3.1)

gives `C = 2d`core(C) ≤ 2d · 20εf(p).

3.2 Other octrees

If we know thatM is connected, then by Lemma 3.1(iii), the leaf cells of TP are small enough
(with respect to local feature size) for the purpose of obtaining a locally uniform sample by
decimation. However, since we do not know whether M is connected, we need to build an
octree for each cluster of TP in a recursive manner. In general, after building an octree TQ

7



C1

Ĉ1

(a) (b) (c)

C1 Ĉ1

Figure 3: The shaded cores form a cluster. In (a) and (b), there is a core C1 that is smaller
than other cores, so `

Ĉ1
= 2`C1 . In (a), I = ∅; in (b), I is a point; in (c), I is a segment. The

box with dashed boundary is CX , whose center is shown as a white dot.

for a subset Q ⊆ P , for each cluster X in TQ that contains more than one sample point, we
recursively build TQ∩X by initializing an octree of O(1) levels, followed by alternate splitting
and balancing. The initialization is important. It ensures that no cell of TQ∩X contains sample
points from different cores in X, which helps to achieve the O(n log n) running time stated in
Lemma 3.4. The initialization works as follows.

By Lemma 3.1(ii), there are at most 2d cores in X. Label them Ci for i = 1, 2, · · · . Let `max

be the side length of the largest core in X. Lemma 3.1(ii) implies that every core Ci has side
length `max or `max/2. For each core Ci, let Ĉi be the canonical box (with respect to TQ) such
that `

Ĉi
= `max, and Ci ⊆ Ĉi. The box Ĉi is contained in the leaf cell of TQ whose core is Ci,

so Ĉi and Ĉj have disjoint interiors for i 6= j. Let I =
⋂
i Ĉi, which can be computed in O(1)

time. See Figure 3. We construct the root cell CX of TQ∩X and the initial octree according to
the type of I as follows.

If I is a d-dimensional cube (i.e., X contains only one core), set CX to be a smallest axis-
aligned d-dimensional bounding cube of Q ∩X. And CX alone is the initial octree.

The remaining possibilities are that I is empty or a k-dimensional cube for some k ∈ [0, d−1].
We define a special point v as follows. If I is empty, then set v to be an arbitrary corner of an
arbitrary Ĉi; otherwise, set v to be an arbitrary vertex of I which must be a vertex of Ĉi for
some i. Then, set CX to be a smallest axis-aligned d-dimensional cube with v as the center such
that CX contains all Ĉi. Figure 3 shows some examples. By Lemma 3.1(ii), there are at most
2d Ĉi and and they are connected. So `CX

≤ 2d`max. We use CX as the octree root cell and
then split CX repeatedly until each leaf cell has size `max/2. This gives the initial octree, which
has O(1) levels.

After building the initial octree, we split and balance alternately to obtain the final octree
TQ∩X . Pointers are added between neighboring octree cells in TQ∩X with the same side length.
We then recurse on the clusters in TQ∩X that contain more than one sample point.

Lemma 3.2. Given TQ and a cluster X in TQ, the following properties are valid.

(i) The initial octree for TQ∩X has O(1) levels. For each leaf cell of the initial octree, either
it is empty of Q ∩X or it contains points of Q ∩X from exactly one core in X.

(ii) There are two or more clusters in TQ∩X , or the sample points in some core in X are divided
into two or more leaf cells of TQ∩X .

(iii) All leaf cells of the initial octree are not larger than the smallest core in X.

8



Proof. Recall that the Ci’s denote the cores in X, `max is the side length of the largest core
in X, Ĉi denotes the canonical box that contains Ci and has side length `max, and I =

⋂
i Ĉi.

Also, CX denotes the root cell of the initial octree.
Consider (i). The number of levels follows from the preceding description. If I is a d-

dimensional cube, then X contains only one core and so property (i) is trivially true. If I is
empty or a k-dimensional cube for some k ∈ [0, d − 1], then CX is a d-dimensional cube that
contains all Ĉi and CX is aligned with the hyperplanes that contain the boundaries of cells in
TQ. By Lemma 3.1(ii), every Ci has side length `max/2 or `max. Therefore, after splitting CX
into leaf cells with side lengths `max/2, for every such leaf cell C, either C = Ci for some i, or
C ⊂ Ci for some i, or the interior of C is disjoint from the interior of Ci for all i. This establishes
property (i).

Consider (ii) in the case that I is empty. We show that there are two or more clusters in
TQ∩X . Assume to the contrary that there is only one cluster in TQ∩X . Then, by Lemma 3.1(ii),
the non-empty leaf cells of TQ∩X are neighbors of each other. This implies that the Ĉi’s must
also be neighbors of each other. But then I should be non-empty, a contradiction.

Consider (ii) in the case that I is non-empty. If I is a d-dimensional cube, then X has only
one core and CX is a smallest axis-aligned d-dimensional bounding cube of Q ∩ X. It implies
that CX is splittable and that when we split CX , the sample points in X will be divided into
two more more children of CX . The sample points will subsequently go into two or more leaf
cells of TQ∩X . If I is a k-dimensional cube for some k ∈ [0, d− 1], the center of CX is a vertex
v of I and CX is aligned with the hyperplanes that contain the boundaries of cells in TQ. Since
I =

⋂
i Ĉi, there exists an axis-aligned hyperplane through I that separates Ĉi and Ĉj for some

i and j. Therefore, when we divide CX into 2d cells of equal size, the sample points in CX
cannot lie in only one of these 2d cells. It implies that when we split CX repeatedly into leaf
cells of size `max/2 to form the initial octree, the sample points in X will be divided into two or
more leaf cells of the initial octree. In particular, the sample points in the largest core in X (i.e.,
with size `max) fall into two or more leaf cells of the initial octree. Subsequently, these samples
points go into two or more leaf cells of TQ∩X .

Consider (iii). If I is a d-dimensional cube, then there is only one core in X, CX is the
only leaf cell of the initial octree, and CX is a a smallest axis-aligned bounding cube of Q ∩X.
Therefore, CX is not larger than the core in X. In other cases, the smallest core in X has side
length `max/2 or more and the leaf cells of the initial octree have side lengths `max/2.

Next, we show that P conforms to all octrees obtained in the above recursive construction.

Lemma 3.3. P conforms to all octrees constructed by the recursive procedure described above.

Proof. We prove the lemma by induction. P conforms to TP , so the base case holds. Suppose
that P conforms to TQ for a subset Q ⊆ P . Let X be any cluster in TQ. By the construction
of TQ∩X , it is clear that the first condition in Definition 4 is satisfied. We check the second
condition of Definition 4.

Let C be the smallest core in X. Let CX be the root cell of TQ∩X . By Lemma 3.1(ii), X
contains at most 2d cores and each core has side length `C or 2`C . It follows that `CX

≤ 2d+1`C .
The distance between X and any other cluster in TQ is at least `C/2 by the octree alignment.
Therefore,

d(X,Q \X) ≥ `C/2 ≥ 2−d−2`CX
. (3.2)

Since P conforms to TQ by induction assumption and the root cell of TQ is at least as large as
CX , the second condition in Definition 4 implies that

d(Q,P \Q) ≥ 2−d−2`CX
. (3.3)

9



Recall that Q ∩X = P ∩X. Therefore,

d(Q ∩X,P \ (Q ∩X)) = d(Q ∩X,P \X)

= min{d(Q ∩X,Q \X), d(Q ∩X,P \Q)}
≥ min{d(X,Q \X), d(Q,P \Q)}
≥ 2−d−2`CX

. (∵ (3.2) & (3.3))

Thus, TQ∩X also satisfies the second condition in Definition 4.

We use the properties of the octrees established above to prove that the total size of the
octrees is O(n) and it takes only O(n log n) time to construct them, as stated in Lemma 3.4
below. The proof is quite long though. Therefore, we postpone it to section 6 and move on to
the surface reconstruction algorithm in the next section.

Lemma 3.4. The total size of the octrees is O(n). The total construction time is O(n log n).

4 Surface Reconstruction

In this section, Σ denotes a 2-manifold in R3 that may consist of multiple surfaces. Let P denote
an ε-sample drawn from Σ.

We first compute TP and the other octrees as described in the previous section. Then we call
Reconstruct(TP ) to perform the surface reconstruction. The pseudocode of Reconstruct
is given in Algorithm 1. Given an octree TQ constructed for some Q ⊆ P , Reconstruct(TQ)
performs three steps.

Algorithm 1 Reconstruct(TQ)
1: for all cluster X in TQ do
2: flag ← Reconstruct(TQ∩X)
3: if flag = true then
4: Remove Q ∩X from TQ.
5: end if
6: end for
7: if TQ still contains some sample points then
8: (flag,T Q)← Trim(TQ) // T Q is the tree after the trimming
9: if flag = true then

10: UQ ← Extract(T Q) //UQ is a locally uniform subsample
11: Reconstruct the surfaces from which UQ is sampled.
12: return true // reconstruction succeeds
13: else
14: return false // reconstruction fails
15: end if
16: else
17: return true // nothing else to process
18: end if

First, for every cluster X in TQ, we call Reconstruct(TQ∩X) recursively to reconstruct
the surfaces whose sample points are completely contained in TQ∩X . We will show later in
Lemma 4.1 that if a cluster contains a partial sample, it contains a partial sample of exactly one
surface and no sample point from any other surface. Therefore, if TQ∩X contains some complete

10



samples, then TQ∩X contains complete samples only and the reconstruction of the corresponding
surfaces will be successful. The sample points on these surfaces are then removed from TQ. The
remaining sample points can be treated as an independent input. This explains the removal of
Q ∩X in line 4.

Second, we call Trim(TQ), which returns true if and only if the remaining sample points in
TQ form complete samples of some surfaces. In addition, Trim(TQ) prunes TQ to remove the
cells that are too small with respect to the local sampling density. Pruning also helps to decide
whether Trim should return true or false. Intuitively, if the remaining sample points contain
a partial sample from some surface, then since the root cell of TQ is induced by a cluster in the
“parent octree”, there must be a large gap between points in this cluster and other sample points
from the same surface. This gap detection is done in a bottom-up manner in TQ. If a non-empty
leaf cell C is near a gap on the estimated tangent plane for points in C and this gap is large
relative to `C , then C is “too small” with respect to the local sampling density. So we remove C
and make parent(C) a new leaf cell. Repeating the above prunes TQ to T Q. We will prove that
Trim(TQ) should return true if and only if T Q contains more than one node.

Third, if Trim(TQ) returns false, then Reconstruct(TQ) aborts and returns false. On
the other hand, if Trim(TQ) returns true, we proceed to reconstruct the surfaces with complete
samples in T Q. The pruning by Trim ensures that all non-empty cells in T Q have the right
sizes with respect to the local sampling density. Thus, we can traverse T Q to smooth the side
lengths of non-empty leaf cells by pruning the tree further. Finally, one arbitrary point is picked
from each non-empty leaf cell to form a locally uniform sample. We then perform steps 2 and 3
described in the overview in beginning of Section 2.2 to reconstruct the surfaces.

Before elaborating on the procedures Trim and Extract in lines 8 and 10 in Reconstruct
in the following subsections, we prove Lemma 4.1 which has been alluded to earlier.

Lemma 4.1. Let P be an ε-sample of Σ. Let Q be a arbitrary subset of P . Suppose that P
conforms to TQ and ε is sufficiently small. For every cluster X in TQ, if X contains a partial
sample of some surface, then X does not contain any sample point from any other surface in Σ.

Proof. Let S be a surface with a partial sample in X. Pick a point p ∈ S∩X. By Lemma 3.1(iii),
the non-empty leaf cell that contains p has size at most 160εf(p). Lemma 3.1(ii) implies that the
size of the largest core in X is at most 40εf(p), and the diameter of X is at most 320

√
3εf(p).

Assume to the contrary that X contains a sample point q from another surface in Σ. Since the
medial axis of Σ separates the surfaces in Σ, the line segment pq must cross the medial axis.
But then 320

√
3εf(p) ≥ d(p, q) ≥ f(p), which is impossible for a small enough ε.

4.1 Tree Trimming

Before calling Trim(TQ) in Reconstruct(TQ), we have recursively reconstructed surfaces
whose sample points are contained in the clusters of TQ and removed these sample points.

Consider a non-empty leaf cell C of TQ. It contains only a partial sample from some surface
because the sample points in C would have been removed otherwise. Thus, `C ≤ 160εf(q) for
every point q ∈ Q ∩ C by Lemma 3.1(iii).

Refer to the pseudocode of Trim in Algorithm 2. The algorithm puts non-empty leaf cells in
a list L and then examine them one by one. Let C be the current non-empty leaf cell. Partition
B∞(c, 2.5`C) into a set {Ri : 1 ≤ i ≤ 53} of canonical cubes of side length `C .

As shown in steps 10–15, we first estimate the surface normal at a point p ∈ Q ∩ C: find
two sample points pi and pj in some Ri and Rj , respectively, such that ∠pippj is neither too
large nor too small so that nppipj is a good estimate by Lemma 2.1(ii). If the surface normal
estimation fails, we call MakeLeaf to make parent(C) a leaf cell. Otherwise, we look for a

11



Algorithm 2 Trim(TQ)
1: T Q ← TQ
2: L← list containing all non-empty leaf cells in T Q (in any order)
3: while L is not empty do
4: C ← ExtractFirst(L)
5: if C is the root of T Q then
6: return T Q // T Q only contains the root
7: end if
8: c← center(C)
9: //B∞(x, r) is the axis-aligned cube with center x and side length 2r.

10: Partition B∞(c, 2.5`C) into a set {Ri : 1 ≤ i ≤ 53} of canonical cubes of side length `C .
11: For each non-empty Ri, pi ← an arbitrary point in Q ∩Ri.
12: Note that C ∈ {Ri : 1 ≤ i ≤ 53}. Let p be the point picked in step 11 from Q ∩ C.
13: θ ← arccos(0.97)
14: if ∃ i, j ∈ [1, 53] such that ∠pippj lies in [θ, π − θ] then
15: ñp ← npippj
16: else // Normal estimation fails
17: Remove the non-empty leaf cells in the subtree of parent(C) from L.
18: MakeLeaf(parent(C))
19: L← L ∪ {parent(C)}
20: continue // skip the following and go to line 4 for the next cell
21: end if
22: H ← plane through p and orthogonal to ñp
23: U ← union of empty cubes Ri
24: if ∃x ∈ H such that B∞(x, 1

16`C) ⊆ U then
25: Remove the non-empty leaf cells in the subtree of parent(C) from L.
26: MakeLeaf(parent(C))
27: L← L ∪ {parent(C)}
28: end if
29: end while
30: return T Q

Algorithm 3 MakeLeaf(C) // Turn C to a leaf
1: Discard the subtree rooted at C.
2: Regard the sample points in the descendants of C as sample points in C.

12



Figure 4: Ri is the disjoint union of Gi,0, Gi,1, Gi,2 and Gi,3. The first figure is Gi,0. The second
figure is Gi,1. The third figure is Gi,2, which consists of six slabs. There is a rectangular hole in
the middle. The last figure is Gi,3, which fits into the hole in Gi,2.

“big gap” on the estimated tangent plane and if there is one, we also make parent(C) a leaf cell.
MakeLeaf and steps 17–19 of Trim work by removing the descendants of parent(C) from the
list L and make parent(C) a leaf.3 Let H denote the estimated tangent plane at p. Let U denote
the union of non-empty Ri’s. We say that there is a “big gap” on H if there is a point x ∈ H
such that B∞(x, 1

16`C) ⊆ U (step 24 of Trim).
The detection of such a B∞(x, 1

16`C) in U can be done in O(1) time as follows. Divide
the empty Ri’s into canonical cubes of side length 1

16`C . Put these smaller empty cubes into
four groups Gi,m for m ∈ [0, 3] such that Gi,m is the union of the cubes that intersect an m-
dimensional face of Ri but not any face of Ri with dimension less than m. Figure 4 shows an
example. Each Gi,m consists of several elements of the same kind. Gi,3 is one cube in the interior
of Ri with side length 14

16`C , Gi,2 consists of six rectangular slabs in contact with the facets of Ri,
Gi,1 consists of twelve rectangular rods in contact with the edges of Ri, and Gi,0 consists of eight
cubes in contact with the vertices of Ri. Assume that the plane H intersects an empty Ri. Then,
H intersects an element K of Gi,m for some m ∈ [0, 3] (i.e., a cube for m = 0, a rod for m = 1, a
slab form = 2, and a cube form = 3). There exists a point x ∈ H∩K such thatB∞(x, 1

16`C) ⊆ U
if and only if there are 23−m cubes in the set {Rj ⊆ U : Rj touches or contains K}. Figure 5
shows an example. So testing whether there is such an empty cube B∞(x, 1

16`C) takes O(1)
time.

A leaf cell C is trimmed when the normal estimation for the point picked in C fails (line 16
of Trim) or when a “big gap” is found (line 24 of Trim). Lemmas 4.2 and 4.3 below show
that C is small in either case, and so it is safe to trim C and perform at parent(C) the normal
estimation and the check for a “big gap”.

We first state and prove Lemma 4.2 that applies when the normal estimation for point picked
in C fails in line 16 of Trim.

Lemma 4.2. Consider the call Trim(TQ) for some Q ⊆ P such that P conforms to TQ. Let
C be the octree cell currently being processed in the while-loop in lines 3–29 of Trim. Suppose
that there exists a constant λ ≥ 1 such that `C ≤ λεf(q) for every point q ∈ Q ∩ C. If the
normal estimation in Trim fails for C and ε is small enough, then `C ≤ 20εf(q) for every point
q ∈ Q ∩ C.

Proof. Let p be the sample point in C that is picked for the normal estimation. For 1 ≤ i ≤ 53,
let Ri denote the canonical cubes in the partition of B∞(c, 2.5`C) into cubes of side length `C .
According to the algorithm, we have picked at most one sample point pi from every non-empty
Ri. There are two cases.

3Every octree cell keeps a linked list of samples points in it. When a cell A is removed during the trimming
of an octree, the linked list of sample points at A is appended to the linked list of sample points at parent(A) in
O(1) time.

13



B∞(x, 1
16
`C)

K ⊆ G4,1R1 R2

R3 R4K

x

Figure 5: The point x lies in a rod K in G4,1. R1, R2, R3 and R4 are the four cubes in contact
with K. Since the base side length of K is `C/16, the box B∞(x, 1

16`C) must intersect all these
four cubes. Moreover, it is contained in the union of these four cubes. Thus, B∞(x, 1

16`C) ⊆ U
if and only if these four cubes belong to U .

p

pi

x

θ

D

2�C − r

Figure 6: The distance between x and any pick is at least d(x, p) cos θ.

The first possibility is that there exists i ∈ [1, 53] such that Ri 6= C and a sample point pi
is picked successfully for Ri. Let x be a point in Σ such that px is perpendicular to ppi and
d(p, x) = 2`C − r, where r = 0.1`C . Such a point x exists in the neighborhood of p in the
intersection of Σ and the plane through p perpendicular to ppi.

Suppose that B(x, r) ∩ P = ∅. It follows from ε-sampling that εf(x) > r = 0.1`C , or
equivalently `C < 10εf(x). For every sample point q ∈ C,

d(x, q) ≤ d(x, p) + d(p, q) ≤ 2`C − r +
√

3`C < 4`C < 40εf(x).

Then, f(q) ≥ f(x)− d(x, q) > (1− 40ε)f(x). Therefore, when ε is small enough,

`C < 10εf(x) <
10εf(q)

1− 40ε
< 20εf(q).

Suppose that B(x, r) ∩ P 6= ∅. We first show that B(x, r) ∩ P ⊆ P \ Q. The ball B(x, r)
is completely outside C, and the furthest distance between a point in B(x, r) and C is at most
r + d(p, x) = 2`C . It follows that that B(x, r) lies inside B∞(c, 2.5`C), where c is the center of
C. Therefore, if B(x, r) contains any sample point in Q, that sample point must lie in Rj for
some j. In the following, we argue that the sample points in Q∩Rj for all j are outside B(x, r).
Let θ = arccos(0.97). Consider the double cone with p as the apex, aperture π − 2θ, and the
support line of px as the axis. Let D be the complement of this double cone. See Figure 6.
Since we cannot find a pick pj such that ∠pippj ∈ [θ, π − θ], D must contain the pick pj for all
non-empty Rj . Thus, for every non-empty Rj ,

d(x, pj) ≥ d(p, x) cos θ = (2`C − r) cos θ.

14



Every sample point in Q ∩Rj is at distance
√

3`C or less from pj . Therefore, the distance from
x to any sample point of Q in any non-empty Rj (including C) is at least

d(x, pj)−
√

3`C ≥ (2`C − r) cos θ −
√

3`C > r.

This shows that B(x, r) cannot contain any sample point in Q. As a result, B(x, r)∩P ⊆ P \Q.
We are ready to show that `C ≤ 20εf(q) for all sample point q ∈ Q ∩ C in the case that

B(x, r) ∩ P 6= ∅. Let p′ be a sample point in B(x, r) ∩ P . Let CQ be the root cell of TQ. Since
P conforms to TQ, d(Q,P \Q) ≥ 2−5`CQ

by condition (ii) in Definition 4. Then

d(x, p) ≥ d(p, p′)− d(x, p′) ≥ d(Q,P \Q)− r ≥ 2−5`CQ
− r. (4.1)

Since x ∈ B∞(c, 2.5`C) and p ∈ C, the distance between p and x is at most 3
√

3`C . Combining
with (4.1) gives

2−5`CQ
− r ≤ 3

√
3`C ⇒ `C > 2−8`CQ

. (4.2)

By assumption of the lemma, `C ≤ λεf(q) for every point q ∈ Q ∩ C. By (4.2), CQ has side
length `CQ

< 28`C < 28 · λεf(q)) for every point q ∈ Q ∩ C. Therefore, for a small enough
ε, CQ cannot contain a complete sample from any surface in Σ. By the recursive construction
of octrees, CQ contains at most eight cores {core(C1), core(C2), . . .} in some non-empty leaf
cells C1, C2, . . . in some “parent” octree tree. None of these Ci’s contains a complete sample
from any surface in Σ because CQ does not. By Lemma 3.1(iii), `Ci ≤ 160εf(q) for every
point q ∈ Q ∩ Ci. By Lemma 3.2(i) and (iii), for each leaf cell of the initial octree rooted at
CQ, it contains sample points from only one core(Ci) and it is not larger than the smallest
core(Ci). The cell C is a descendant of a leaf cell of the initial octree rooted at CQ. Therefore,
`C ≤ (160εf(q))/8 = 20εf(q) for every point q ∈ Q ∩ C.

The remaining possibility is that for all i ∈ [1, 53] such that Ri 6= C, we cannot pick a sample
point pi from Ri. That is, Q ∩ Ri = ∅ for all Ri 6= C. We set x to be an arbitrary point in Σ
such that d(p, x) = 2`C − r. Then, we can repeat the previous analysis for the possibility that
we successfully pick a sample point pi from Ri for some i ∈ [1, 53]. Since Q ∩ Ri = ∅ for all
Ri 6= C, the analysis for the case of B(x, r) ∩ P 6= ∅ can be simplified.

Next, we state and prove Lemma 4.3 that shows that the cell C is small when a “big gap”
is detected in line 24 of Trim. Recall that U is the union of the non-empty cubes Ri’s in the
partition of B∞(c, 2.5`C) into cubes of side lengths `C .

Lemma 4.3. Consider the call Trim(TQ) for some Q ⊆ P such that P conforms to TQ. Let C
be the octree cell currently being processed in the while-loop in lines 3–29 of Trim. Suppose that
there exists a constant λ ≥ 1 such that `C ≤ λεf(q) for every point q ∈ Q∩C. If Trim obtains
an estimated tangent plane H in line 22 and U contains an empty B∞(x, 1

16`C) for some x ∈ H
and ε is small enough, then `C ≤ 20εf(q) for every point q in Q ∩ C.

Proof. Let p denote the point picked for C for normal estimation. Since p ∈ C and x ∈
B∞(c, 2.5`C), where c is the center of C, we obtain d(p, x) = O(`C) = O(εf(p)) by the assump-
tion of the lemma that `C ≤ λεf(q) for all q ∈ Q∩C. Let x′ be the projection of x in the plane
tangent to Σ at p. Let x̃ be the point in Σ nearest to x′. By Lemma 2.1(ii), H makes an O(ε)
angle with the tangent plane at p, so

d(x, x′) = O(ε d(p, x)) = O(ε`C) = O(ε2f(p)).

Therefore,
d(p, x′) ≤ d(p, x) + d(x, x′) = O(`C) = O(εf(p)).

15



By Lemma 2.1(iii),
d(x′, x̃) = O(εd(p, x′)) = O(ε`C) = O(ε2f(p)).

It follows that
d(x, x̃) ≤ d(x, x′) + d(x′, x̃) = O(ε`C) = O(ε2f(p)).

Suppose that B(x̃, 1
16`C − d(x, x̃)) ∩ P = ∅. It follows from ε-sampling that εf(x̃) ≥ 1

16`C −
d(x, x̃), implying that `C ≤ 16εf(x̃) + 16 d(x, x̃). Since d(p, x̃) ≤ d(p, x) + d(x, x̃) = O(εf(p)),
we obtain f(x̃) ≤ f(p) + d(p, x̃) ≤ (1 + O(ε))f(p). It follows that `C ≤ (16ε + O(ε2))f(p).
For every point q ∈ Q ∩ C, by the assumption of the lemma that `C ≤ λεf(q), we obtain
d(p, q) ≤

√
3`C = O(εf(q)), and so f(p) ≤ f(q) + d(p, q) = (1 + O(ε))f(q). Hence, for a small

enough ε,
`C ≤ (16ε+O(ε2))f(p) ≤ 16ε(1 +O(ε))2f(q) ≤ 20εf(q).

Suppose that B(x̃, 1
16`C−d(x, x̃))∩P 6= ∅. Observe that B

(
x̃, 1

16`C−d(x, x̃)
)
⊂ B

(
x, 1

16`C
)
⊂

B∞
(
x, 1

16`C
)
. As B∞(x, 1

16`C) is empty by assumption, we conclude that B
(
x̃, 1

16`C − d(x, x̃)
)
∩

Q = ∅. It follows that B(x̃, 1
16`C−d(x, x̃))∩P ⊆ P \Q. Let CQ be the root cell of TQ. Notice that

C contains a point in Q, namely p, and B∞(c, 2.5`C) contains a point in P \Q, namely a point in
B(x̃, 1

16`C−d(x, x̃))∩P . Therefore, the diameter of B∞(c, 2.5`C) is at least d(Q,P \Q) ≥ 2−5`CQ

by condition (ii) in Definition 4. That is, 5
√

3`C ≥ 2−5`CQ
, or equivalently `C ≥ `CQ

/(255
√

3).
Therefore, we are in a similar setting as equation (4.2) in the proof of Lemma 4.2. We can apply
the argument in the rest of the paragraph following equation (4.2) in the proof of Lemma 4.2 to
show that for a small enough ε, `C ≤ 20εf(q) for every point q ∈ Q ∩ C.

Before calling Trim(TQ), Reconstruct(TQ) has recursively reconstructed from every com-
plete sample that reside in a cluster of TQ and subsequently removed such samples. That is,
every cluster of the current TQ contains a partial sample of exactly one surface by Lemma 4.1.
At the beginning of the call Trim(TQ), Lemma 3.1(iii) implies that every non-empty leaf cell
satisfies the size condition in Lemmas 4.2 and 4.3. We will show that if C is trimmed, then
the size condition in Lemmas 4.2 and 4.3 will be satisfied again by parent(C). Therefore, Lem-
mas 4.2 and 4.3 are applicable to parent(C) when we repeat the normal estimation and possibly
trimming at parent(C).

Lemma 4.4 below shows several properties of the tree T Q returned by Trim(TQ). First, each
non-empty leaf cell is small with respect to the local feature sizes at the sample points in it.
Second, the non-empty leaf cells are not too small relative to local sampling density. Third, T Q
includes a partial sample on some surface in Σ if and only if Trim(TQ) returns false.

Lemma 4.4. Consider the call Trim(TQ) for some Q ⊂ P invoked by Reconstruct. Let T Q
be the tree returned by Trim(TQ). Assume that ε is small enough.

(i) The call runs in O(|TQ|) time. For every non-empty leaf cell C of T Q and every point
q ∈ Q ∩ C, `C ≤ 50εf(q). Hence, the sample points in C form a partial sample of exactly
one surface.

(ii) Let x be a point in Σ. Let p be the nearest point in T Q to x. If d(p, x) = O(εf(x)) and
T Q contains more than one node, the non-empty leaf cell C in T Q that contains p satisfies
d(p, x) < 2`C .

(iii) If Trim(TQ) returns false, then the sample points in T Q form a partial sample of exactly
one surface. Conversely, if T Q contains a partial sample of a surface, then the sample
points in T Q form a partial sample of that surface only and Trim(TQ) returns false.

16



x py

CB(y, r)

B(p,
√
3�C)

Figure 7: Proof of Lemma 4.4(ii).

Proof. Consider (i). The running time follows from the description of the algorithm. At the
beginning of the call Trim(TQ), every non-empty leaf cell C ′ satisfy `C′ ≤ 160εf(q) for every
point q ∈ Q∩C ′ by Lemma 3.1(iii), satisfying the conditions in Lemmas 4.2 and 4.3. These two
lemmas imply that `C′ ≤ 20εf(q) for every q ∈ Q ∩ C ′. Therefore, `parent(C′) = 2`C′ ≤ 40εf(q)

for every point q ∈ Q ∩ C ′. For every point q′ in parent(C ′) but not in C ′, d(q, q′) ≤ 2
√

3`C′ =
O(εf(q)). Therefore, f(q′) ≥ f(q) − d(q, q′) ≥ (1 − O(ε))f(q), which implies that for a small
enough ε,

`parent(C′) ≤ 40εf(q) ≤ 40(1 +O(ε))f(q′) < 50εf(q′).

Hence parent(C ′), being a new non-empty leaf cell, satisfy the size conditions in Lemmas 4.2
and 4.3. Inductively, we conclude that `C ≤ 50εf(q) for every non-empty leaf cell C of T Q and
for all q ∈ Q ∩ C.

The size of C is too small for it to contain a complete sample. So C contains a partial sample
of a surface. If C contains sample points p and q from two different surfaces, then d(p, q) ≥ f(q)
because the line segment pq must then intersect the medial axis of Σ. But this is impossible
when ε is sufficiently small because `C ≤ 50εf(q).

Consider (ii). Suppose that d(p, x) ≥ 2`C , where C is the non-empty leaf cell of T Q that
contains p. We will show that C is the only node in T Q, a contradiction to the assumption that
T Q contains more than one node.

Refer to Figure 7. Let y be the point on the segment px such that d(p, y) =
√

3`C + r, where
r = (1 −

√
3/2)`C . The distance between any point in B(y, r) and C is at most r + d(p, y) =

2r +
√

3`C = 2`C . Therefore, B(y, r) ⊂ B∞(c, 2.5`C), where c is the center of C.
Let L be the plane tangent to Σ at p. Let y′ be the projection of y in L. Since d(p, x) =

O(εf(x)), f(x) ≤ 2f(p) for a small enough ε. Therefore, d(p, x) = O(εf(x)) = O(εf(p)) and
Lemma 2.1(i) implies that px makes an O(ε) angle with L. This gives d(y, y′) = O(εd(p, y)) =
O(ε`C), which is less than r − (

√
3/16)`C for a small enough ε. So

B∞
(
y′,

1

16
`C

)
⊂ B

(
y′,

√
3

16
`C

)
⊆ B

(
y,

√
3

16
`C + d(y, y′)

)
⊆ B(y, r) ⊂ B∞(c, 2.5`C).

Recall the partition of B∞(c, 2.5`C) into the set {Ri : 1 ≤ i ≤ 53} of canonical cubes of side
length `C . If Ri intersects B∞(y′, 1

16`C), it also intersects B(y, r), which implies that

Ri ⊂ B(y,
√

3`C + r) = B(y, d(p, y)) ⊂ B(x, d(p, x)).

Since p is the nearest point of x in Q, B(x, d(p, x)) ∩ Q = ∅. It follows that Ri ∩ Q = ∅. So
B∞(y′, 1

16`C) is contained in the union of the empty Ri’s. But then this should have caused the
leaf cell C to be trimmed unless C is the only node in T Q. This completes the proof of (ii).

17



Consider (iii). Suppose that Trim(TQ) returns false. In this case, T Q contains the root
node only. By (i), the root (and hence T Q) contains the partial sample of exactly one surface.

As for the direction, suppose that T Q contains a partial sample of some surface in Σ. Then,
Q is a proper subset of P , so Q = Q0∩X for some cluster X of some octree TQ0 . Let CX be the
root cell of TQ and hence of T Q too. Since the sample points in T Q contains a partial sample, a
surface in Σ contains a sample point in X and a sample point outside X. Then, Lemma 3.1(iii)
implies that `CX

≤ 160εf(q) for every point in q ∈ Q0 ∩X = Q. Note that all sample points in
Q lie in CX . Let x be a point in Σ at distance 2`CX

from CX . Then for all q ∈ Q,

d(q, x) ≤ d(x,CX) +
√

3`CX
= (2 +

√
3)`CX

< 600εf(q).

The 1-Lipschitzness of f implies that f(q) ≤ f(x) + d(q, x) = f(x) + O(ε))f(q). Therefore,
d(q, x) = O(εf(x)). Take an arbitrary sample point q ∈ Q. Let C be the leaf cell of T Q that
contains q. CX contains C as CX is the root cell. Since x lies outside CX , we have

d(x,C) ≥ d(c, CX) = 2`CX
≥ 2`C .

This is the negation of the implication of (ii). Therefore, one of the two if-conditions is not sat-
isfied. Since d(q, x) = O(εf(x)), we conclude that T Q must have only one node, i.e., Trim(TQ)
returns false. Since T Q contains only the root cell, we conclude by (i) that the sample points
in T Q form a partial sample of exactly one surface.

By Lemma 4.4(iii), in line 8 of Reconstruct(TQ), if Trim(TQ) returns true, the sample
points in T Q must form complete sample(s) of some surface(s). Indeed, if T Q contains a partial
sample, then Trim(TQ) would have returned false by Lemma 4.4(iii). Therefore, it is correct to
reconstruct the surfaces from the samples in lines 10-11 in Reconstruct(TQ). Conversely, if the
sample points in T Q form complete sample(s) of some surface(s), then Trim(TQ) cannot return
false because the sample points in T Q would form a partial sample otherwise by Lemma 4.4(iii).

4.2 Subsample

In line 10 of Reconstruct(TQ), we need to extract a locally uniform sample UQ ⊆ Q by calling
Extract(T Q) in Algorithm 4. Let η = 3κuni, where κuni is the constant used in Definition 2
(locally uniform sample). In Extract, we examine non-empty leaf cells in non-increasing sizes.
For each non-empty leaf cell C examined, we find all the cells C ′ in the current tree such that
`C′ = 1

2`C and C ′ intersects B∞(c, η`C). There are only O(η3) = O(1) such cells C ′, and
they can be found in O(1) time using the pointers between neighboring octree cells of the same
size and the parent-child pointers. For every such C ′, we make it a new leaf by discarding its
descendants. Upon the completion of this tree traversal, we pick an arbitrary point from each
remaining non-empty leaf cell to form a locally uniform sample.

Lemma 4.5. Extract(T Q) computes in O(|T Q|) time a locally uniform O(ε)-sample UQ ⊆ Q
of the surfaces in Σ that contain the sample points in T Q.

Proof. It is clear that Extract runs in O(|T Q|) time. It remains to show that UQ is a locally
uniform O(ε)-sample.

We first show that UQ is an O(ε)-sample. Take any point x on the surface that contains a
sample point in T Q. We need to identify a point in UQ at distance O(εf(x)) from x.

Since Trim(TQ) succeeds before the invocation of Extract, by Lemma 4.4(iii), Q form
complete sample(s) for some surface(s). So Q is an ε-sample of these surfaces. Let p be a sample
point in Q such that d(p, x) ≤ εf(x). If p is included in UQ, we are done. Suppose not. Let
C1 be the non-empty leaf cell in the final T̂Q that contains p. Let (Ck, Ck−1, . . . , C1) be the

18



Algorithm 4 Extract(T Q)
1: T̂Q ← T Q
2: Start a breadth-first search of T̂Q at its root.
3: while the breadth-first search has not finished do
4: C ← current cell encountered in the breadth-first search
5: if C is a non-empty leaf cell then
6: c← center of C
7: for all octree cell C ′ in T̂Q such that `C′ = 1

2`C and it intersects B∞(c, η`C) do
8: MakeLeaf(C ′)
9: end for

10: end if
11: end while
12: UQ ← ∅
13: for all non-empty leaf cell C of T̂Q do
14: p← arbitrary point in Q ∩ C
15: UQ ← UQ ∪ {p}
16: end for
17: return UQ

maximal sequence of octree cells of TQ such that for i ∈ [2, k], the processing of Ci made Ci−1
a non-empty leaf cell of T̂Q during the execution of Extract. Notice that Ck is a non-empty
leaf cell of the input parameter T Q of Extract. For i ∈ [2, k], `Ci−1 = 1

2`Ci , and the distance
between any two points in Ci−1 and Ci is at most

√
3η`Ci +

√
3

2
`Ci +

√
3`Ci−1 =

√
3(η + 1)`Ci .

This implies that the distance between any two points in C1 and Ck is at most

k∑

i=2

√
3(η + 1)`Ci < 2

√
3(η + 1)`Ck

.

By Lemma 4.4(i), `Ck
≤ 50εf(q), where q is a sample point inQ∩Ck. Then d(p, q) < 2

√
3(η+

1)`Ck
≤ 100

√
3(η+1)εf(q). The Lipschitzness of f implies that d(p, q) = O(εf(q)). Let q′ be the

sample point in C1 that is included in UQ. We can reason as before to obtain d(q, q′) = O(εf(q)),
which further implies that f(q) = O(f(q′)). As a result, d(p, q′) ≤ d(p, q) + d(q, q′) = O(εf(q′)).
Therefore,

d(q′, x) ≤ d(p, x) + d(p, q′) ≤ εf(x) +O(εf(q′)).

Using f(q′) ≤ f(x) + d(q′, x), we obtain d(q′, x) = O(εf(x)). Thus, UQ is an O(ε)-sample.
We prove the local uniformity of UQ. (Refer to Definition 2.) For every sample point

p ∈ UQ, we need to show that |B(p, κunid(p, x)) ∩ UQ| = O(1) for all point x ∈ Σ such that
B(x, d(p, x)) ∩ UQ = ∅. Since B(x, d(p, x)) ∩ UQ = ∅, p is the nearest sample point in UQ to x.
We have d(p, x) = O(εf(x)) as UQ is an O(ε)-sample. Let C and C ′ be the non-empty leaf cells
in T̂Q and T Q, respectively, that contain p. Notice that C ′ ⊆ C as T̂Q is a subtree of T Q. By
Lemma 4.4(ii),

d(p, x) ≤ 2`C′ ≤ 2`C . (4.3)

19



Consider an arbitrary non-empty leaf cell C1 of T̂Q that intersects B(p, κunid(p, x)). Let c be
the center of C. We have

d(c, C1) < κunid(p, x) + d(p, c) ≤ κunid(p, x) +

√
3

2
`C < (2κuni + 1)`C ,

which is less than η`C because κuni > 1 and η = 3κuni. This implies that C1 intersects
B∞(c, η`C). We conclude that `C1 ≥ 1

2`C ; otherwise, C1 would have been removed in lines 7–10
of Extract. Then, a packing argument shows that O(1) non-empty leaf cells of T̂Q can inter-
sect B(p, κunid(p, x)), meaning that |B(p, κunid(p, x)) ∩ UQ| = O(1) as UQ contains one sample
point from each non-empty leaf cell of T̂Q.

4.3 Putting everything together

We summarize the algorithm and fill in some details in high level description of the reconstruction
algorithm in the overview in Section 2.2. Recall that there are two high-level steps:

• Step 1: Select a subset UP ⊆ P such that UP is a locally uniform O(ε)-sample of Σ.

• Step 2: For each sample point p ∈ UP , estimate the surface normal at p and construct
the Delaunay triangles incident to p (with respect to UP ) such that the dual Voronoi edge
of each such triangle τ intersects the cocones at all three vertices of τ . Then, traverse all
such triangles to extract a surface triangulation M by a simple linear time search [3].

We preprocess the input ε-sample P to recursively construct the “hierarchy” of octree trees
as described in Section 3. By Lemma 3.4, the octrees can be constructed in O(|P | log |P |) time
and they require O(|P |) storage. (The proof of Lemma 3.4 is given in Section 6.)

Afterwards, we call Reconstruct(TP ) to perform the reconstruction. In contrast with the
two high-level steps in Section 2.2, Reconstruct does not extract a locally uniform sample
from P all at once. Instead, by the recursive nature of Reconstruct, locally uniform samples
of surfaces in Σ are extracted from P at different times. Specifically, in Reconstruct, a
locally uniform sample of a surface is extracted in line 10 and then the corresponding surface is
reconstructed in line 11 by invoking step 2 described above. By Lemmas 4.4 and 4.5, the octrees
can be processed in O(|P |) time to extract locally uniform samples of all surfaces. We explain
below how to run step 2 above in time linear in the sizes of the locally uniform samples. Then,
our main result follows: a faithful reconstruction of Σ can be computed in O(|P | log |P |) time.
(Faithful reconstruction is defined in Definition 3.)

Let Q ⊂ P denote the subset of samples that lie on a surface in Σ. Let UQ be a locally
uniform sample extracted from Q obtained in line 10 of Reconstruct. Let Del(UQ) denote
the Delaunay triangulation of UQ. For every point p ∈ UQ, we use Cp-triangles to refer to the
set of triangles in Del(UQ) incident to p such that the dual Voronoi edge of each such triangle
τ intersects the cocones at all three vertices of τ . It suffices to describe how to compute the
Cp-triangles in order to run step 2.

By the results in [3], Delaunay triangles of UQ restricted to Σ are Cp-triangles, the normal
of every Cp-triangle makes an O(ε) angle with np, and the angle between the supporting planes
of every pair of Cp-triangles is O(ε).

Let τ be a Cp-triangle. Since the dual Voronoi edge of τ intersects the cocone at p, there
exists a circumball B of τ that is empty of vertices in UQ such that the center cB of B lies in
the cocone of p. Let Hτ denote the plane of τ . Since cB lies in the cocone of p, Hτ makes an
angle at most π/8 +O(ε) with the ray from p through cB. Therefore, for a small enough ε, we

20



have

d(cB, Hτ ) <
1

2
radius(B),

circumradius(τ) = Ω(radius(B)).

Consider the ray from p through the circumcenter of τ . Project this ray in the normal direction
of τ onto a restricted Delaunay triangle incident to p, say t. Let Ht denote the plane of t. Let
γt denote the projected ray in Ht. The ray γt makes an O(ε) angle with the diameter of the
disk B ∩Ht incident to p. Since γt cuts through the interior of t and B ∩Ht is empty of points
in UQ, the circumcircle of t must contain the segment γt ∩B ∩Ht. This implies that

circumradius(t) ≥ 1

2
length(γt ∩B ∩Ht) = Ω(radius(B ∩Ht)).

Since d(cB, Hτ ) < 1
2radius(B) and Ht makes an O(ε) angle with Hτ , we have d(cB, Ht) <

0.6 radius(B) for a small enough ε. It implies that radius(B ∩Ht) = Ω(radius(B)). This allows
us to bound the circumradius of τ :

circumradius(t) = Ω(radius(B ∩Ht)) = Ω(radius(B)) = Ω(circumradius(τ)).

Since t is a restricted Delaunay triangle incident to p, there is a circumball B′ of t that is centered
at a point in Σ. The ball B′ is empty of points in UQ. Let r′p be the radius of the largest ball
that is centered at a point in Σ, contains p in its boundary, and does not contain any point of
UQ in its interior. Therefore,

r′p ≥ radius(B′) ≥ circumradius(t) = Ω(circumradius(τ)).

By the above discussion, there exists constants c ≥ 1 and κuni ≥ c such that the Cp-triangles
satisfy the following properties:

(i) connect p to points in UQ that are within a distance of κuni2c r
′
p from p,

(ii) have circumradii no more than κuni
2c r

′
p, and

(iii) have circumballs empty of points in UQ with radii at most κuni
2 r′p.

Define Vp = {q ∈ UQ : d(p, q) ≤ κunir
′
p}. Then, we only need to compute triangles in Del(UQ)

that connect p to points in Vp. By property (iii) above, the Delaunayhood of any triangle that
satisfies properties (i) and (ii) above can be checked for Delaunayhood using the points in Vp only
(instead of the full set UQ). Consequently, it suffices to compute the Delaunay triangulation of
Vp, denoted by Del(Vp), which must contain all Cp-triangles. By locally uniformity, |Vp| = O(1).
Thus, Del(Vp) can be computed in O(1) time, and the triangles that satisfy properties (i)–(iii)
above can be extracted from Del(Vp) in O(1) time.

It is inconvenient to retrieve the exact Vp using our octrees. Fortunately, any superset of Vp
of O(1) size that is within a distance at least κunir′p from p works fine too. We retrieve such a
superset of Vp in O(1) time as follows. By (4.3), for all x ∈ Σ such that B(x, d(p, x)) ∩ UQ = ∅,
d(p, x) ≤ 2`C , where C is the leaf cell in the final T̂Q that contains p. It follows that r′p ≤ 2`C .
So B(p, κunir

′
p) ⊆ B(p, 2κuni`C) ⊂ B∞(c, η`C), where c is the center of C and η = 3κuni. As a

result, the points in Vp are contained in leaf cells of the final T̂Q that lie inside B∞(c, η`C). By
lines 7 and 8 of Extract, every cell in the final T̂Q that intersects B∞(c, η`C) has side length at
least 1

2`C . Therefore, we are looking for O(1) such leaf cells and we can find them using pointers
between neighboring octree cells of the same size and the parent-child pointers. Then, we can

21



find the sample points of UQ in the cells identified in O(1) time. These sample points contain
B(p, κunirp) ∩ UQ and hence form a superset of Vp of O(1) size. Denote this superset by Wp.

We compute Del(Wp) and extract the triangles incident to p that have empty circumballs with
radii at most κuni`C . Because such circumballs are contained in B(p, 2κuni`C) ⊂ B∞(c, η`C),
the extracted triangles from Del(Wp) are Delaunay triangles in Del(UQ). Since r′p ≤ 2`C , the
triangles extracted include all Cp-triangles. For each triangle τ extracted from Del(Wp), it
remains to whether the dual Voronoi edge of τ intersects the cocones at all three vertices of
τ . This requires us to compute the cocones at each p ∈ UQ, which boils down to estimating
the surface normals at each p ∈ UQ. Among the triangles extracted, let τ ′ be the one with
the minimum circumradius. Since all Cp-triangles are also extracted, by property (ii), the
circumradius of τ ′ is no more than κuni

2c r
′
p = O(εf(p)) as r′p = O(εf(p)). When ε is sufficiently

small, by Lemma 2.1(ii), the normal of τ ′ makes an O(ε) angle with np, and so the normal of τ ′

is a good estimation of np.

Theorem 4.1. Let P be an ε-sample of a closed two-dimensional manifold Σ ⊂ R3 for a
sufficiently small ε. A faithful reconstruction of Σ can be computed in O(|P | log |P |) time.

5 Experimental results

Our implementation differs slightly from the preceding description. In line 10 of Trim, we use
B∞(c, 1.5`C) instead of B∞(c, 2.5`C). For normal estimation, we pick two points from each of
the canonical cubes of side length `C in B∞(c, 1.5`C), and then use PCA to estimate the surface
normal. The PCA-based approach improves the robustness of the surface normal estimation.
We perform an extra test in line 24 of Trim before trimming a cell C. We use the estimated
surface normal to form a cocone at p ∈ C of angular radius π/12. We trim C only if an empty
cube is found in line 24 of Trim and this cocone at p contains all sample points in B∞(c, 1.5`C).
We need this cocone check because some test cases do not meet the sampling requirement of the
algorithm. If the cocone at p excludes some sample point in B∞(c, 1.5`C), the surface around
p is curvy with respect to the local sampling density, so we should not trim C. In line 7 of
Extract, we set η = 2. In lines 13–16 of Extract, for each non-empty leaf cell C in T̂P , if C
is also a leaf cell in T P , then sample one point in C as described in the algorithm; otherwise,
we sample one point from each child of C in T P instead of C alone. This gives us a denser
subsample to facilitate the subsequent surface reconstruction. This implementation still runs in
O(n log n) time.

We run Cocone to reconstruct the first surface from the subsample. Afterwards, the sample
points absent from the subsample are added back as follows. For each remaining sample point
p, we find the nearest triangle τ in the current reconstruction, connect p to the three sides of τ
to split τ into three triangles, and then apply edge flips until no new edge produced is flippable.
(The common edge pq between two triangles pqr and pqs is flippable iff the diametric ball of
pqr contains s and the diametric ball of pqs contains r. Refer to [15] for theoretical results on
edge flips.) We compile our code using g++-4.1.2 with O2 flag, and obtain the binary of Cocone
from its author’s webpage. The experiments were run on a Dell Optiplex 745 with a 4GB RAM
and an Intel Core 2 Duo E4600 processor (2.4GHz, 2MB L2 cache, and 800MHz FSB). Floating
point number type is used in our code for extracting a locally uniform subsample. Cocone uses
filtered predicates that simulate exact arithmetic in an on-demand fashion.

The top table in Table 1 shows the results of our experiments on samples that are not locally
uniform. Figure 8 shows the samples and models used. For each model, we randomly pick a
subset of triangles, sample extra points in those triangles and their neighboring triangles, and
then include the vertices of the model to form a locally non-uniform input sample. The white

22



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: (a) and (d) show the input non-uniform samples. (b) and (e) show the subsamples
extracted. (c) and (f)–(i) show the surfaces reconstructed by our prototype.

23



Non-uniform I Cocone In Crad S Prune+Build Sn Total Srad
Torus 348820 224s 101 23 70038 7s+44s 36 74s 23
Bunny 210646 100s 589 36 29242 4s+14s 28 33s 36
Armadillo 411777 216s 171 23 112593 9s+59s 31 93s 23
Buddha 512524 299s 261 19 143021 11s+79s 72 121s 19
Dragon 452679 256s 1177 22 80989 9s+41s 69 81s 23
Uniform I Cocone In Crad S Prune+Build Sn Total Srad
Torus 57600 36s 5 74 53956 2s+25s 13 28s 74
Bunny 35286 20s 21 116 23503 1s+11s 23 13s 117
Armadillo 115897 60s 24 52 73706 3s+37s 41 45s 54
Buddha 142534 77s 62 42 112076 4s+62s 60 71s 43
Dragon 126359 66s 308 50 58439 3s+30s 84 39s 52

Table 1: The top and bottom tables show non-uniform and locally uniform samples respectively.
I: input size; Cocone: Cocone’s running time on the input; In: maximum no. of sample points
within 1.5Rv from a vertex v, where Rv is the maximum circumradius among its incident tri-
angles in the Cocone output; Crad: average circumradius in the Cocone output; S: subsample
size; Prune+Build: time to extract the subsample + time to reconstruct from it using Cocone;
Sn: maximum no. of subsample points within 1.5Sv from a vertex v, where Sv is the maximum
circumradius among its incident triangles after running Cocone on the subsample; Total: pro-
totype’s running time; Srad: average circumradius in the prototype’s output.

patches in Figures 1(a) and 1(d) are the resulting clusters of sample points. Our prototype
is 51% to 68% faster than running Cocone alone. Extracting a subsample (i.e., Prune) takes
about 1/10 of the total running time. The columns In and Sn show that the subsamples are
significantly more locally uniform than the input samples. The columns Crad and Srad show
that the average circumradii in Cocone’s output and our prototype’s output are similar.

We also experimented with some locally uniform samples. The results are shown in the
bottom table in Table 1. Our prototype is about 8% faster than running Cocone alone for
Buddha, and 22% to 41% faster for other models. Note that most of the time is spent on
running Cocone to reconstruct the surfaces from the extracted subsample (i.e., Build).

6 Proof of Lemma 3.4

Let n denote |P |. A few technical results are needed before we give the proof of Lemma 3.4.
First, Lemma 3.2(ii) implies that there are O(n) octrees and there are O(n) splittable cells in
all octrees.

Lemma 6.1. There are O(n) octrees and there are O(n) splittable cells in them.

To bound the total size of the octrees, our plan is to charge each cell to some splittable cell.
Consider the octree TQ for some Q ⊆ P . The construction of TQ can be divided into stages
according to the applications of the splitting and balancing rules. Let F0 = F̃0 be the octree
after the initialization when building TQ. For i ≥ 1, let Fi be the octree after the ith round of
applications of the splitting rule to the octree F̃i−1. So the leaf cells of Fi are non-splittable.
For i ≥ 1, let F̃i be the octree after the ith round of applications of the balancing rule. It is the
result of balancing Fi. Lemma 6.2 below shows a gradation in side lengths as we move away
from a leaf cell of F̃i.

For any integer j ≥ 0 and any octree cell C, let Rj(C) be the box with the same center as
C and side length (3− 21−j)`C . For example, R0(C) = C and R∞(C) is the box with the same

24



center as C and side length 3`C (i.e., the union of C and its neighboring canonical boxes of side
length `C). For j ≥ 1, the annulus Rj(C) \Rj−1(C) has width 2−j`C .

Lemma 6.2. Let C be a leaf cell of F̃i. For any j ≥ 0, if a cell in F̃i intersects Rj(C), its side
length is at least 2−j`C .

Proof. Any neighboring leaf cell of C in F̃i has side length at least 1
2`C , so their union together

with C covers R1(C). Inductively, one can show that the union of all the leaf cells in F̃i that
have side lengths at least 2−j`C covers Rj(C) for any j. The result also holds for non-leaf cells
intersecting Rj(C) as they can only be bigger.

During the ith round of applications of the balancing rule, a split of a cell may trigger further
splits of its neighboring cells. We show in the next lemma that a cell in F̃i \ Fi cannot be split
by the balancing rule if the cells of Fi nearby are large.

Lemma 6.3. Let C be a cell in F̃i. Assume that C is non-splittable or C is a cell in F̃i \ Fi.
If every splittable cell of Fi that intersects Rj(C) has side length at least 21−j`C for all j ≥ 0,
then C is a leaf cell of F̃i.

Proof. We prove the lemma by induction in non-decreasing cell sizes in F̃i. The claim is clearly
true when C is the smallest cell of F̃i because it is a leaf cell. Suppose inductively that the
result holds for all cells smaller than C in F̃i that are non-splittable or cells in F̃i \ Fi. Since C
is non-splittable or a cell in F̃i \Fi, it can only be split by the balancing rule. We show that for
all cell C ′ in F̃i that is a neighboring of C and has side length 1

2`C , C
′ is a leaf cell of F̃i. Then

C is also a leaf cell because it is not out of balance.
Take any neighboring cell C ′ of C in F̃i that has side length `C′ = 1

2`C . Since C
′ intersects

R1(C) and `C′ < `C , by the assumption of the lemma, C ′ is non-splittable or a cell in F̃i \ Fi.
For any j ≥ 0, Rj(C ′) ⊆ Rj+1(C). So any splittable cell in Fi that intersects Rj(C ′) also
intersects Rj+1(C). Therefore, by the assumption of the lemma, such cells have size at least
21−(j+1)`C = 21−j`C′ . Hence, C ′ satisfies the condition of the lemma, and so C ′ is a leaf cell by
induction assumption.

Next, we show that for every cell of TQ, if there is no sizable splittable cell near it, the subtree
rooted at that cell has 2O(d) levels. This result allows us to charge each non-splittable cell to
some splittable cell so that a splittable cell only gets O(1) charges.

Lemma 6.4. Let m = 3d. Let C be a cell of TQ that is a proper descendant of a leaf cell of F̃0,
the initial octree when we begin to build TQ. If no splittable cell in TQ that intersects R∞(C) has
side length in the range [2−m`C , 2`C ], then the subtree rooted at C has at most m− 1 levels.

Proof. By assumption, both C and its parent are non-splittable because they intersect R∞(C)
and have side lengths in the range [2−m`C , 2`C ]. Therefore, C must be created by the balancing
rule. Assume that C is created during the construction of F̃i0 for some i0 > 0.

We first show that no splittable cell of Fi0 that intersects R∞(C) \C has side length strictly
less than 2−m`C . For the sake of contradiction, let D be a splittable cell in Fi0 that has side
length less than 2−m`C and intersects R∞(C) \C. Let C ′ and D′ be the leaf cells in F̃i0−1 that
are ancestors of C and D, respectively. See Figure 9(a). The tree path from D′ down to D
is in Fi0 , so the cells on the tree path are splittable. These cells are nested, and they contain
D. So they all intersect R∞(C). Since D′ intersects R∞(C) ⊂ R1(C

′), C ′ and D′ are identical
or neighboring leaf cells in F̃i0−1. So `D′ ≥ 1

2`C′ ≥ `C as F̃i0−1 is balanced. Therefore, there
must exist a cell on the tree path from D′ to D with side length in the range [2−m`C , 2`C ], and

25



F̃i0−1

Fi0

D′C ′

C
D

Cj2

Cj1

(a) (b)

F̃i0

Figure 9: (a) D is in Fi0 , C is in F̃i0\Fi0 . D′ and C ′ are leaf cells of F̃i0−1 that are ancestors of D
and C, respectively. (b) Cj2 ⊆ Cj1 . The annuli R∞(Cj1)\Rm−j1(Cj1) and R∞(Cj2)\Rm−j2(Cj2)
are shaded in gray.

this cell must be splittable as it is an internal node of Fi0 . But this is a contradiction to the
assumption of the lemma.

We claim that C is a leaf cell in F̃i0 . We have shown in the previous paragraph that all
splittable cells in Fi0 intersecting R∞(C) have side lengths at least 2−m`C . So the assumption of
the lemma forces their side lengths to be greater than 2`C . Since C is non-splittable, Lemma 6.3
is applicable, establishing that C is a leaf cell of F̃i0 .

As C is non-splittable, it remains a leaf cell until it is split later by the balancing rule.
Suppose that C is a leaf cell of Fi1 and C is split in the construction of F̃i1 for some i1 > i0.
Since C is non-splittable, Lemma 6.3 implies the following:

There exists a splittable cell in Fi1 that intersects R∞(C). (6.1)

As i0 ≤ i1 − 1, C is also a leaf cell of F̃i1−1. Among all the leaf cells of F̃i1−1 that intersect
R∞(C), none has side length 4`C or more because such a leaf cell would be a neighbor of C,
violating the balance. Therefore, all leaf cells of F̃i1−1 that intersect R∞(C) have side lengths
at most 2`C . The assumption of the lemma further implies that all splittable leaf cells of F̃i1−1
that intersect R∞(C) have side lengths less than 2−m`C . A cell of F̃i1−1 that intersects Rj(C)
has side length at least 2−j`C for all j ≥ 0 by Lemma 6.2. Therefore, the splittable leaf cells of
F̃i1−1 that intersect R∞(C) do not intersect Rm(C). The octree alignment ensures that:

Every splittable cell of F̃i1−1 that intersects R∞(C) is contained in R∞(C) \Rm(C). (6.2)

Any cell in Fi1\F̃i1−1 is a descendant of some splittable leaf cell of F̃i1−1, so the cells in Fi1\F̃i1−1
that intersect R∞(C) are also contained in R∞(C) \ Rm(C). Combining this observation with
(6.1) and (6.2) gives the following conclusion:

There exists a splittable cell in Fi1 that lies in R∞(C) \Rm(C). (6.3)

Let C1 be a child of C. Thus, C1 is a cell of F̃i1 \ Fi1 . Since R∞(C1) ⊂ R1(C) ⊂ Rm(C),
no splittable cell in Fi1 \ F̃i1−1 intersects R∞(C1). Applying Lemma 6.3 to C1 shows that C1 is
a leaf cell of F̃i1 . Now suppose that C1 is split during the construction of F̃i2 for some i2 > i1.
We repeat the above argument to obtain a conclusion analogous to (6.3): some splittable cell in
Fi2 lies in R∞(C1) \Rm−1(C1). Inductively, we obtain:

For any descendant Ck of C of side length 2−k`C for some k ≤ m − 1, Ck is not
splittable, and if it is split by the balancing rule, some splittable cell in Fik+1

lies in
R∞(Ck) \Rm−k(Ck).

26



We are ready to establish the lemma. For the sake of contradiction, suppose that the subtree
of C has at least m = 3d levels including C. Let K be the set of 3d − 1 disjoint canonical cubes
in R∞(C)\C with side length `C . In the subtree of C, we can find two distinct cells Cj1 and Cj2
such that 0 ≤ j1 < j2 ≤ m−1, Cj1 is an ancestor of Cj2 , and the splitting of Cj1 and Cj2 implies
the existence of some splittable cells Dj1 in Fij1+1 and Dj2 in Fij2+1 that lie in the cube(s) in K.
Moreover, the pigeonhole principle implies that we can choose j1 and j2 such that Dj1 and Dj2 lie
in the same cube in K. By our result in the previous paragraph, Dj1 ⊆ R∞(Cj1) \Rm−j1(Cj1),
and Dj2 ⊆ R∞(Cj2) \ Rm−j2(Cj2). Refer to Figure 9(b). Since Cj2 is contained in Cj1 , the
distance between the two annuli R∞(Cj1) \Rm−j1(Cj1) and R∞(Cj2) \Rm−j2(Cj2) is at least

(3/2− 2−(m−j1))`Cj1
− (2−1`Cj1

+ `Cj2
)

≥ (2−1 − 2−(m−j1))2−j1`C (∵ 2−j1`C = `Cj1
≥ 2`Cj2

.)

= (2−1−j1 − 2−m)`C

≥ 2−m`C . (∵ j1 ≤ m− 2.)

Let D be the lowest common ancestor of Dj1 and Dj2 in TQ. Since D must cross the gap between
the two annuli R∞(Cj1)\Rm−j1(Cj1) and R∞(Cj2)\Rm−j2(Cj2), the side length of D is at least
2−m`C . Since Dj1 and Dj2 lie in the same cube in K, D is not bigger than a cube in K by the
octree alignment. Therefore, the side length of D lies in the range [2−m`C , `C ], and D intersects
R∞(C). Both Dj1 and Dj2 contain some sample points as they are splittable. The sample points
in Dj1 ∪Dj2 must be distributed into two or more children of D as D is their lowest common
ancestor. It follows that D is splittable. But this is a contradiction because the lemma assumes
that no splittable cell in TQ that intersects R∞(C) has side length in the range [2−m`C , 2`C ].

Proof of Lemma 3.4. Consider TQ for some Q ⊆ P . Let C be a cell in TQ that is not in the initial
octree. If the subtree rooted at C has more than 3d levels, by Lemma 6.4, there is a splittable
cell with side length Θ(`C) at distance Θ(`C), so we can charge C to it. Each splittable cell is
charged O(1) times, which implies a total charge of O(nQ + 1), where nQ is the number of the
splittable cells in TQ. The cells of TQ not covered by the O(nQ + 1) charge are at O(1) levels
below the root. The total size of all octrees is thus O(n) by Lemma 6.1.

We use a trick in [10] to get the desired running time. First, sort P d times by each coordinate
component in O(n log n) time, and store the d sorted lists at the root of TP . Testing whether a
cell C in TP is splittable can be done in O(1) time by maintaining the minimum and maximum
of each coordinate component of the points in C. To split C, we divide C into two equal halves
A1 and A2 by a hyperplane perpendicular to the first axis. We split the list sorted by the first
coordinate component in min{|P ∩ A1|, |P ∩ A2|} time by moving from both ends of the list
towards the middle. Suppose that |P ∩ A1| ≤ |P ∩ A2|. Remove the points of P ∩ A1 from the
d sorted lists, and create d sorted lists for A1. This takes O(|P ∩ A1|) time. After the removal
of P ∩A1, the modified sorted lists for C are exactly the sorted lists for A2, so we only need to
store reference pointers to them at A2. Divide A1 into 2d−1 cells directly in O(|P ∩ A1|) time.
For A2, we repeat the above to split it by hyperplanes in the other d− 1 directions. In the end,
there is exactly one child C ′ of C with reference pointers to the final sorted lists left at C. The
total time spent is O(|P ∩ (C \ C ′)|). We charge each point in C \ C ′ O(1) amount of work.
Since every child of C other than C ′ has at most |P ∩C|/2 points, a point can be charged only
O(log n) times. The construction time of TP is thus O(|TP |+ n log n).

Similar analysis applies to the recursive calls. Our construction of the initial octree guaran-
tees that every leaf of the initial octree for a cluster X in TQ contains sample points from one
core in X. So we can keep reference pointers at such a leaf to the sorted lists by every coordinate

27



stored at an appropriate leaf cell in TQ. We have shown that
∑

Q |TQ| = O(n). The total time
is thus O

(
n log n+

∑
Q |TQ|

)
= O(n log n).

7 Conclusion and discussion

We propose a simple and fast surface reconstruction algorithm that runs in O(n log n) time,
which is optimal in the pointer machine model. The only existing O(n log n)-time algorithm is
due to Funke and Ramos [24], but no experimental result has been offered. We follow the first
two high-level steps in the algorithm of Funke and Ramos, in which the first step is to extract
a locally uniform subsample. Several sophisticated data structures were employed in [24] for
the subsample extraction step in order to achieve the O(n log n)-time bound. In contrast, our
algorithm builds a variant of the standard octree, and then obtains a locally uniform subsample
by traversing and trimming the octrees. It is much simpler and more efficient in both theory and
practice. We built a prototype of our surface reconstruction algorithm that extracts a locally
uniform sample from the input sample, runs Cocone on it, and then add back the remaining
sample points via edge flips. Experiments shows that it is faster than running Cocone alone for
both non-uniform and uniform inputs. For non-uniform inputs, it is 51% to 68% faster.

After extracting a locally uniform subsample, one can obtain a reconstruction efficiently in
ways different from what we described. We believe that a good reconstruction quality can also
be obtained by invoking other surface reconstruction algorithms in the literature. Dey, Funke,
and Ramos [19] showed that the Cocone algorithm can be modified to run in O(n log n) time
under a stronger notion of locally uniform sampling. It is possible that some other reconstruction
algorithms can also be modified to run in O(n log n) time under locally uniform sampling.

It is an interesting question to study whether our method can also be used for fast recon-
struction of surfaces with boundaries. The presence of boundaries means the presence of holes.
However, if the current scale being used is too small, the space among sample points may also
appear as “holes”. Currently, our procedure Trim makes use of the detection of such “holes” to
decide whether the current scale is appropriate. Therefore, in order to detect real holes in the
surface, one may need to mark the sample points near the boundaries. These marked sample
points can then inform the procedure Trim that such holes are real. It will require more research
work in order to identify sample points near the boundaries.

We believe that our methods can also be applied to extract a locally uniform subsample
from a dense point cloud in Rd for d ≥ 4, although the details have to be worked out. A key
task is the tangent space estimation in our procedure Trim. For surfaces in R3, the normal of a
triangle that connects three appropriately chosen sample points is used in Trim. For manifolds
in higher dimensions, a different method is needed to estimate tangent spaces. Local PCA is
a promising approach, and it has been proved to be provably good under a stronger notion of
locally uniform sampling [16].

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva. Point set surfaces.
In Proceedings of the IEEE Conference on Visualization, pages 21–28, 2001.

[2] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete and Com-
putational Geometry, 22:481–504, 1999.

28



[3] N. Amenta, S. Choi, T.K. Dey, and N. Leekha. A simple algorithm for homeomorphic
surface reconstruction. International Journal on Computational Geometry and Applications,
12:125–141, 2002.

[4] N. Amenta, S. Choi, and N. Kolluri. The power crust, unions of balls, and the medial axis
transform. Computational Geometry: Theory and Applications, 19:127–153, 2001.

[5] N. Amenta and T.K. Dey. Normal variation with adaptive feature size. A note as an
erratum to Lemma 2 in [18].

[6] D. Attali, J.-D. Boissonnat, and A. Lieutier. Complexity of the Delaunay triangulation
of points on surfaces: the smooth case. In Proceedings of the 19th Annual Symposium on
Computational Geometry, pages 201–210, 2003.

[7] J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbor inter-
polation of distance functions. Computational Geometry: Theory and Applications, 22:185–
203, 2002.

[8] J.-D. Boissonnat and A. Ghosh. Manifold reconstruction using tangential delaunay com-
plexes. Discrete and Computational Geometry, 51:221–267, 2014.

[9] J.-D. Boissonnat, L.J. Guibas, and S.Y. Oudot. Manifold reconstruction in arbitrary di-
mensions using witness complexes. Discrete and Computational Geometry, 42:37–70, 2009.

[10] P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of ACM, 42:67–90,
1995.

[11] T.M. Chan, J. Snoeyink, and C.-K. Yap. Primal dividing and dual pruning: output-sensitive
construction of four-dimensional polytopes and three-dimensional Voronoi diagrams. Dis-
crete and Computational Geometry, 18:433–454, 1997.

[12] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete and
Computational Geometry, 10:377–409, 1993.

[13] S.-W. Cheng and M-K. Chiu. Implicit manifold reconstruction. In Proceedings of the 25th
ACM-SIAM Symposium on Discrete Algorithms, pages 161–173, 2014.

[14] S.-W. Cheng, T.K. Dey, and E.A. Ramos. Manifold reconstruction from point samples.
In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1018–1027, 2005.

[15] S.-W. Cheng and J. Jin. Edge flips in surface meshes. Discrete and Computational Geometry,
54:110–151, 2015.

[16] S.-W. Cheng, Y. Wang, and Z. Wu. Provable dimension detection using principal component
analysis. International Journal of Computational Geometry and Applications, 18:414–440,
2008.

[17] B. Curless and M. Levoy. A volumetric method for building complex models from range
images. In SIGGRAPH, pages 306–312, 1996.

[18] T.K. Dey. Curve and surface reconstruction: Algorithms with mathematical analysis. Cam-
bridge University Press, New York, 2006.

29



[19] T.K. Dey, S. Funke, and E.A. Ramos. Surface reconstruction in almost linear time under
locally uniform sampling. In European Workshop on Computational Geometry. Berlin, 2001.

[20] D. Dumitriu, S. Funke, M. Kutz, and N. MilosavljevIć. On the locality of extracting a
2-manifold in R3. In Proceedings of the 11th Scandinavian Workshop on Algorithm Theory,
pages 270–281, 2008.

[21] D. Dumitriu, S. Funke, M. Kutz, and N. MilosavljevIć. How much geometry it takes to
reconstruct a 2-manifold in R3. ACM Journal of Experimental Algorithmics, 14:2.2:1–2.2:17,
2009.

[22] J. Erickson. Nice point sets can have nasty Delaunay triangulations. Discrete Computational
Geometry, 30:109–132, 2003.

[23] H. Federer. Curvature measures. Transactions of the American Mathematical Society,
93:418–491, 1959.

[24] S. Funke and E.A. Ramos. Smooth-surface reconstruction in near-linear time. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 781–790, 2002.

[25] J. Giesen and U. Wagner. Shape dimension and intrinsic metric from samples of manifolds.
Discrete and Computational Geometry, 32:245–267, 2004.

[26] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruction
from unorganized points. In SIGGRAPH, pages 71–78, 1992.

30


