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Abstract

Little theoretical work has been done on edge flips in surface meshes despite their popular
usage in graphics and solid modeling to improve mesh equality. We propose the class of
(ε, α)-meshes of a surface that satisfy several properties: the vertex set is an ε-sample of
the surface, the triangle angles are no smaller than a constant α, some triangle has a good
normal, and the mesh is homeomorphic to the surface. We believe that many surface meshes
encountered in practice are (ε, α)-meshes or close to being one. We prove that flipping the
appropriate edges can smooth a dense (ε, α)-mesh by making the triangle normals better
approximations of the surface normals and the dihedral angles closer to π. Moreover, the
edge flips can be performed in time linear in the number of vertices. This helps to explain
the effectiveness of edge flips as observed in practice and in our experiments. A corollary of
our techniques is that, in R2, every triangulation with a constant lower bound on the angles
can be flipped in linear time to the Delaunay triangulation.

1 Introduction

Surface meshes are popular representations of smooth surfaces in computer graphics and solid
modeling. The quality and smoothness of surface meshes are often improved by applying edge
flips. For example, each candidate edge flip is assigned a score in [11] that measures how the flip
can decrease a cost function that reflects the overall discrete curvature of the mesh, and the edge
flips are applied in a greedy manner based on the scores; edge flips are used in [15] to improve
the aspect ratios of the triangles for flow simulations; edge flips are performed in [1, 21] to
reduce the variance in the vertex degrees as well as to improve the aspect ratios of the triangles.
Despite the popularity of edge flips, there has been no theoretical study of their impact on the
surface mesh quality.

We propose the class of (ε, α)-meshes of a closed surface that satisfy several properties: the
vertex set is an ε-sample of the surface, the triangle angles are no smaller than a constant α, some
triangle has a good normal, and the mesh is homeomorphic to the surface. We believe that many
surface meshes encountered in practice are (ε, α)-meshes or close to being one. We prove that
flipping the appropriate edges can smooth a dense (ε, α)-mesh by making the triangle normals
better approximations of the surface normals and the dihedral angles closer to π. Moreover,
the edge flips can be performed in time linear in the number of vertices. This helps to explain
the effectiveness of edge flips as observed in practice and in our experiments. We also show
that edge flips can be applied locally in a dense (ε, α)-mesh: given a subset V of the vertices,
edge flips can be performed in O(|V |) time to improve the mesh smoothness at the vertices in
V . (See Theorem 2 in Section 6.) In R3, our definition of edge flippability is different from the
usual empty circumsphere criterion, and it can be checked by a primitive that compares the
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Figure 1: An example from [17] in which Ω(n2) edge flips are needed to convert the left trian-
gulation to the right triangulation and vice versa.

inner products of vectors of the form u− v, where u and v are appropriate mesh vertices. (See
Definition 3 in Section 4.)

Our results are obtained by showing that, upon the termination of edge flips, the circum-
radius of every triangle τ is at most ε + O(εκ) times the local feature size at any vertex of τ ,
where κ is any fixed constant in (1, 1.5). (The circumradii of the triangles may be much bigger
before the edge flips.) By standard surface sampling results, smaller circumradii make the mesh
smoother and a better approximation of the underlying surface. The ability to decrease the
triangle circumradii is also useful in maintaining deforming surface meshes [6, 7]. The circum-
radius bound of ε + O(εκ) times the local feature size is proved by showing that edge flips
make the diametric ball of every triangle almost empty of vertices. The proofs require the mesh
vertices to form a very dense sample of the underlying surface, however, our experiments show
that edge flips work well even if the vertices are not very dense. (See Section 7.)

A corollary of our techniques is that, in R2, given a triangulation with n vertices and all
angles greater than some constant independent of n, it can be converted in O(n) time to the
Delaunay triangulation by edge flips (Theorem 1 in Section 4). In the general case where the
angles are not bounded from below by some constant, Hurtado et al. [17] proved that Ω(n2)
edge flips are needed to convert any one of the two triangulations in Figure 1 to the other, which
implies that one of the triangulations in Figure 1 needs Ω(n2) edge flips to become Delaunay.
As shown in Figure 1, some angles can be as small as O(1/n). Since the angles are not greater
than some constant, our result (Theorem 1) cannot be applied in this case to deduce a linear
bound on the number of edge flips.

We have employed our edge flip procedure in a surface reconstruction protytype. The
prototype first extracts a locally uniform subsample from the input sample, invokes Cocone [3]
to reconstruct a triangular mesh, and then inserts the remaining sample points to the mesh
via edge flips. Good reconstructions and speedups were obtained on several models in the
Stanford 3D scanning repository when compared with running Cocone alone. Refer to [8] for
more details. Section 7 shows detailed experiments with the edge flip procedure alone on some
synethetic models. The experiments show that the edge flips are effective in improving the mesh
quality and they can be performed efficiently.

2 Preliminaries

For every pair of points x, y ∈ R3, d(x, y) denotes the Euclidean distance between x and y.
Given a point set Y ⊆ R3, d(x, Y ) denotes infy∈Y d(x, y). Given two vectors ~u and ~v, ∠(~u,~v)
denotes the angle between them which lies in the range [0, π]. Given three points a, b and c, we
use ∠abc to denote ∠(a− b, c− b). Given a subset X ⊂ R3, aff(X) denotes the affine subspace
of the lowest dimension that contains X. Let h and h′ be two linear objects such as vectors,
segments, lines, polygons, and planes. We use ∠a(h, h′) to denote the nonobtuse angle between
aff(h) and aff(h′). Let B(x, r) denote the ball in R3 with center x and radius r. Given a ball B,
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Figure 2: The figure shows a cross-section of pqr and pqs. D is partitioned by pqr ∪ pqs into
two sectors. The angle of the smaller shaded sector is the dihedral angle at pq.

we use ∂B to denote its boundary. Given a triangle τ , cτ denotes its circumcenter, γτ denotes
its circumradius, Bτ denotes the diametric ball B(cτ , γτ ) of τ , and nτ denotes a unit vector
orthogonal to aff(τ). The diametric ball of τ is the smallest circumscribing ball of τ .

A triangulated polygonal surface T is a set of vertices, edges and triangles such that the
intersection of every pair of elements in T is either empty or an element in T , and for every
vertex of T , its incident triangles form a topological disk (i.e., the union of the incident triangles
is homeomorphic to a two-dimensional disk). The union of the vertices, edge and triangles form
the underlying space |T | of T . The star of a vertex p ∈ T , denoted star(p), is the set of edges
and triangles in T that are incident to p. When there is ambiguity, we may write star(p, T )
to specify the underlying triangulated polygonal surface. Take two triangles pqr, pqs ∈ T that
share the edge pq. Place an arbitrarily small two-dimensional geometric disk D (embedded in
R3) such that the center of D lies in the interior of pq and D is orthogonal to pq. D is partitioned
by pqr and pqs into two sectors. The dihedral angle at pq is the angle of the smaller sector.
Figure 2 shows an example. Equivalently, the dihedral angle at pq is equal to π−∠a(npqr,npqs).

Let Σ ⊂ R3 be a closed connected smooth surface throughout this paper. For every point
x ∈ Σ, a medial ball B at x is a maximal ball tangent to Σ at x such that the interior of B
does not intersect Σ. The medial axis M of Σ is the set of centers of medial balls at points in
Σ. The local feature size of a point x ∈ Σ is f(x) = d(x,M). The local feature size function f
is 1-Lipschitz, i.e., f(x) ≤ f(y) + d(x, y) [9]. A finite point set P ⊂ Σ is an ε-sample of Σ for
some ε ∈ (0, 1) if d(x, P ) ≤ εf(x) for every point x ∈ Σ. The nearest point map ν maps a point
x ∈ R3 \M to the point ν(x) ∈ Σ closest to x. The map ν is continuous and for every point
x /∈ M, the line through x and ν(x) is normal to Σ at ν(x). We use nx to denote the outward
unit surface normal at a point x ∈ Σ.

A mesh of Σ is a triangulated polygonal surface T such that the vertices of T are points
in Σ and |T | is homeomorphic to Σ. If the triangles in T have small circumradii with respect
to the local feature sizes, |T | does not intersect M. In this case, the restriction of ν to |T |
is well-defined and we denote it by νT . If νT is continuous and bijective (the inverse of νT is
continuous as Σ is compact), then νT is a homeomorphism from |T | to Σ.

Some standard surface sampling results in the literature are stated in Lemma 2.1(i–iv) below
and Lemma 2.1(v) follows from the 1-Lipschitzness of f .

Lemma 2.1 ([2, 9, 16]) Let p, q and r be three distinct points on Σ.

(i) If d(p, q) ≤ εf(p) for some ε < 1, then ∠(np,nq) ≤ ε/(1−ε) and ∠a(np, pq) ≥ arccos(ε/2).
When ε ≤ 0.1, arccos(ε/2) > π/2− 0.51ε.

(ii) Assume that the largest angle of the triangle pqr is at the vertex p. If γpqr ≤ εf(p) for
some ε < 0.5, then

(a) ∠a(np,npqr) ≤ θε = arcsin(ε) + arcsin
(

2√
3

sin(2 arcsin(ε))
)

,
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(b) ∠a(nq,npqr) and ∠a(nr,npqr) are at most φε = θε + 2ε
1−2ε .

When ε ≤ 0.1, θε < 3.5ε and φε < 5.83ε.

(iii) For every point z on the tangent plane of Σ at p, if d(p, z) = ε f(p) for some ε ≤ 0.25,
then d(z, ν(z)) < 2ε2f(p) = 2ε d(p, z).

(iv) If p belongs to an ε-sample P of Σ for some ε < 1, then d(p, P \ {p}) ≤ 2ε
1−εf(p).

(v) If d(p, q) ≤ ε1f(p) + ε2f(q) for some ε1 < 1 and some ε2 < 1, then f(p) ≤ 1+ε2
1−ε1 f(q) and

d(p, q) ≤ ε1+ε2
1−ε1 f(q).

Lemma 2.2(i, ii) below state several extensions of Lemma 2.1(iii). They show that given a
point x ∈ R3 and a point p ∈ Σ, if d(p, x) = O(εf(p)) and px is almost orthogonal to np, then
x is at distance O(ε2f(p)) from Σ.

Lemma 2.2 Let p, q and r be any three points on Σ. Let c0, c1 and c be any positive values.

(i) For every point x ∈ R3, if d(p, x) ≤ c0εf(p) and ∠a(np, px) ≥ π/2 − c1ε for some ε <

min
{

1, 1
4c0
, π
2c1

}
, then d(x, ν(x)) ≤ (2c0 + c1)ε d(p, x) ≤ c0(2c0 + c1)ε

2f(p).

(ii) For every point z ∈ Σ, if d(p, z) ≤ cεf(p) for some ε ≤ 1
10c , then for every point x ∈ pz,

d(x, ν(x)) ≤ 2.51cε d(p, x) ≤ 2.51c2ε2f(p).

(iii) Suppose that γpqr ≤ cεf(p) for some ε < min
{

1, 1
72c

}
. Then, for every point x ∈ aff(pqr)∩

B(cpqr, γpqr), d(x, ν(x)) ≤ 10cε d(p, x) ≤ 20c2ε2f(p) and d(p, ν(x)) ≤ (2cε+ 20c2ε2)f(p).

Proof. Consider (i). Let x′ be the projection of x onto the tangent plane of Σ at p. So
d(p, x′) ≤ d(p, x) ≤ c0εf(p). Also, d(x, x′) ≤ d(p, x) sin(c1ε) ≤ c1ε d(p, x). By Lemma 2.1(iii),
d(x′, ν(x′)) ≤ 2c0ε d(p, x′) ≤ 2c0ε d(p, x). The shortest connection from x to Σ is the segment
connecting x and ν(x), which is not longer than the path that moves linearly from x to x′ and
then to ν(x′). Therefore, d(x, ν(x)) ≤ d(x, x′) + d(x′, ν(x′)) ≤ (2c0 + c1)ε d(p, x) ≤ c0(2c0 +
c1)ε

2f(p). This proves (i).
By Lemma 2.1(i), ∠a(np, pz) ≥ arccos(cε/2) > π/2 − 0.51cε. Then, applying (i) with

c0 = c and c1 = 0.51c, we conclude that for every point x ∈ pz, d(x, ν(x)) ≤ 2.51cε d(p, x) ≤
2.51c2ε2f(p). This proves (ii).

Without loss of generality, assume that the largest angle of pqr is at q. Since d(p, q) ≤
2γpqr ≤ 2cεf(p), Lemma 2.1(v) implies that f(p) ≤ 1

1−2cεf(q) and so γpqr ≤ cε
1−2cεf(q). By

Lemma 2.1(ii)(b), ∠a(np,npqr) < 5.83cε
1−2cε which is less than 6cε by the assumption of ε < 1

72c .
Therefore, ∠a(np, px) ≥ ∠a(np, pqr) = π/2 − ∠a(np,npqr) > π/2 − 6cε. Since d(p, x) ≤
2γpqr ≤ 2cεf(p), we can apply (i) with c0 = 2c and c1 = 6c, which gives d(x, ν(x)) ≤
10cε d(p, x) ≤ 20c2ε2f(p). Therefore, d(p, ν(x)) ≤ d(p, x) + d(x, ν(x)) ≤ (2cε + 20c2ε2)f(p).
This proves (iii).

3 Surface meshes

We propose a class of surface meshes defined as follows.

Definition 1 For every ε ∈ (0, 1) and every constant α ∈ (0, π/3], an (ε, α)-mesh of Σ is a
triangulation T that satisfies the following conditions.
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• The vertices of T form an ε-sample of Σ.

• The angles of every triangle in T are at least α.

• There exist a triangle τ in T and a vertex p of τ such that ∠a(np,nτ ) ≤ arcsin
(

0.8
1+2 csc(α/2)

)
.

• νT is a homeomorphism from |T | to Σ.

Despite the constant lower bound α on the triangle angles, the vertex set of an (ε, α)-mesh
may not be a locally uniform sample [8, 10, 14] because the nearest neighbor distance of a vertex
p is not necessarily Ω(εf(p)) and the number of vertices at distance O(εf(p)) or less from p may
not be bounded from above by a constant. The third condition in Definition 1 requires a triangle
τ and a vertex p of τ such that nτ is a reasonable approximation of np. For example, if γτ =
O(εf(p)), then τ satisfies the third condition by Lemma 2.1(ii), provided that ε is sufficiently
small. We also verified the third condition on two models, bunny and armadillo. Figure 3 gives
more detailed information. (Since the smooth surfaces are unknown, the surface normals at
the mesh vertices are estimated by local principal component analysis.) We conjecture that the
third condition is a consequence of the other three conditions in Definition 1 as long as ε is
small enough.

23503 vertices 73706 vertices
α = 10.050482◦ α = 4.138016◦

min∠a(np,nτ ) = 0.091873◦ min∠a(np,nτ ) = 0.082493◦

Bound in the 3rd condition: ≤ 1.923◦ Bound in the 3rd condition: ≤ 0.8127◦

Figure 3: Statistics on checking the third condition in Definition 1.

We study some geometric and combinatorial properties of (ε, α)-meshes in the rest of this
section. We first prove some properties of a vertex star in Lemma 3.1 below, assuming that the
vertices are dense and there is a small triangle in the vertex star. These properties give bounds
on the number of triangles, triangle circumradii, normal deviations, and dihedral angles within
the star. Recall that the definition of (ε, α)-mesh requires ε to be a number from (0, 1) and α
to be an angle from (0, π/3].

Lemma 3.1 Let µ1 = µ0(cscα)4π/α−1 for some µ0 ≥ 1. Let T be an (ε, α)-mesh of Σ such that

ε ≤ min
{

1
72µ1

, sin(α/4)
6µ1

}
. If a vertex p ∈ T is incident to a triangle with circumradius at most

µ0εf(p), then the following properties are satisfied.

(i) For every triangle τ ∈ star(p), γτ ≤ µ1εf(p) and ∠a(np,nτ ) < 6γτ
f(p) ≤ 6µ1ε.

(ii) There are at most 4π/α edges in star(p).

(iii) For every triangle τ ∈ star(p) and every point x ∈ τ , ∠a(nν(x),nτ ) < 9µ1ε.
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(iv) For every pair of triangles σ, τ ∈ star(p) that share an edge, the dihedral angle at σ ∩ τ is
greater than π − 6γσ+6γτ

f(p) ≥ π − 12µ1ε.

(v) Let h be the distance between p and its nearest vertex. There is an edge in star(p) of length
less than 1.1h cscα < 2.2ε cscα

1−ε f(p).

Proof. By assumption, there is a triangle τ1 ∈ star(p) such that γτ1 ≤ µ0εf(p). Let τ2 be a
triangle in star(p) that shares an edge with τ1. The edge τ1 ∩ τ2 has length at most 2γτ1 ≤
2µ0εf(p). Since the angles of τ2 are at least α, its circumradius γτ2 is at most µ0ε cscα f(p).
Apply this argument to the triangles in star(p) in circular order starting from τ1. Then, for the
ith triangle τi visited, its circumradius γτi is at most µ0ε(cscα)i−1f(p), and its edge lengths are
at most 2µ0ε(cscα)i−1f(p).

For i ≤ 4π/α, since µ0ε(cscα)i−1 ≤ µ1ε by the definition of µ1, Lemma 2.2(ii) implies
that for every edge e of τi, if we take a point x ∈ e arbitrarily close to p, then d(x, ν(x)) ≤
2.51 · 2µ0ε(cscα)i−1d(p, x) < 6µ0ε(cscα)i−1d(p, x) ≤ 6µ1ε d(p, x). This implies that e makes an
angle at most arcsin(6µ1ε) with the line tangent to the curve ν(e) at p. Since arcsin(6µ1ε) ≤ α/4
by the assumption of the lemma, we conclude that for i ≤ 4π/α, the angle of the curved triangle
ν(τi) at p is at least α−2 arcsin(6µ1ε) ≥ α/2. Hence, there are at most 4π/α triangles in star(p).
This establishes the correctness of (ii).

Take an arbitrary triangle τ ∈ star(p). It follows from the above discussion that γτ ≤
µ1εf(p). Let q be the vertex of τ at which the angle is the largest. Since d(p, q) ≤ 2γτ ≤
2µ1εf(p), Lemma 2.1(v) implies that f(p) ≤ 1

1−2µ1εf(q). Then, Lemma 2.1(ii)(b) implies that

∠a(np,nτ ) < 5.83γτ
f(q) ≤

5.83γτ
(1−2µ1ε)f(p) . One can verify that 5.83

1−2µ1ε < 6 by our assumption of

ε ≤ 1
72µ1

in the lemma. Therefore, ∠a(np,nτ ) < 6γτ
f(p) ≤ 6µ1ε, establishing the correctness of (i).

Consider (iii). Take a point x in any triangle τ ∈ star(p). Since γτ ≤ µ1εf(p), Lemma 2.2(iii)
implies that

d(x, ν(x)) ≤ 20µ21ε
2f(p), (1)

d(p, ν(x)) ≤ 2µ1εf(p) + 20µ21ε
2f(p) ≤ 2.3µ1εf(p). (2)

In (2), the bound of 2.3µ1εf(p) follows from the assumption of µ1ε ≤ 1/72 in the lemma. The
inequality µ1ε ≤ 1/72 or simply ε ≤ 1/72 will be used often in the rest of the proof, but we
will not make it explicit again to simplify the presentation. Since d(p, ν(x)) ≤ 2.3µ1εf(p),
Lemma 2.1(i) implies that

∠(np,nν(x)) ≤
2.3µ1ε

1− 2.3µ1ε
< 3µ1ε. (3)

By (i), ∠a(nν(x),nτ ) ≤ ∠a(np,nτ ) + ∠(np,nν(x)) < 6µ1ε+ 3µ1ε = 9µ1ε. This proves (iii).
Consider (iv). Let pq be the common edge of two triangles σ and τ in T . By (i), the dihedral

angle at pq is either less than 6γσ+6γτ
f(p) ≤ 12µ1ε or greater than π− 6γσ+6γτ

f(p) ≥ π−12µ1ε. We show
that the former case is impossible. Let x be a point in the interior of τ that is arbitrarily close
to the midpoint of pq. Consider the line L through x and ν(x), which is normal to Σ at ν(x).
By (i) and (3), ∠a(nτ , L) ≤ ∠(np,nν(x)) + ∠a(np,nτ ) < 9µ1ε. Similarly, ∠a(nσ, L) < 9µ1ε. If
the dihedral angle at pq is less than 12µ1ε, then L would intersect σ at a point y. By (1), we
get d(y, ν(x)) ≤ d(p, x) + d(p, y) + d(x, ν(x)) ≤ (4µ1ε + 20µ21ε

2)f(p). Relating f(p) to f(ν(x))

using (2) and Lemma 2.1(v), we obtain d(y, ν(x)) ≤ 4µ1ε+20µ21ε
2

1−2.3µ1ε f(ν(x)) < f(ν(x)). Thus, ν(x)
is the closest point in Σ to y. This contradicts the injectivity of νT because both x and y are
mapped to ν(x).
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Figure 4: The dashed curved triangle is ν(τ) and the dashed curve from p to q is ν(pq). Both
x and y map to z under ν.

Consider (v). Let q be the vertex in T closest to p. By Lemma 2.1(iv), d(p, q) ≤ 2ε
1−εf(p).

If pq is an edge in T , we are done. Assume that pq is not an edge in T . Then, there exists a
triangle τ ∈ star(p) such that ν(pq) leaves ν(τ) at a point z. Let x denote the point ν−1(z)∩ τ ,
which lies on the edge of τ opposite p. Let y denote the point ν−1(z) ∩ pq. Figure 4 shows
an example. By Lemma 2.2(ii), d(p, z) ≤ d(p, y) + d(y, z) ≤ (1 + 2.51 · 2ε/(1 − ε)) d(p, y) <
1+5ε
1−ε d(p, y) ≤ 2ε+10ε2

(1−ε)2 f(p). Then, Lemma 2.1(i) implies that ∠(np,nz) ≤ 2ε+10ε2

1−4ε−9ε2 which is

less than 3ε by the condition on ε in the assumption of the lemma. Then, (i) implies that
∠a(nz, τ) ≥ ∠a(np, τ) − ∠(np,nz) > π/2 − (3 + 6µ1)ε > π/2 − 9µ1ε. Let p′ denote the pro-
jection of p onto the tangent plane H of Σ at z. Then, p′z is the common projection of px
and py onto H. As a result, d(p, x) = d(p′, z) sec(∠a(px,H)) ≤ d(p′, z) sec(π/2 − ∠a(nz, τ)) ≤
d(p, y) sec(9µ1ε) < 1.1 d(p, q). The lengths of the two sides of τ in star(p) are at most the height
of τ from p divided by sinα, which is at most d(p, x) cscα < 1.1 cscαd(p, q) < 2.2ε cscα

1−ε f(p).
This establishes the correctness of (v).

Next, we prove in Lemma 3.2 below that the properties in Lemma 3.1 in fact hold for every
vertex, provided that ε is sufficiently small. This subclass of (ε, α)-meshes is the subject of
study in the rest of this paper. We define them formally as follows.

Definition 2 Let µ0 = max
{

4(cscα)4π/α+2, 40(cscα)2 csc(α/2)
}

. Let µ1 = µ0(cscα)4π/α−1.

An (ε, α)-mesh of Σ is dense if ε ≤ min
{

1
72µ1

, sin(α/4)
6µ1

, (sin(α/2))2

800+420 sin(α/2)

}
.

The above definition of a dense mesh requires ε to be pessimistically small (e.g. ε ≤ 6.14×
10−18 when α = π/6) in order to facilitate the subsequent theoretical analysis. However, our
analysis is probably not tight. Also, the edge flip procedure is oblivious of the value of ε and
produces good experimental results as reported in Section 7.

Lemma 3.2 Every dense (ε, α)-mesh T of Σ satisfies the following properties, where µ denotes
the constant 2(cscα)4π/α+1.

(i) For each vertex p ∈ T and every triangle τ ∈ star(p), γτ ≤ µεf(p) and ∠a(np,nτ ) <
6γτ
f(p) ≤ 6µε.

(ii) Every vertex in T is incident to at most 4π/α edges.

(iii) For each triangle τ ∈ T and each point x ∈ τ , ∠a(nν(x),nτ ) < 9µε.

(iv) For every pair of triangles σ, τ ∈ T that share an edge, the dihedral angle at σ∩τ is greater
than π − 6γσ+6γτ

f(p) ≥ π − 12µε.

(v) For every vertex p ∈ T , there is an edge in star(p) of length less than 1.1h cscα <
2.2ε cscα

1−ε f(p), where h is the distance between p and its nearest vertex.
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Proof. By the third condition in the definition of (ε, α)-meshes, there exist a triangle τ ∈ T
and a vertex p of τ such that

θ = ∠a(np,nτ ) ≤ arcsin

(
0.8

1 + 2 csc(α/2)

)
. (4)

Our plan is to prove that γτ ≤ µ0εf(p) so that Lemma 3.1 can be applied to p. Then, we
tighten the factor µ1 in Lemma 3.1(i, iii, iv) to µ and extend the argument to other vertices.

Let δ = 40ε
sin(α/2)−20ε . Using the definition of δ and the condition ε ≤ (sin(α/2))2

800+420 sin(α/2) in the

definition of dense (ε, α)-meshes, one can verify that

δ ≤ 0.1

2 csc(α/2) + 1
. (5)

We claim that the height of τ from p is at most δf(p).

Claim 3.1 The height of τ from p is at most δf(p).

Proof. Suppose for the sake of contradiction that the height of τ from p is greater
than δf(p). Let C be the circle in aff(τ) such that its center x lies on the bisector of
the angle of τ at p, d(p, x) = 0.25δf(p), and the radius of C is d(p, x) sin(α/2). Note
that x ∈ τ and C ⊂ τ by the assumption that the height of τ from p is greater than
δf(p). We show below that ν(C) contains a large empty region, which contradicts
the property of ε-sampling.

Let x′ be the projection of x onto the tangent plane of Σ at p. Then, d(x, ν(x)) ≤
d(x, x′) + d(x′, ν(x′)), which is at most d(x, x′) + 0.5δ d(p, x′) by Lemma 2.1(iii)
because d(p, x′) ≤ d(p, x) = 0.25δf(p). Also, d(x, x′) ≤ d(p, x) sin θ. Therefore,

d(x, ν(x)) ≤ d(p, x) sin θ + 0.5δ d(p, x′) ≤ (sin θ + 0.5δ) d(p, x). (6)

Similarly, for every point y in the circumference of C, we can derive that d(y, ν(y)) ≤
(sin θ + δ) d(p, y) ≤ (sin θ + δ)(d(p, x) + d(x, y)). It follows that

d(ν(x), ν(y)) ≥ d(x, y)− d(x, ν(x))− d(y, ν(y))

≥ d(x, y)− (sin θ + 0.5δ) d(p, x)− (sin θ + δ)(d(p, x) + d(x, y)).

Notice that d(x, y) = radius(C) = d(p, x) sin(α/2). Therefore,

d(ν(x), ν(y)) ≥ d(x, y)− (sin θ + 0.5δ) csc(α/2) d(x, y)−
(sin θ + δ)(1 + csc(α/2)) d(x, y)

> d(x, y)(1− (sin θ + δ)(2 csc(α/2) + 1)). (7)

By (7), (4) and (5),

d(ν(x), ν(y)) > 0.1 d(x, y) = 0.1 sin(α/2) d(p, x) = 0.025δ sin(α/2) f(p). (8)

By (6),
d(p, ν(x)) ≤ d(p, x) + d(x, ν(x)) ≤ d(p, x)(1 + sin θ + 0.5δ).

Plug (5) and (4) into the inequality above. It gives the relation d(p, ν(x)) ≤(
1 + 0.85

2 csc(α/2)+1

)
d(p, x) = 0.25δ

(
1 + 0.85

2 csc(α/2)+1

)
f(p), which is less than 0.5δf(p)

8



because 0.85
1+2 csc(α/2) < 1. Thus, f(ν(x)) ≤ (1 + 0.5δ)f(p) by Lemma 2.1(v). Substi-

tuting this into (8) gives

d(ν(x), ν(y)) >
0.025δ sin(α/2)

1 + 0.5δ
f(ν(x)) = εf(ν(x)). (9)

The last step follows from the definition of δ. The closed curve ν(C) encloses a topo-
logical disk D ⊂ Σ that contains ν(x), and D does not contain any sample point be-
cause D ⊂ ν(τ). It is also known that Σ∩B(ν(x), εf(ν(x))) is a topological disk [5].
By (9), d(ν(x), ν(C)) > εf(ν(x)), which implies that Σ ∩ B(ν(x), εf(ν(x))) =
D ∩ B(ν(x), εf(ν(x))). But then Σ ∩ B(ν(x), εf(ν(x))) contains no sample point
as D contains none, contradicting the definition of ε-sampling. This establishes the
claim that the height of τ from p is at most δf(p).

By Claim 3.1, the two edges of τ in star(p) are at most δ cscα f(p) long. Therefore, γτ ≤
0.5δ(cscα)2f(p). Using the conditions on µ0 and ε in the definition of dense (ε, α)-meshes,
one can verify that 0.5δ(cscα)2 ≤ µ0ε and, therefore, γτ ≤ µ0εf(p). This makes Lemma 3.1
applicable to p. We get a sharper bound on the circumradii in star(p) as follows.

By Lemma 3.1(v), there is an edge in star(p) of length less than 4ε cscαf(p) and, hence, there
is a triangle in star(p) with circumradius less 2ε(cscα)2f(p). The longest edge length of this
triangle is less than 4ε(cscα)2f(p). The next triangle in cyclic order around p has circumradius
less than 2ε(cscα)3f(p) and longest edge length less than 4ε(cscα)3f(p). Continuing with this
reasoning and applying Lemma 3.1(ii), we deduce that every triangle in star(p) has circumradius
less than 2ε(cscα)4π/α+1f(p) = µεf(p) and longest edge length less than 2µεf(p). This results
in the µεf(p) bound stated in (i), which is an improvement of the µ1εf(p) bound stated in
Lemma 3.1(i).

We proceed to bound the circumradii of triangles incident to other vertices. Take any
neighbor q of p, since d(p, q) ≤ 4ε(cscα)4π/α+1f(p), Lemma 2.1(v) implies that d(p, q) ≤
4ε(cscα)4π/α+1f(q)/(1 − 4ε(cscα)4π/α+1), which is at most 2µ0ε sinα f(q) by the conditions
on µ0 and ε in the definition of dense (ε, α)-meshes. Therefore, the circumradius of any triangle
incident to pq is at most µ0εf(q), implying that Lemma 3.1 holds for q. Moreover, we can
apply the reasoning in the previous paragraph again to show that every triangle in star(q) has
circumradius less than µεf(q) and longest edge length less than 2µεf(q). As a result, starting
from p, we can traverse T in a breadth first manner to deduce that Lemma 3.1 holds for all
vertices of T and bound the circumradii in the star of every vertex v by µεf(v).

Once the factor µ1 in the circumradius bound in Lemma 3.1(i) is improved to µ, one can
verify that every factor µ1 in Lemma 3.1(i, iii, iv) is also improved to µ as well.

Lemma 3.2(i, iv) show that a decrease in the triangle circumradii improves the bounds
on the normal deviations and dihedral angles. Although Lemma 3.2(i) states that the triangle
circumradii are bounded by µεf(p), the factor µ is large in comparison with the factor ε+O(εκ),
where κ ∈ (1, 1.5), that is guaranteed by repeated edge flips as shown in Sections 4–6 later. The
value ε is required to be very small in Definition 2, but our experimental results in Section 7
show that edge flips work well even if the vertices are not very dense.

4 Edge flips

There are three results in this section. Lemma 4.1 shows that dense (ε, α)-meshes are closed
under the operation of flipping a flippable edge (to be defined shortly). Lemmas 4.2 and 4.3
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show that a linear number edge flips suffice to ensure that no flippable edge remains. Theorem 1
is a corollary of our techniques and it states that a planar triangulation with all angles greater
than some constant can be flipped to the Delaunay triangulation in linear time. Throughout
this section, let µ denote the constant 2(cscα)4π/α+1 as defined in Lemma 3.2.

Flipping the common edge pq of two triangles pqr and pqs means replacing them by two
new triangles prs and qrs. We flip pq only if it satisfies the following criterion, which ensures
that the minimum angle in the two new triangles produced by the edge flip is greater than the
minimum angle in the two triangles before the edge flip.

Definition 3 Let pqr and pqs be two triangles in a triangulated polygonal surface. The edge
pq is flippable if and only if

(i) ∠prs > min{π/2,∠pqs} and ∠psr > min{π/2,∠pqr},

(ii) ∠qrs > min{π/2,∠qps} and ∠qsr > min{π/2,∠qpr},

(iii) ∠rps > max{∠rpq,∠spq} and ∠rqs > max{∠rqp,∠sqp},

(iv) ∠prq > max{∠prs,∠qrs} and ∠psq > max{∠psr,∠qsr},

(v) rs is currently not an edge in the triangulated polygonal surface.

To test the flippability of an edge according to Definition 3, one can compare the cosines of
the angles involved, which can be done by comparing the inner products of some vectors of the
form u− v, where u and v are appropriate mesh vertices. It is well-known in the plane that if
s lies inside the circumcircle of pqr, then r lies inside the circumcircle of pqs and flipping pq
increases the minimum angle. However, in three dimensions, it is possible that s lies inside the
diametic ball of pqr, while r lies outside the diametric ball of pqs. This motivates us to define
flippability to increase the minimum angle directly. This also gives an aggressive strategy to
improve the mesh quality.

We show in Lemma 4.1 below that dense (ε, α)-meshes are closed under the flipping of
flippable edges.

Lemma 4.1 Let T be a dense (ε, α)-mesh of Σ. If an edge pq ∈ T is flippable, then flipping pq
produces a dense (ε, α)-mesh.

Proof. The vertex set remains an ε-sample after the edge flip. The first condition in Definition 1
and the condition on ε in Definition 2 are thus satisfied. Definition 3 implies that all angles are
at least α after flipping pq. It remains to check the third and fourth conditions in Definition 1.
Let pqr and pqs be the triangles incident to pq.

By Lemma 3.2(v), there is an edge e in star(r) of length less than 4ε cscα f(r). The edge e is
not affected by flipping pq. Let σ be any triangle incident to e after flipping pq. The circumradius
of σ is at most length(e)/(2 sinα) < 2ε(cscα)2f(r). Let v be the vertex of σ at which the angle
is the largest. Then d(r, v) ≤ 2γσ < 4ε(cscα)2f(r). By Lemma 2.1(v), f(r) ≤ 1

1−4ε(cscα)2 f(v)

which implies that γσ <
2ε(cscα)2

1−4ε(cscα)2 f(v). By Lemma 2.1(ii)(a), ∠a(nv,nσ) < 7ε(cscα)2

1−4ε(cscα)2 , which

is less than arcsin
(

0.8
1+2 csc(α/2)

)
by the condition on ε in the definition of dense (ε, α)-meshes.

Therefore, the third condition in Definition 1 is satisfied.
Before we establish the fourth condition in Definition 1, we first bound the circumradii of

the triangles in star(r). The bound on the number of triangles in star(r) may increase from
4π/α to 4π/α + 1 after flipping pq. Nevertheless, we have shown in the previous paragraph
that the two triangles incident to e (after flipping pq) have circumradii less than 2ε(cscα)2f(r).
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q

q′

Figure 5: If the dihedral angle at rs is less than 12µε, then p and q′ lie on the same side of rs
as p and ∠qrq′ < 12µε.

prs

qrs

L

Figure 6: The bold segments represent the cross-sections of the triangles prs and qrs. The dihe-
dral angle between the two triangles is obtuse. For L to intersect both prs and qrs, ∠a(L, prs)
must be less than π minus the dihedral angle between prs and qrs.

Therefore, we can go around the triangles in star(r) and repeat the analysis to show that their
circumradii are less than 2ε(cscα)4π/α+1f(r) = µεf(r).

It remains to verify that the nearest point map ν restricted to the updated mesh is a
homeomorphism onto Σ. As shown in the previous paragraph, both γprs and γqrs are less than
µεf(r), which is less than 0.5f(r) by the condition on ε in the definition of dense (ε, α)-meshes.
Therefore, the updated mesh avoids the medial axis of Σ, which means that the restriction of ν
to the updated mesh is well-defined. Since prs∪ qrs and pqr ∪ pqs share the same boundary, it
suffices to prove that the restriction of ν to prs∪qrs is injective and ν(prs∪qrs) = ν(pqr∪pqs).

We first establish several properties of prs and qrs. Although we have not proved that
the updated mesh is an (ε, α)-mesh, since γprs and γqrs are less than µεf(r), the proofs of
Lemma 3.1(i, iii) can be applied to the triangles prs and qrs to give:

∠a(nr,nprs) < 6µε, ∠a(nr,nqrs) < 6µε (10)

∀x ∈ prs, ∠a(nν(x),nprs) < 9µε (11)

Let φ denote the dihedral angle at rs after flipping pq. By (10), either φ < 12µε or φ > π−12µε.
We show that the first case is impossible. Assume to the contrary that φ < 12µε. Refer
to Figure 5. Let q′ be the projection of q onto aff(prs), which must lie on the same side
of rs as p by the assumption of φ < 12ε. Then, ∠qrq′ ≤ φ < 12µε. Therefore, ∠prq ≤
∠prq′ + ∠qrq′ = |∠prs−∠q′rs|+ ∠qrq′ ≤ |∠prs−∠qrs|+ 2 ·∠qrq′ < |∠prs−∠qrs|+ 24µε =
max{∠prs,∠qrs} −min{∠prs,∠qrs}+ 24µε. Because ∠prs and ∠qrs are at least α, the value
of −min{∠prs,∠qrs}+ 24µε is negative, which implies that ∠prq < max{∠prs,∠qrs}. This is
a contradiction to the flippability of pq. We conclude that

φ > π − 12µε. (12)

Next, we show that ν is injective on prs ∪ qrs. Suppose to the contrary that there exist
two points x, y ∈ prs ∪ qrs such that ν(x) = ν(y). Without loss of generality, assume that
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x ∈ prs. Let L be the line through ν(x) and parallel to nν(x). Both x and y are on L, so
y must belong to qrs. Consider the plane that contains L and is perpendicular to prs. This
plane contains a triangle ∆ (shown shaded in Figure 6) that is bounded by L, prs and qrs. The
angle of ∆ at rs is minimized and equal to the dihedral angle φ between prs and qrs when ∆ is
orthogonal to aff(rs). Otherwise, the angle of ∆ at rs can be bigger than φ. Since ∠a(L, prs)
is another angle of ∆, ∠a(L, prs) must be less than π minus the angle of ∆ at rs, implying that
∠a(L, prs) < π−φ. It follows from (12) that ∠a(L,nprs) = π/2−∠a(L, prs) > π/2− 12µε. On
the other hand, ∠a(L,nprs) = ∠a(nν(x),nprs) < 9µε by (11). This is a contradiction because
π/2− 12µε > 9µε. Therefore, ν is injective on prs ∪ qrs.

Next, we show that ν(prs∪qrs) = ν(pqr∪qrs). Let C = pr∪ps∪qr∪qs denote the common
boundary of prs ∪ qrs and pqr ∪ pqs. A continuous bijective map from a compact space is a
homeomorphism onto its image. Therefore, ν(prs ∪ qrs) and ν(pqr ∪ pqs) are topological disks
with a common boundary ν(C). Since ν(prs ∪ qrs) and ν(pqr ∪ pqs) have the same boundary,
either ν(prs∪ qrs) = ν(pqr ∪ pqs) or the interiors of ν(prs∪ qrs) and ν(pqr ∪ pqs) are disjoint.
We prove that the latter is impossible. Take any point x ∈ prs \C. The four triangles prs, qrs,
pqr and pqs form the boundary of the tetrahedron pqrs. The line through x and ν(x) must
enter pqrs at x and exit pqrs at another point, say y ∈ pqr ∪ pqs ∪ qrs.

Since γprs ≤ µεf(r), Lemma 2.2(iii) implies that d(r, ν(x)) ≤ (2µε + 20µ2ε2)f(r). Then,
Lemma 2.1(v) implies that f(r) ≤ 1

1−2µε−20µ2ε2 f(ν(x)). If y ∈ qrs, then since γqrs ≤ µεf(r),

we obtain d(y, ν(x)) ≤ d(r, y) + d(r, ν(x)) ≤ 2γqrs + (2µε+ 20µ2ε2)f(r) ≤ (4µε+ 20µ2ε2)f(r) ≤
4µε+20µ2ε2

1−2µε−20µ2ε2 f(ν(x)), which is less than f(ν(x)) by the condition on ε in the definition of dense

(ε, α)-meshes. But this implies that ν(x) is the closest point in Σ to y (i.e., ν(y) = ν(x)),
contradicting the injectivity of ν on prs ∪ qrs. We conclude that y ∈ pqr ∪ pqs. Since γpqr and
γpqs are at most µεf(p) by Lemma 3.2(i), we can repeat the analysis above with r replaced by

p to obtain d(y, ν(x)) ≤ 4µε+20µ2ε2

1−2µε−20µ2ε2 f(ν(x)) < f(ν(x)). It follows that ν(x) is the closest point

in Σ to y, i.e., ν(y) = ν(x). As a result, the interiors of ν(pqr ∪ pqs) and ν(prs ∪ qrs) are not
disjoint, which implies that ν(prs ∪ qrs) = ν(pqr ∪ pqs).

Lemma 4.1 shows that edge flips keep the mesh within the class of dense (ε, α)-meshes. But
will the edge flips terminate? If so, how long will the process take? The termination of the edge
flips can be argued as follows. The angle vector of a mesh is the list of all the angles in the
triangles sorted in nondecreasing order. After an edge flip, the minimum angle in the two new
triangles is greater than the minimum angle in the two old triangles according to Definition 3.
Therefore, an edge flip increases the angle vector of the surface mesh lexicographically. It follows
that the same mesh cannot be generated more than once by successive edge flips. Hence, the
edge flips must terminate. We show in the next two lemmas that the number of such edge flips
is in fact linear in the number of vertices.

Lemma 4.2 Let T be a dense (ε, α)-mesh of Σ. Let G be the graph such that its nodes are the
vertices of T and two nodes of G are connected if and only if they are connected in some dense
(ε, α)-mesh of Σ that has the same vertex set as T . Then, the degree of every node of G is at
most (1.1µ2(sinα)2 + 1)2.

Proof. Let p be a node in G. Take an edge pq ∈ G. Thus, pq is an edge in some dense (ε, α)-mesh
T ′ of Σ. By Lemma 3.2(v), there is an edge e ∈ star(p, T ′) of length less than 1.1h cscα, where
h is the distance between p and its nearest vertex. For each triangle in T ′ incident to e, its
circumradius is less than 0.55h(cscα)2 and its longest side length is less than 1.1h(cscα)2. By
Lemma 3.2(ii), there are at most 4π/α triangles in star(p, T ′) and going around these triangles
shows that the longest edge in star(p, T ′) has length less than 1.1h(cscα)4π/α = 0.55hµ sinα.
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Figure 7: vector(p) = (30◦, 32◦, 35◦, 40◦, 46◦, 55◦, 60◦, 62◦).

By applying the above reasoning to the vertex q, we can show that d(p, q) is less than
0.55µ sinα times the nearest neighbor distance of q. Therefore, d(p, q) ≤ 0.55µ sinαd(q, r),
which implies that

h ≤ d(p, q) ≤ 0.55µ sinαd(q, r). (13)

The circumradius of any triangle incident to pq in T ′ is at most µεf(p) by Lemma 3.2(i).
As a result,

d(p, q) ≤ 2µεf(p). (14)

Take another edge pr ∈ G. By applying the above argument to the dense (ε, α)-mesh that
contains pr, we obtain

d(p, r) ≤ 2µεf(p). (15)

By (14) and Lemma 2.1(v), f(p) ≤ 1
1−2µεf(q) < 2f(q). By (14) and (15), d(q, r) ≤ d(p, q) +

d(p, r) ≤ 4µεf(p) ≤ 8µεf(q). Lemma 2.1(i) implies that

∠a(qr,np) ≥ ∠a(qr,nq)− ∠(np,nq) > π/2− 4.08µε− 2µε

1− 2µε
> π/2− 7µε. (16)

Let q′ and r′ be the projections of q and r onto the tangent plane of Σ at p, respectively.

d(q′, r′) = d(q, r) sin(∠a(qr,np))
(13)&(16)
>

h cos(7µε)

0.55µ sinα
> h/(µ sinα).

Therefore, for every pair of nodes in G adjacent to p, their projections onto the tangent
plane of Σ at p are separated by a distance h/(µ sinα) or more. If we place a disk with
radius h/(2µ sinα) and center at the projection of each node in G adjacent to p, such disks
are disjoint. Moreover, these disks are contained in a bigger disk with center p and radius
0.55hµ sinα+ h/(2µ sinα). Thus, the number of nodes in G adjacent to p is at most

π (0.55hµ sinα+ h/(2µ sinα)))2

π (h/(2µ sinα))2
= (1.1µ2(sinα)2 + 1)2.

Lemma 4.2 implies the following result that repeated edge flips takes no more than linear
time to finish.

Lemma 4.3 Let T be a dense (ε, α)-mesh of Σ. Edge flips can be applied to T repeatedly until
no edge is flippable in time linear in the number of vertices in T .
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Proof. Let n denote the number of vertices in T . By Lemma 3.2(ii), T contains O(n) edges.
We first scan all edges in T in O(n) time and put the flippable ones into a queue.

We dequeue edges one by one. For each dequeued edge e, if e is still present and flippable
in the current mesh, then we flip it. (Since dense (ε, α)-meshes are closed under edge flips by
Lemma 4.1 and every vertex has constant degree by Lemma 3.2(ii), it takes O(1) time to check
the existence of e.) If e is flipped, two new triangles are produced and we enqueue the boundary
edges of the union of the two new triangles that are flippable. The above procedure repeats
until the queue becomes empty. The running time is thus O(n+ number of edge flips).

By Lemma 4.1, all intermediate meshes are dense (ε, α)-meshes. To analyze the effect of an
edge flip on a vertex star, for every vertex p, we define vector(p) to be the list of angles opposite
p in the triangles in star(p), sorted in nondecreasing order. Figure 7 shows an example. If
the edge pq between two triangles pqr and pqs is flipped, Definition 3 implies that for every
v ∈ {p, q, r, s}, the minimum angle opposite v in prs and qrs is greater than the minimum
angle opposite v in pqr and pqs. It implies that for every v ∈ {p, q, r, s}, vector(v) increases
lexicographically after flipping pq. As a result, when the star of a vertex p is changed by an edge
flip, the same star of p cannot be reproduced later. By Lemma 4.2, there are O(1) vertices that
may become neighbors of p at some point during the edge flips. They form only O(1) different
stars of p, i.e., the star of p can be changed only O(1) times. Summing over the n vertices shows
that there are O(n) edges flips.

The proof techniques of Lemmas 4.2 and 4.3 can be used to prove our first main result,
namely, any planar triangulation with angles greater than a constant can be flipped to the
Delaunay triangulation in linear time. This helps to explain why it is fast in practice to convert
a planar triangulation to the Delaunay triangulation by edge flips.

Theorem 1 Given a triangulation of n points in R2 with angles greater than a constant inde-
pendent of n, it can be converted to the Delaunay triangulation by edge flips in O(n) time.

Proof. In converting a planar triangulation to the Delaunay triangulation, the empty circum-
circle criterion is often applied. Let pqr and pqs be two triangles in the triangulation that
share the edge pq. By the empty circumcircle criterion, we can flip pq if r is enclosed by the
circumcircle of pqs (in which case, s is also enclosed by the circumcircle of pqr).

It is an easy corollary of the Inscribed Angle Theorem that, given two triangles pqr and pqs
in R2, if r is enclosed by the circumcircle of pqs, the following relations hold: ∠prs > ∠pqs,
∠psr > ∠pqr, ∠qrs > ∠qps, and ∠qsr > ∠qpr. Therefore, if pq can be flipped by the empty
circumcircle criterion, then pq is also flippable according to Definition 3.1 As a result, we can
repeatedly flip edges that are flippable according to Definition 3 or the empty circumcircle
criterion.

Assume that all angles in the triangulation are greater than α, a constant independent of
n. Let G be the graph such that its nodes are the triangulation vertices and two nodes are
connected if and only they are connected in some intermediate triangulation produced by the
edge flips. In every intermediate triangulation, every vertex has degree at most 2π/α because
every incident angle is at least α. We apply the analysis of Lemma 4.2 to show that every
vertex in G has a constant degree as follows. Let p be a vertex. Let pq and pr be two edges in
G. Let h be the distance between p and its nearest vertex. In the triangulation that contains
pq, p is incident to an edge of length at most h cscα, so the longest edge in star(p) is at most
h(cscα)2π/α long. Thus, d(p, q) ≤ h(cscα)2π/α.

1In R2, if pq is flippable, condition (iv) of Definition 3 forces pqrs to be a convex quadrilateral and conditions (i,
ii) of Definition 3 force r to be inside the circumcircle of pqs. That is, Definition 3 and the empty circumcircle
criterion are equivalent in R2.
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Similarly, the length of some edge in star(q) is at most cscα times the nearest neighbor
distance of q, and hence at most d(q, r) cscα. Therefore, the longest edge in star(q) is at most
d(q, r)(cscα)2π/α long, implying that d(p, q) ≤ d(q, r)(cscα)2π/α.

It follows that d(q, r) ≥ d(p, q)(sinα)2π/α ≥ h(sinα)2π/α. Since q and r are two arbitrary
nodes in G adjacent to p, we conclude that if we place a disk with radius 0.5h(sinα)2π/α and
center at each node in G adjacent to p, such disks are disjoint. Also, these disks lie inside a
bigger disk with center p and radius h(cscα)2π/α + 0.5h(sinα)2π/α. A packing argument shows
that the degree of p in G is at most (2(cscα)4π/α + 1)2 = O(1).

Then, the proof of Lemma 4.3 shows that the edge flips can be applied repeatedly until the
triangulation becomes Delaunay in time linear in the number of vertices.

5 Vertex neighborhood: flatness and injective projection

We develop two results in this section, Lemmas 5.1 and 5.4, that will be needed when we prove
that edge flips can decrease the triangle circumradii in Section 6. Lemma 5.1 is an analog of
Lemma 3.2(i) for triangles that are near a vertex p but possibly not in star(p). Lemma 5.4
shows that a neighborhood of p projects injectively onto every plane that makes an angle at
least π/3 with np. Throughout this section, µ = 2(cscα)4π/α+1 as defined in Lemma 3.2.

Lemma 5.1 For all c > 0, if T is a dense (ε, α)-mesh of Σ and ε ≤ 1
2cµ+8µ , then for every

triangle τ ∈ T and every vertex p ∈ T such that d(p, τ) ≤ cµεf(p), ∠a(np,nτ ) < (2c+ 7.5)µε.

Proof. Let q be the vertex of τ that subtends the largest angle in τ . By Lemma 3.2(i),

d(p, q) ≤ cµεf(p) + 2γτ ≤ cµεf(p) + 2µεf(q). Lemma 2.1(v) implies that d(p, q) ≤ (c+2)µε
1−2µε f(p).

Then, by Lemma 2.1(i, ii(a)), ∠a(np,nτ ) ≤ ∠a(nq,nτ ) + ∠(np,nq) < 3.5µε + (c+2)µε
1−(c+4)µε , which

is at most (2c+ 7.5)µε by our assumption that ε ≤ 1
2cµ+8µ .

We need two technical lemmas in order to prove Lemma 5.4. The first one states that for
every vertex p, any line that makes a small angle with np cannot be tangent to |T | locally at
any point near p.

Lemma 5.2 For all c > 0, if T is a dense (ε, α)-mesh of Σ and ε ≤ 1
2cµ+8µ , then for every

vertex p ∈ T and every line L such that ∠a(np, L) ≤ π/2− (4c+ 21)µε, L cannot be tangent to
|T | locally at any point in B(p, cµεf(p)).

Proof. Assume to the contrary that L is tangent to |T | locally at a point x ∈ B(p, cµεf(p)).
There are three possibilities: x lies in the interior of a triangle τ ∈ T , x lies in the interior of
an edge e ∈ T , and x is a vertex of T .

In the first case, ∠a(L,nτ ) = π/2, which implies that ∠a(np,nτ ) ≥ ∠a(L,nτ )−∠a(np, L) ≥
(4c+ 21)µε. This is a contradiction to Lemma 5.1.

In the second case, let σ and τ be the triangles incident to e. By Lemma 3.2(iv), the dihedral
angle at e is greater than π− 12µε. Lemma 5.1 implies that ∠a(np, τ ∩ σ) ≥ ∠a(np, τ) > π/2−
(2c+ 7.5)µε. Therefore, max{∠a(np,nσ),∠a(np,nτ )} > π/2− 6µε− (2c+ 7.5)µε−∠a(np, L) ≥
(2c+ 7.5)µε. This is again a contradiction to Lemma 5.1.

In the third case, there exist triangles σ, τ ∈ star(x) such that σ and τ share an edge,
and if we translate L to any point in σ ∩ τ , the translated line is tangent to |T | locally at that
point. We can then repeat the analysis in the previous paragraph to obtain a contradiction.
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Figure 8: (a) Trace line segments across the triangles and the projection on pz̃ moves mono-
tonically towards p. (b) We cannot turn back as we trace the line segments; otherwise, the
normal of some triangle would make too large an angle with np. (c) We obtain a polyline with
an endpoint y that projects onto p, and if y 6= p, then B(y, d(p, y)) is contained in a medial ball
at p.

The second technical result states that, within a neighborhood of a vertex, |T | is connected
and fairly flat.

Lemma 5.3 For all c ≥ 1, if T is a dense (ε, α)-mesh of Σ and ε ≤ 1
40cµ , then

(i) for every vertex p ∈ T , |T | ∩B(p, cµεf(p)) is connected,

(ii) for every vertex p ∈ T and every point x ∈ |T | such that d(p, x) ≤ cµεf(p), ∠a(np, px) >
π/2− (2c+ 7.5)µε.

Proof. Recall that νT denotes the restriction of the nearest point map ν to |T |. Let B0 denote
B(p, 2cµεf(p)). Since cµε < 1/2 by the assumption of the lemma, Σ ∩ B0 is a topological
disk [5]. Therefore, ν−1T (Σ ∩B0) is also a topological disk.

We first analyze the structure of ν−1T (Σ ∩ B0). Let x be a point in ν−1T (Σ ∩ B0). Let τ
be a triangle in T that contains x. By Lemmas 3.2(i) and 2.2(iii), for every vertex w of τ ,
d(x, ν(x)) ≤ 20µ2ε2f(w) ≤ 1

2cµεf(w) as c ≥ 1 and cµε ≤ 1/40 by the assumption of the
lemma. Then, d(p, w) ≤ d(p, ν(x)) + d(x, ν(x)) + d(w, x) ≤ 2cµεf(p) + 2.5µεf(w) as d(w, x) ≤
2γτ ≤ 2µεf(w) by Lemma 3.2(i). Then, f(w) ≤ 1+2cµε

1−2.5µεf(p) < 2f(p) by Lemma 2.1(v) and the

assumption of the lemma that µε ≤ cµε ≤ 1/40. Therefore, d(x, ν(x)) ≤ 1
2cµεf(w) < cµεf(p).

This implies that the distance between p and the boundary of ν−1T (Σ ∩ B0) is greater than
(2cµε − cµε)f(p) ≥ cµεf(p) and, hence, the boundary of ν−1T (Σ ∩ B0) lies outside the ball
B1 = B(p, cµεf(p)).

Let C be the connected component in ν−1T (Σ∩B0)∩B1 that contains p. Since the boundary
of ν−1T (Σ ∩B0) is outside B1, the boundary of C is a subset of ∂B1. We first prove two claims.

Claim 5.1 Let x̃ denote the projection of a point x ∈ C onto the tangent plane of
Σ at p. If z is a boundary point of C that minimizes d(p, z̃) over all boundary points
of C, then ∠a(np, pz) > π/2− (2c+ 7.5)µε.

Proof. Starting from z, trace line segments across triangles in C that project onto
subsets of the segment pz̃. Refer to Figure 8(a).

As we trace the line segments, the projection on pz̃ must move monotonically
towards p. Otherwise, we turn back at a point x ∈ |T | ∩ B1, which means that
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a line parallel to np is tangent to |T | locally at x. But this is a contradiction to
Lemma 5.2.

As we trace the line segments, we cannot encounter any boundary point of C
because, by our choice of z, no boundary point of C projects to a point in pz̃ closer
to p than z̃.

Consequently, by tracing line segments across triangles in C that project onto
subsets of the segment pz̃, we obtain a polyline in C from z to some point y such that
p is the projection of y on pz̃ and this polyline is monotone with respect to aff(pz̃).
We claim that y is equal to p. If y 6= p, then Σ does not intersect the interior of
B(y, d(p, y)) because d(p, y) ≤ cµεf(p) < f(p) as y ∈ B1, and therefore, B(y, d(p, y))
is strictly contained in a medial ball at p. Refer to Figure 8(c). The point νT (y)
is equal to p because B(y, d(p, y)) intersects Σ at p only, but this contradicts the
injectivity of νT . Hence, the endpoints of the polyline must be z and p.

If ∠a(np, pz) ≤ π/2 − (2c + 7.5)µε, then some line segment ` in this polyline
must make an angle at most π/2 − (2c + 7.5)µε with np, which implies that the
angle between np and the normal of the triangle containing ` is at least (2c+7.5)µε.
But this contradicts Lemma 5.1. It follows that ∠a(np, pz) > π/2−(2c+7.5)µε.

Claim 5.2 For every point x ∈ C, ∠a(np, px) > π/2− (2c+ 7.5)µε.

Proof. For every point x ∈ C, let x̃ denote the projection of x onto the tangent plane
of Σ at p. Let z be a boundary point of C that minimizes d(p, z̃) over all boundary
points of C. If d(p, x̃) ≥ d(p, z̃), then B1 constrains d(x, x̃) to be at most d(z, z̃),
which implies that ∠a(np, px) ≥ ∠a(np, pz) > π/2−(2c+7.5)µε. If d(p, x̃) < d(p, z̃),
then we can a trace a polyline from x to p as in the proof of Claim 5.1 to show that
∠a(np, px) > π/2− (2c+ 7.5)µε.

In the rest of the proof, we show that |T | ∩B1 is equal to C, from which properties (i) and
(ii) of the lemma follow. Assume to the contrary that |T | ∩ B1 6= C. Since the boundary of
ν−1T (Σ∩B0) is outside B1, C is a connected component of |T | ∩B1 and |T | ∩B1 has connected
component(s) other than C. Let q be a point in (|T | ∩ B1) \ C that is closest to p. Let G be
the plane tangent to B(p, d(p, q)) at q.

Suppose that q is a vertex of T . So q ∈ Σ. Because ∠a(np, pq) > π/2 − 0.51cµε by
Lemma 2.1(i), ∠a(np, G) is less than 0.51cµε. So there is a line L ⊂ G through q such that
∠a(np, L) = ∠a(np, G) < 0.51cµε and L is tangent to |T | locally at q. This is a contradiction
to Lemma 5.2.

Suppose that q lies in the interior of an edge or a triangle in T . By our choice of G, the
triangles in T that contain q lie on one side of G and p lies on the opposite side of G. By
Lemma 5.1, for every triangle τ that contains q, ∠a(np,nτ ) < (2c+ 7.5)µε, which implies that

∠a(np, G) > π/2− (2c+ 7.5)µε ⇐⇒ ∠a(np, pq) < (2c+ 7.5)µε. (17)

Observe that B(q, d(p, q)) ⊂ B0, which implies that

νT (q) ∈ Σ ∩B0.

Refer to Figure 9(a). Let D denote the closure of the complement of the double cone with apex
p, half aperture π/2 − (2c + 7.5)µε, and axis parallel to np. Let L be the line through q and
νT (q), which must be normal to Σ at νT (q).
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Figure 9: (a) Both Σ∩B0 and C are subsets of D (shown shaded). (b) The angle θ is less than
(2c+7.5)µε and the angle φ is less than 2cµε

1−2cµε . By the sine law, the white dots are at distances

at most d(p, q) sin(φ+θ)
cos(φ+(2c+7.5)µε) from p.

Claim 5.3 L intersects C.

Proof. By Lemma 2.1(i), Σ ∩B0 ⊆ D and for every point x ∈ Σ ∩B0, ∠(np,nx) ≤
2cµε

1−2cµε . Thus, ∠a(np, L) ≤ 2cµε
1−2cµε . Refer to Figure 9(b). Let ` be the maximum

distance from p to the two intersection points between L and the boundary of D.
By the sine law, ` = d(p, q) sin(φ+θ)

cos(φ+(2c+7.5)µε) ≤ d(p, q) φ+θ
1−φ−(2c+7.5)µε . Recall that

θ ≤ (2c + 7.5)µε and φ < 2cµε
1−2cµε . Since c ≥ 1 and ε ≤ 1

40cµ by the assumption of

the lemma, we obtain ` ≤ d(p, q) (5c+7.5)µε
1−(5c+7.5)µε ≤ d(p, q) 13cµε

1−13cµε ≤ d(p, q). Thus, L
pierces through D completely inside B1.

We have shown in Claim 5.2 that for every point x ∈ C, ∠a(np, px) > π/2 −
(2c + 7.5)µε. Therefore, C ⊆ D ∩ B1. Recall that the boundary of C is a subset
of ∂B1. If L does not intersect C, we can slide a copy L′ of L towards p and L′

must eventually be tangent to |C| ⊆ |T | ∩ B1 locally at some point. But this is a
contradiction to Lemma 5.2.

Let r denote a point in L ∩ C. Notice that q 6= r because ∠a(np, pq) < (2c + 7.5)µε by (17)
and, therefore, q 6∈ D. Since νT (q) belongs to B0, by Lemma 2.1(v), f(νT (q)) ≥ (1− 2cµε)f(p),
which is greater than 3cµεf(p) ≥ d(p, r) + d(p, νT (q)) ≥ d(r, νT (q)). Therefore, B(r, d(r, νT (q))
is contained in a medial ball at νT (q), which implies νT (q) is the closest point in Σ to r. But
then νT (r) = νT (q), contradicting the injectivity of νT .

In summary, we obtain a contradiction if we assume that (|T | ∩ B1) \ C 6= ∅. Therefore,
|T | ∩B1 = C, implying the correctness of properties (i) and (ii) of the lemma.

We are ready to show that a neighborhood of a vertex p projects injectively onto every plane
that makes an angle at least π/3 with np.

Lemma 5.4 For all c ≥ 1, if T is a dense (ε, α)-mesh of Σ and ε ≤ 1
40cµ , then for every vertex

p ∈ T , |T | ∩B(p, cµεf(p)) is connected and it projects injectively onto any plane that makes an
angle at least π/3 with np.
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Figure 10: The ball denotes B(p, 1.5cµεf(p)). The shaded region consists of points in
B(p, 1.5cµεf(p)) at distance cµεf(p) or less from L.

Proof. By Lemma 5.3(i), |T | ∩ B(p, cµεf(p)) is connected. Let H be any plane such that
∠a(np, H) ≥ π/3. Consider the projection of |T | ∩ B(p, cµεf(p)) onto H. Let L be the line
through p perpendicular to H. So ∠a(np, L) ≤ π/6.

Suppose for the sake of contradiction that the projection of |T | ∩ B(p, cµεf(p)) onto H is
not injective. It follows that the projection of |T | ∩ B(p, 1.5cµεf(p)) onto H is not injective
either. So there exist two points x, y ∈ |T | ∩B(p, 1.5cµεf(p)) such that xy is parallel to L. We
choose x and y so that d(x, L) = d(y, L) is minimized. This choice of x and y means that their
distances from L are at most cµεf(p).

Suppose that neither x nor y belongs to the boundary of B(p, 1.5cµεf(p)). By Lemma 5.3(ii),
L intersects |T | ∩B(p, cµεf(p)) at p only. Refer to Figure 10(a). If we translate a copy L′ of L
linearly towards xy, then our choice of x and y implies that when L′ reaches xy, L′ is tangent
to |T | locally at x or y. This is a contradiction to Lemma 5.2.

Suppose that x or y belongs to the boundary of B(p, 1.5cµεf(p)), say x. See Figure 10(b).
Since ∠a(px, L) ≤ arcsin(1/1.5) and ∠a(np, L) = π/2−∠(np, H) ≤ π/6, we obtain ∠a(np, px) ≤
∠a(np, L) + ∠a(px, L) ≤ π/6 + arcsin(1/1.5) < 1.26. This is impossible because Lemma 5.3(ii)
implies that ∠a(np, px) > π/2 − (2c + 7.5)µε > 1.26 as 2c + 7.5 ≤ 9.5c and ε ≤ 1

40µε by the

assumption of the lemma.

6 Almost empty diametric balls

In this section, we prove that if a dense (ε, α)-mesh does not have any flippable edge, then the
diametric ball of every mesh triangle is almost empty in the sense that a concentric ball with a
slightly smaller radius is empty of mesh vertices. The “almost emptiness” of the diametric ball
implies that the circumradius of a triangle τ is bounded by ε + O(εκ) times the local feature
size at any vertex of τ , where κ is any fixed constant in (1, 1.5). The factor ε+O(εκ) is much
smaller than the factor µε = 2(cscα)4π/α+1ε in Lemma 3.2(i, iv) and, therefore, edge flips make
the mesh smoother and a better approximation of Σ.

We first show that the edge flippability is related to a local notion of emptiness of diametric
balls of triangles. Let pqr and pqs be two triangles in a surface mesh of Σ. Recall that the
diametric ball of pqr is denoted by Bpqr = B(cpqr, γpqr), where cpqr denotes the circumcenter
of pqr. We say that a point x lies inside Bpqr if x lies in the interior of Bpqr. In the case that
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Figure 11: (a) r does not lie inside Bpqs and s does not lie inside Bpqr. (b) r lies inside Bpqs
and s lies inside Bpqr. (c) s lies inside Bpqr and r does not lie inside Bpqs.

pqr and pqs are coplanar, r lies inside Bpqs if and only if s lies inside Bpqr. However, this is not
true when the two triangles are not coplanar. Figure 11 shows all three possible configurations.

Definition 4 Let pqr and pqs be two triangles in a triangulated polygonal surface. The edge
pq is illegal if r lies inside Bpqs and s lies inside Bpqr. Otherwise, pq is legal.

The next lemma shows that every illegal edge is flippable.

Lemma 6.1 If T is a dense (ε, α)-mesh of Σ, then every illegal edge in T is flippable according
to Definition 3.

Proof. Let pqr and pqs be two triangles in T such that the common edge pq is illegal. We
first prove that ∠prs > min{π/2,∠pqs}. Refer to Figure 12(a). Since r lies inside Bpqs, the ray
from p through r hits a point x ∈ ∂Bpqs, which implies that ∠prs > ∠pxs. The circumcircle
of pqs, being a great circle of Bpqs, is not smaller than the circumcircle of pxs. Therefore,
d(p,s)

2 sin∠pqs = γpqs ≥ γpxs = d(p,s)
2 sin∠pxs , which implies that sin∠pxs ≥ sin∠pqs. If ∠pqs ≤ π/2, then

sin∠pxs ≥ sin∠pqs ⇒ ∠pxs ≥ ∠pqs, and therefore, ∠prs > ∠pxs ≥ ∠pqs. If ∠pqs > π/2, we
show that ∠prs > π/2 as follows. The plane H through ps perpendicular to pqs cuts ∂Bpqs into
two subsets. Let C denote the subset that contains q. Since ∠pqs > π/2, C is the smaller of
the two subsets as illustrated in Figure 12. Since pqx and pqr are coplanar, the dihedral angle
between pqx and pqs is the same as that between pqr and pqs, which is obtuse by Lemma 3.2(iv).
This forces x to lie in C. Imagine that we fix the locations of p and s and move x on C. When
x lies on H, ∠pxs achieves its minimum value of π/2 (because ps is a diameter of the disk
H ∩Bpqs). Thus, ∠pxs ≥ π/2 in general and ∠prs > ∠pxs ≥ π/2.

Similarly, we can prove that ∠psr > min{π/2,∠pqr}, ∠qrs > min{π/2,∠qps}, and ∠qsr >
min{π/2,∠qpr}.

Next, we show that ∠rps > max{∠rpq,∠spq}. Put a very small sphere S centered at p,
which intersects pq, pr and ps at the points q′, r′ and s′, respectively. Refer to Figure 12(b). The
points q′, r′ and s′ lie in a quarter of S bounded by the tangent plane of Bpqr at p and aff(pqr).
The plane orthogonal to both aff(pr) and aff(pqr) bounds a halfspace H+ that contains r′.
H+ ∩ S is the union of great circular arcs of S that are incident to r′ and are as long as the
great circular arc between q′ and r′. Also, the bounding plane of H+ meets the great circular arc
between q′ and r′ at right angle. Since the dihedral angle at pq is obtuse by Lemma 3.2(iv), s′

does not belong to H+ which implies that the great circular arc between r′ and s′ is longer than
the one between q′ and r′. Hence, ∠rps > ∠rpq. A similar argument shows that ∠rps > ∠spq.

Similarly, we can show that ∠rqs > max{∠rqp,∠sqp}.
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Figure 12: (a) The ray from p through r hits ∂Bpqs at x. The plane H through ps perpendicular
to pqs cuts ∂Bpqs into two subsets, where C is the one containing q. If C is smaller than a
hemisphere, then ∠pxs ≥ π/2. (b) A quarter of S contains the points q′, r′ and s′. The plane
orthogonal to both aff(pr) and aff(pqr) bounds a halfspace H+ containing r′. H+ ∩S is shown
shaded. (c) s′ is the projection of s onto aff(pqr).

Next, we show that ∠prq > max{∠prs,∠qrs}. Since s lies inside Bpqr, by Lemma 3.2(i),
d(r, s) < 2γpqr ≤ 2µεf(r). Then, Lemma 2.1(i) and Lemma 3.2(i) imply that ∠a(pqr, rs) ≤
∠a(nr,npqr) + π/2 − ∠a(nr, rs) < 8µε. Since s lies inside Bpqr and the dihedral angle at pq
is obtuse by Lemma 3.2(iv), the projection of rs onto aff(pqr) intersects pqr. Refer to Fig-
ure 12(c). Let s′ be the orthogonal projection of s onto aff(pqr). It follows that ∠prs′ ≥
∠prs − ∠a(pqr, rs) > ∠prs − 8µε. Similarly, ∠qrs′ > ∠qrs − 8µε. Therefore, ∠prq =
∠prs′ + ∠qrs′ > ∠prs + ∠qrs − 16µε. We have shown earlier that ∠prs > min{π/2,∠pqs}
and ∠qrs > min{π/2,∠qps}. Moreover, ∠pqs and ∠qps are at least α. Therefore, ∠prq >
max{∠prs,∠qsr} + α − 16µε > max{∠prs,∠qrs} because α > 16µε by the condition on ε in
the definition of (ε, α)-meshes.

Similarly, we can show that ∠psq > max{∠psr,∠qsr}.
It remains to prove that rs is not an edge in T . Suppose to the contrary that rs is an

edge in T . We have argued before that the projection of rs onto aff(pqr) intersects pqr. By
Lemma 3.2(i), ∠a(nr, pqr) > π/2− 6µε, which is greater than π/3 by the condition on ε in the
definition of dense (ε, α)-meshes. But then the projection of star(r) onto aff(pqr) should be
injective according to Lemma 5.4, a contradiction.

By Lemmas 4.1, 3.2(iv) and 6.1, there is no illegal edge when there is no flippable edge in a
dense (ε, α)-mesh.

6.1 Technical results

We first prove two technical results before showing in the next subsection that the diametric
balls of the triangles are almost empty when no edge is flippable.

Given two triangles σ and τ in an (ε, α)-mesh that share an edge, the boundaries of their
diametric balls intersect in a circle. Let H be the support plane of this circle. Although the
dihedral angle between σ and τ is close to π, the plane H may still be nearly parallel to σ or
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Figure 13: The figure shows a cross-section view of the triangles σ and τ . The plane H can
make a small angle with σ or τ even if the dihedral angle between σ and τ is close to π.

τ .2 Figure 13 shows an example.
The first technical result states that if τ makes a small angle with H, then γσ and γτ are

similar and cσ and cτ are close to each other. Recall that µ = 2(cscα)4π/α+1 as defined in
Lemma 3.2.

Lemma 6.2 For all c > 0, if T is a dense (ε, α)-mesh of Σ and ε ≤ 1
2cµ+24µ , then for every

pair of triangles σ, τ ∈ T such that σ and τ share an edge and ∠a(τ,H) ≤ cµε, where H =
aff(∂Bτ ∩ ∂Bσ), the following relations hold.

(i) (1− 2(6 + c)µε)γσ < γτ < (1 + 4(6 + c)µε)γσ.

(ii) d(cτ , cσ) < 4(6 + c)µεγτ .

Proof. Refer to Figure 13. Since H contains the edge σ ∩ τ , the assumption of ∠a(τ,H) ≤ cµε
implies that d(cτ , H) ≤ γτ sin(cµε). By Lemma 3.2(iv), ∠a(τ, σ) < 12µε. Thus, ∠a(σ,H) ≤
∠a(σ, τ)+∠a(τ,H) < (12+c)µε, which implies that d(cσ, H) < γσ sin((12+c)µε). The segment
cσcτ is perpendicular to H. Therefore,

d(cσ, cτ ) ≤ d(cσ, H) + d(cτ , H)

< γσ sin((12 + c)µε) + γτ sin(cµε)

< (12 + c)µεγσ + cµεγτ .

By the triangle inequality, γτ ≤ γσ + d(cσ, cτ ). Then, γτ < γσ + cµεγτ + (12 + c)µεγσ, which
gives

γτ <
1 + (12 + c)µε

1− cµε γσ =

(
1 +

(12 + 2c)µε

1− cµε

)
γσ < (1 + 4(6 + c)µε)γσ.

The last step substitutes 1− cµε by 1/2 which follows from the assumption of the lemma that
ε ≤ 1

2cµ+24µ . Symmetrically, one can derive from the inequality γσ − d(cσ, cτ ) ≤ γτ that

γτ >
1− (12 + c)µε

1 + cµε
γσ =

(
1− (12 + 2c)µε

1 + cµε

)
γσ > (1− 2(6 + c)µε)γσ.

This proves (i). Then,

d(cσ, cτ ) < (12 + c)µεγσ + cµεγτ

≤ (12 + c)µε · (γτ + d(cσ, cτ )) + cµεγτ

= (12 + 2c)µεγτ + (12 + c)µε d(cσ, cτ ).

2If σ and τ are coplanar, then H must be perpendicular to the support plane of σ and τ .
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Rearranging terms, we obtain

d(cσ, cτ ) <
(12 + 2c)µεγτ
1− (12 + c)µε

≤ 4(6 + c)µεγτ .

In the last step, we substitute 1− (12 + c)µε by 1/2, which follow from the assumption of the
lemma that ε ≤ 1

2cµ+24µ . This proves (ii).

The second technical result states that, in a dense (ε, α)-mesh, if a vertex v lies inside the
diametric ball of a triangle τ , then for every edge pq of τ , the triangle pqv makes a small angle
with τ .

Lemma 6.3 Let T be a dense (ε, α)-mesh of Σ. For every triangle τ ∈ T , every edge pq of τ
and every vertex v ∈ T , if v lies inside Bτ , then ∠a(pqv, τ) < 10µε csc(α/2).

Proof. Let τ be a triangle in T . Let pq be an edge of τ . Let v be a vertex of T that lies inside
Bτ . Let ṽ be the orthogonal projection of v onto aff(pq).

By Lemma 3.2(i), ∠a(np,nτ ) < 6µε. It can be verified that ε ≤ 1/(80µ) by the condition
on ε in the definition of dense (ε, α)-meshes. Therefore, we can invoke Lemma 5.4 with c = 2
to project T ∩ B(p, 2µεf(p)) injectively onto aff(τ). Let v′ denote the projection of v. In
the projection, either v′ is connected to p or v′ lies outside the projection of star(p). Also, v′

lies inside the circumcircle of τ because v lies inside Bτ . Since d(p, v) ≤ 2γτ ≤ 2µεf(p) by
Lemma 3.2(i), we obtain ∠(np, pv) ≥ π/2− 1.02µε by Lemma 2.1(i). Therefore,

∠a(τ, pv) ≤ ∠a(np,nτ ) + π/2− ∠a(np, pv) < 8µε. (18)

Since d(q, v) ≤ 2γτ ≤ 2µεf(q) by Lemma 3.2(i), we can similarly show that

∠a(τ, qv) < 8µε. (19)

Therefore,
d(v, v′) < min{d(p, v), d(q, v)} · sin(8µε). (20)

There are two cases to consider depending on whether ṽ lies in the interior of pq or not.
Suppose that ṽ lies in the interior of pq. Refer to Figure 14(a). Let pqr be the triangle that

shares pq with τ . Let r′ be the projection of r onto aff(τ). Similar to the derivation of (18) and
(19), we can show that ∠a(τ, pr) < 8µε and ∠a(τ, qr) < 8µε. It follows that ∠pqr′ and ∠qpr′

are at least α − 8µε ≥ α/2 by the condition on ε in the definition of (ε, α)-meshes. Since v′

lies outside the interior of τ and pqr′, we conclude that ∠qpv′ ≥ α/2 or ∠pqv′ ≥ α/2. Assume
without loss of generality that ∠qpv′ ≥ α/2. So

d(v′, ṽ) ≥ d(p, v′) sin(α/2) ≥
(
d(p, v)− d(v, v′)

)
sin(α/2)

>
1− sin(8µε)

sin(8µε)
d(v, v′) sin(α/2). (∵ (20))

Therefore,

∠a(pqv, τ) = arctan

(
d(v, v′)
d(v′, ṽ)

)
<

sin(8µε)

1− sin(8µε)
csc(α/2) < 10µε csc(α/2).

The inequality sin(8µε)/(1− sin(8µε)) < 10µε is used in the last step above, which follows from
the condition on ε in the definition of dense (ε, α)-meshes.
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Figure 14: Illustrations for the proof of Lemma 6.3.

Suppose that ṽ does not lie in the interior of pq. Then, either p or q is the nearest point in τ
to v, say q. It follows that ∠pqv′ ≥ π/2. Figure 14(b,c,d) show the three possible configurations.
We claim that ∠pqv′ ∈ [π/2, π − α] in all three configurations. Consider Figure 14(b, c). Let
C be the convex hull of τ and v′. Since v′ lies inside the circumcircle of τ , any two opposite
angles of C sum to less than π. Then, the angle of C at q is less than π − α because the angle
of C opposite q is at least α. It follows that ∠pqv′ is between π/2 and π − α. In Figure 14(d),
∠pqv′ is at most the angle of τ at q which is at most π − 2π. This establishes our claim. Since
∠pqv′ ∈ [π/2, π − α], we get

d(v′, ṽ) = d(q, v′) sin∠pqv′ ≥
(
d(q, v)− d(v, v′)

)
sinα

>
1− sin(8µε)

sin(8µε)
d(v, v′) sinα. (∵ (20))

Hence,

∠a(pqv, τ) = arctan

(
d(v, v′)
d(v′, ṽ)

)
<

sin(8µε)

1− sin(8µε)
cscα < 10µε cscα.

6.2 Main analysis

We first prove in Lemma 6.4 below that if two triangles pqr and pqs share a legal edge pq, then
r is either outside Bpqs or near ∂Bpqs. (The same conclusion can be drawn for s.) This is the
base case of the subsequent induction to show that every vertex is either outside Bpqs or near
∂Bpqs when all edges are legal.
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Figure 15: Two side-views taken in the direction of pq. (a) pqr ⊂ Bpqs and pqs ⊂ Bpqr, implying
that pq is illegal. (b) The edge pq is legal.

Lemma 6.4 Let T be a dense (ε, α)-mesh. For every pair of triangles pqr, pqs ∈ T that share
a legal edge pq, d(r, cpqs) > (1− 108µε)γpqs.

Proof. Let H = aff(∂Bpqr ∩ ∂Bpqs). Suppose that ∠a(pqr,H) ≤ 12µε. Since T is a
dense (ε, α)-mesh, it can be verified that ε ≤ 1/(48µ) by the condition on ε in the defi-
nition of dense (ε, α)-meshes. Therefore, we can apply Lemma 6.2 with c = 12 to obtain
d(cpqr, cpqs) < 72µεγpqr and γpqr > (1 − 36µε)γpqs. So d(r, cpqs) ≥ d(r, cpqr) − d(cpqr, cpqs) >
γpqr − 72µεγpqr > (1− 72µε)(1− 36µε)γpqs > (1− 108µε)γpqs as stated in the lemma. Suppose
that ∠a(pqr,H) > 12µε. By Lemma 3.2(iv), the dihedral angle at pq is greater than π − 12µε.
Thus, H separates pqr and pqs. Let H+ be the half-space bounded by H that contains pqs.
If Bpqs ∩ H+ ⊂ Bpqr, then Bpqr \ H+ ⊂ Bpqs. Refer to Figure 15(a). Therefore, r lies inside
Bpqs and s lies inside Bpqr, but then pq is illegal, a contradiction. So we are in the case of
Figure 15(b), where Bpqs ∩ H+ 6⊂ Bpqr. Then, r does not lie inside Bpqs, which implies that
d(r, cpqs) ≥ γpqs.

By Lemma 6.4, given a triangle τ with no illegal edges, we only need to worry about
whether Bτ contains a vertex p several triangles away. We introduce some notation to facilitate
the analysis of such a case.

Definition 5 Let T be a dense (ε, α)-mesh of Σ. Let p be a vertex in T that lies inside the
diametric ball of a triangle τ ∈ T . We define a triangle sequence seq(p, τ ) from τ to p as
follows. By Lemma 5.4, T ∩B(cτ , γτ ) projects injectively to aff(τ). Let p′ denote the projection
of p. There is a unique vertex v of τ such that the line segment p′v intersects the interior of
τ . Walking linearly from v to p′ visits the projections of some triangles on aff(τ) in order. The
sequence seq(p, τ) is the corresponding ordered list of these triangles. That is, if (τ ′1, τ

′
2, τ
′
3, . . .) is

the sequence of projections of triangles visited as we walk linearly from v to p′, where τ ′i denotes
the projection of τi, then seq(p, τ) = (τ1, τ2, τ3, . . .). Note that τ1 = τ ′1 = τ . The last triangle in
seq(p, τ) belongs to star(p).

If p lies inside Bτ , our plan to show that p is near ∂Bτ goes as follows. Let λ = 1 − εc
for some fixed constant c ∈ (0, 0.5). If d(p, cτ ) ≥ λγτ , then p is already near ∂Bτ . Suppose
to the contrary that d(p, cτ ) < λγτ . We extract the shortest prefix (τ1, τ2, . . . , τk) of seq(p, τ)
such that d(p, cτk) ≥ (1 − √ε)γτk . Therefore, d(p, cτi) < (1 − √ε)γτi for i ∈ [1, k − 1]. We
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prove two results below. Lemma 6.5 shows that for i ∈ [1, k], d(p, cτi)/γτi ≥ 1 − ρi, where ρi
increases slowly as i decreases from k to 1. In other words, the lower bound on d(p, cτi)/γτi
decreases slowly as i decreases from k to 1. Lemma 6.6 shows that k is at most a constant.
Since d(p, cτk) ≥ (1−√ε)γτk , we can work backward from i = k− 1 to 1 and apply Lemmas 6.5
and 6.6 to obtain a lower bound on d(p, cτ1) = d(p, cτ ). This lower bound will contradict the
assumption of d(p, cτ ) < λγτ . Hence, d(p, cτ ) ≥ λγτ is the only possibility, i.e., p is near ∂Bτ .

Lemma 6.5 Let T be a dense (ε, α)-mesh of Σ for a sufficiently small ε. Suppose that a vertex
p ∈ T lies inside the diametric ball of a triangle τ ∈ T . If (τ1, τ2, . . . , τk) is a prefix of seq(p, τ)
such that d(p, cτk) ≥ (1 − √ε)γτk and τi ∩ τi+1 is legal for i ∈ [1, k − 1], then for i ∈ [1, k],
d(p, cτi) ≥ (1− ρi)γτi, where ρi = 2k−i(cscα)2k−2i

√
ε.

Proof. We prove the lemma by induction from i = k down to i = 1. The base case of i = k is
true because ρk =

√
ε and d(p, cτk) ≥ (1−√ε)γτk by the assumption of the lemma.

The induction hypothesis is d(p, cτi) ≥ (1−ρi)γτi for some i ∈ [2, k]. Let H denote aff(∂Bτi∩
∂Bτi−1). There are two cases in the analysis of d(p, cτi−1) depending on ∠a(τi−1, H).

Suppose that ∠a(τi−1, H) ≤ 10µε csc(α/2). We apply Lemma 6.2 with c = 10 csc(α/2) to
obtain γτi−1 < (1 + 24µε + 40µε csc(α/2))γτi and d(cτi−1 , cτi) < (24µε + 40µε csc(α/2))γτi−1 .
Then,

d(p, cτi−1) ≥ d(p, cτi)− d(cτi−1 , cτi)

> (1− ρi)γτi − (24µε+ 40µε csc(α/2))γτi−1

>
1− ρi

1 + 24µε+ 40µε csc(α/2)
γτi−1 − (24µε+ 40µε csc(α/2))γτi−1

> (1− 24µε− 40µε csc(α/2))(1− ρi)γτi−1 − (24µε+ 40µε csc(α/2))γτi−1

= (1− ρi)γτi−1 − (2− ρi)(24µε+ 40µε csc(α/2))γτi−1

> (1− ρi)γτi−1 − 2(24µε+ 40µε csc(α/2))γτi−1 .

The inequality 2(24µε+ 40µε csc(α/2)) ≤ √ε is satisfied for a sufficiently small ε, and ρi ≥
√
ε

by definition. Therefore,

d(p, cτi−1) > (1− 2ρi)γτi−1 > (1− ρi−1)γτi−1 .

Suppose that ∠a(τi−1, H) > 10µε csc(α/2). If p does not lie inside Bτi−1 , then d(p, cτi−1) ≥
γτi−1 and we are done. Assume for the rest of the proof that p lies inside Bτi−1 . Let G be the
plane that contains the edge τi−1 ∩ τi and is perpendicular to τ . Refer to Figure 16(a). Let ∆
be the triangle with p and the endpoints of τi ∩ τi−1 as vertices. Lemma 6.3 implies that

∠a(∆, τi−1) < 10µε csc(α/2). (21)

We first show that H separates τi−1 from p and τi. The dihedral angle at τi−1 ∩ τi is greater
than π − 12µε by Lemma 3.2(iv). Since 10µε csc(α/2) > 12µε, H must separate τi−1 from τi.
We show that H separates τi−1 and ∆ too. Let q and qi−1 be two arbitrary vertices of τ and
τi−1, respectively. Recall that p lies inside Bτ by the assumption of the lemma, and we are in
the case of p lying inside Bτi−1 . Therefore,

d(q, qi−1) ≤ d(q, p) + d(qi−1, p)

≤ 2γτ + 2γτi−1

≤ 2µεf(q) + 2µεf(qi−1) (∵ Lemma 3.2(i))

≤ 4µε

1− 2µε
f(q). (∵ Lemma 2.1(v))
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Figure 16: (a) The dashed plane is aff(τ). The shaded triangle is ∆ and its vertices are p and
the endpoints of τi−1 ∩ τi. (b) p is farther from Bτi−1 than Bτi in terms of the power distance.

It follows that

∠a(nτ ,nτi−1) ≤ ∠a(nq,nτ ) + ∠a(nqi−1 ,nτi−1) + ∠(nq,nqi−1)

< 12µε+
4µε

1− 6µε
(∵ Lemmas 2.1(i) and 3.2(i))

< 17µε.

The last step follows from the assumption that ε is sufficiently small. Since the plane G is
perpendicular to τ , the inequality ∠a(nτ ,nτi−1) < 17µε implies that ∠a(G, τi−1) > π/2− 17µε.
By the definition of seq(p, τ), G separates τi−1 from both p and τi. This forces the dihedral
angle between τi−1 and ∆ to be greater than π/2 − 17µε. Since ∠a(∆, τi−1) < 10µε csc(α/2)
by (21), the dihedral angle between τi−1 and ∆ must be greater than π − 10µε csc(α/2) then.
Recall that we are in the case of ∠a(τi−1, H) > 10µε csc(α/2), which means that τi−1 and ∆
must be separated by H. It follows that H separates τi−1 from both p and τi.

Refer to Figure 16(b). The plane H is the bisector of Bτi−1 and Bτi with respect to the
power distance [4]. Since the edge τi−1 ∩ τi is legal by assumption of the lemma, Bτi−1 contains
the portion of Bτi on the side of H opposite to p. This implies that the power distance of p
from Bτi−1 is at least the power distance of p from Bτi . That is,

d(p, cτi−1)2 − γ2τi−1
≥ d(p, cτi)

2 − γ2τi .

By the induction hypothesis, d(p, cτi) ≥ (1− ρi)γτi . Since τi−1 and τi share an edge and every
angle in τi is at least α, γτi−1 ≥ γτi sinα. Therefore,

d(p, cτi−1)2 ≥ (1− ρi)2γ2τi − γ2τi + γ2τi−1
≥
(
1− ρi(2− ρi)(cscα)2

)
γ2τi−1

.

We obtain the desired result of d(p, cτi−1)2 ≥ (1− ρi−1)2γ2τi−1
if

1− ρi(2− ρi)(cscα)2 ≥ (1− ρi−1)2
⇔ ρi(2− ρi)(cscα)2 ≤ ρi−1(2− ρi−1)
⇔ 2− ρi ≤ 2(2− ρi−1)
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Figure 17: (a) G separates τi−1 from qj and τi. (b) If p′ and q′j are in different regions in
Dε outside τ ′i−1, it is impossible for the oriented segment from the vertex v of τ to p′ in the
definition of seq(p, τ) to intersect τ ′i−1 before τ ′j .

The inequality 2−ρi ≤ 2(2−ρi−1) holds when ρi ≤ (sin2 α)/2 because 2−ρi−1 = 2−2ρi(cscα)2 ≥
1 then. On the other hand, if ρi > (sin2 α)/2, then ρi−1 = 2(cscα)2ρi > 1 and, therefore, the
inequality d(p, cτi−1) ≥ (1− ρi−1)γτi−1 is trivially true.

Let λ = 1−εc for some fixed constant c ∈ (0, 0.5). The next result shows that if d(p, cτ ) < λγτ
and d(p, cτi) < (1−√ε)γτi for i ∈ [1, k − 1], then k is at most some constant.

Lemma 6.6 Let λ = 1− εc for some fixed constant c ∈ (0, 0.5). Let T be a dense (ε, α)-mesh
of Σ for a sufficiently small ε. Suppose that a vertex p ∈ T and a triangle τ ∈ T satisfy
d(p, cτ ) < λγτ . If (τ1, τ2, . . . , τk) is a prefix of seq(p, τ) such that d(p, cτi) < (1 − √ε)γτi and
τi ∩ τi+1 is legal for i ∈ [1, k − 1], then k ≤ κseq = 2π/(α− sinα) + 2.

Proof. For j ∈ [1, k], let qj denote an arbitrary vertex of τj and define `(j) to be the smallest
index in [1, k] such that d(qj , cτ`(j)) ≥ (1 − √ε)γτ`(j) . Note that `(j) ≤ j because d(qj , cτj ) =

γτj > (1−√ε)γτj . The definition of `(j) implies that d(qj , ci) < (1−√ε)γτi for i ∈ [1, `(j)− 1].
We first prove a claim. For i ∈ [1, k], define ρi = 2k−i(cscα)2k−2i

√
ε as in Lemma 6.5.

Claim 6.1 For every j ∈ [1, k] and every i ∈ [1, `(j)], d(qj , cτi) ≥ (1−ρk−`(j)+i)γτi.
Proof. The proof works by induction from i = `(j) down to i = 1. The base case is
true because, by the definition of `(j), d(qj , cτ`(j)) ≥ (1 −√ε)γτ`(j) = (1 − ρk)γτ`(j) .
The induction hypothesis is d(qj , cτi) ≥ (1− ρk−`(j)+i)γτi for some i ∈ [2, `(j)].

Consider τi−1. Since i− 1 < `(j), the definition of `(j) implies that d(qj , cτi−1) <
(1−√ε)γτi−1 . We want to apply an analysis similar to the proof of Lemma 6.5.

We first show that τi−1 is separated from both qj and τi by the plane G through
τi−1∩ τi perpendicular to aff(τ). Refer to Figure 17(a). Let p′, q′j , τ

′
i , τ
′
i−1, and c′τi−1

be the projections of p, qj , τi, τi−1, and cτi−1 in aff(τ), respectively. Let D denote
the disk in aff(τ) with center c′τi−1

and radius γτi−1 . Let Dε be the concentric disk
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in aff(τ) with center c′τi−1
and radius (1−√ε)γτi−1 .

Recall that d(p, cτi−1) < (1 − √ε)γτi−1 by the assumption of the lemma and
d(qj , cτi−1) < (1−√ε)γτi−1 as i−1 < `(j). This implies that q′j and p′ belong to Dε.

We argue that the vertices of τ ′i−1 lie outside Dε as follows. Let q be an ar-
bitrary vertex of τ . By the definition of seq(p, τ), every triangle in seq(p, τ) in-
tersects B(cτ , γτ ). Therefore, d(q, τi−1) ≤ 2γτ ≤ 2µεf(q) by Lemma 3.2(i), and
then ∠a(nτ ,nτi−1) ≤ ∠a(nq,nτ ) + ∠a(nq,nτi−1), which is less than 18µε by Lem-
mas 3.2(i) and 5.1. The distances from c′τi−1

to the vertices of τ ′i−1 are at least
γτi−1 cos(∠a(nτ ,nτi−1)) > γτi−1 cos(18µε) > (1 −√ε)γτi−1 for a sufficiently small ε.
Therefore, the vertices of τ ′i−1 lie outside Dε.

The edges of τ ′i−1 partitions Dε into no more than four regions, at most three
outside τ ′i−1 and at most one inside τ ′i−1. Since the projection of T ∩ B(cτ , µεγτ )
onto aff(τ) is injective by Lemma 5.4, p′ and q′j lie in the regions in Dε outside τ ′i−1.
Let v be the vertex of τ such that the segment vp′ intersects the interior of τ . In
other words, seq(p, τ) is defined by vp′, and therefore, the oriented segment from v
to p′ intersects τ ′i−1 before τ ′j . It follows that p′ and q′j are in the same region in Dε

outside τ ′i−1; otherwise, it would be impossible for the oriented segment from v to
p′ to intersect τ ′i−1 before τ ′j . Figure 17(b) shows such an impossible configuration.
Therefore, p′, q′j and τ ′i are on the same side of τ ′i−1 ∩ τ ′i , which implies that G
separates τi−1 from qj and τi.

Given that G separates τi−1 from qj and τi. we can invoke the same inductive
proof of Lemma 6.5. The base case is changed from d(p, cτk) ≥ (1 − ρk)γτk to
d(qj , cτ`(j)) ≥ (1 − ρk)γτ`(j) = (1 − √ε)γτ`(j) . We go through the same steps in the
proof of Lemma 6.5 to show that d(qj , cτi) ≥ (1− ρk−`(j)+i)γτi for i ∈ [1, `(j)].

The inequality ρk−`(j)+i ≤ ρk−j+i holds because `(j) ≤ j. By using the relation ρk−`(j)+i ≤
ρk−j+i and setting i = 1, Claim 6.1 gives

∀ j ∈ [1, k], d(qj , cτ ) ≥ (1− ρk−j+1)γτ . (22)

Let β = (1 + max{cos(2α), λ})/2. Define kε to be the largest integer such that

β ≤ 1− 2kε−1(cscα)2kε−2
√
ε.

There exists such an integer kε because ε is sufficiently small and
√
ε is asymptotically smaller

than εc. For i ∈ [1,min{kε, k}], 1− 2kε−1(cscα)2kε−2
√
ε ≤ 1− 2i−1(cscα)2i−2

√
ε = 1− ρk−i+1.

It follows that
∀ i ∈ [1,min{kε, k}], β ≤ 1− ρk−i+1. (23)

Next, we prove a claim on the projection of τi onto aff(τ).

Claim 6.2 For i ∈ [1, k], let τ ′i and q′i denote the projections of τi and an arbitrary
vertex qi of τi onto aff(τ), respectively.

(i) For every i ∈ [1, k], each angle of τ ′i is greater than α/2.

(ii) For every i ∈ [1,min{kε, k}] and every vertex q′i of τ ′i , d(cτ , q
′
i) is greater than

γτ ·max{cos(2α), λ}.

Proof. Let q be an arbitrary vertex of τ . For every i ∈ [1, k] and every vertex qi of
τi, since τi intersects B(cτ , γτ ) by the definition of seq(p, τ), Lemma 3.2(i) implies
that d(q, qi) ≤ 2γτ +2γτi ≤ 2µεf(q)+2µεf(qi), and then Lemma 2.1(v) implies that

∀ i ∈ [1, k], ∀ vertex qi of τi, d(q, qi) ≤
4µε

1− 2µε
f(q). (24)
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Figure 18: (a) The dashed circle has radius γτ1 ·max{cos(2α), λ}. For every i ∈ [1,min{kε, k}],
the vertices of τ ′i are outside the dashed circle. (b) The area of τ ′i inside the dashed circle is
greater than the area of the shaded region, which is (α− sinα)/2 times the square of the radius
of the dashed circle.

By Lemma 5.4, T ∩ B(q, 5µεf(q)) projects injectively onto aff(τ). Since ε is suffi-
ciently small, by (24), τi is completely contained in T ∩B(q, 5µεf(q)) for i ∈ [1, k].
Let τ ′i denote the projection of τi in aff(τ). For i ∈ [1, k], since the lengths of the
edges of τi are at most 2γτi ≤ 2µεf(qi), Lemmas 2.1(i) and 3.2(i) and (24) im-
ply that the angle between aff(τ) and each edge of τi incident to qi is less than
1.02µε + ∠(nqi ,nq) + ∠a(nq,nτ ) < 1.02µε + 4µε

1−6µε + 6µε, which is less than 12µε

for a sufficiently small ε. Therefore, for i ∈ [1, k], each angle of τ ′i is at least
α− 24µε > α/2, establishing the correctness of (i).

Take any i ∈ [1,min{kε, k}] and any vertex qi of τi. Let q′i denote the projec-
tion of qi onto aff(τ). By (24) and Lemmas 2.1(i) and 3.2(i), ∠a(qqi, τ) ≤ π/2 −
∠a(qqi,nq)+∠a(nq,nτ ) < 0.51 · 4µε

1−2µε +6µε < 9µε. Thus, d(q, q′i) > d(q, qi) cos(9µε)

and d(qi, q
′
i) < d(q, qi) sin(9µε).

If d(q, qi) ≥ 2γτ , then d(cτ , q
′
i) ≥ d(q, q′i) − d(cτ , q) > 2γτ cos(9µε) − γτ . Since

λ = 1 − εc for some fixed constant c ∈ (0, 0.5), the inequality 2 cos(9µε) − 1 >
max{cos(2α), λ} holds for a sufficiently small ε, i.e., d(cτ , q

′
i) > γτ ·max{cos(2α), λ}.

If d(q, qi) < 2γτ , then by (22) and (23), d(cτ , qi) ≥ (1− ρk−i+1)γτ ≥ βγτ . Thus,
d(cτ , q

′
i) ≥ d(cτ , qi) − d(qi, q

′
i) > βγτ − 2γτ sin(9µε). By the definition of β, the

inequality β − 2 sin(9µε) > max{cos(2α), λ} holds for a sufficiently small ε. Thus,
d(cτ , q

′
i) > γτ ·max{cos(2α), λ}. This proves the correctness of (ii).

Refer to Figure 18(a). The solid circle denotes the circumcircle C of τ and the dashed
circle denotes the concentric circle with radius γτ · max{cos(2α), λ}. By Claim 6.2(i, ii), for
i ∈ [1,min{kε, k}], the angles of τ ′i are at least α/2 and the vertices of τ ′i are outside the dashed
circle. Since d(p, cτ ) < λγτ by the assumption of the lemma, p′ lies inside the dashed circle.
Since the radius of the dashed circle is at least γτ cos(2α) and the angles of τ are at least α,
one can verify that the dashed circle intersects τ .

Consider τ ′i ∩ τ ′i+1 for some i ∈ [1,min{kε, k} − 1] such that τ ′i intersects the dashed circle.
By the definition of seq(p, τ), aff(τ ′i ∩ τ ′i+1) separates p′ from τ ′i in aff(τ). Therefore, τ ′i ∩ τ ′i+1

must cross the dashed circle in order that τ ′i intersects the dashed circle and p′ lies inside the
dashed circle. Inductively, this implies that for i ∈ [2,min{kε, k} − 1], at least two edges of τ ′i
cross the dashed circle. Since the minimum angle of τ ′i is at least α/2, one can verify that the
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area of τ ′i inside the dashed circle is at least (α− sinα)/(2π) times the area of the dashed circle.
Refer to Figure 18(b). This implies that the range [2,min{kε, k} − 1] has cardinality at most
2π/(α− sinα) and, therefore, min{kε, k} ≤ 2π/(α− sinα)+2. We set κseq = 2π/(α− sinα)+2.
By choosing ε small enough so that kε > κseq, we obtain k = min{kε, k} ≤ κseq.

We are ready to prove Theorem 2. Theorem 2(i, ii) state that edge flips make the diametric
ball of every triangle almost empty and the circumradius of every triangle at most ε+O(ε1+c)
times the local feature size at every vertex of the triangle, where c is a fixed constant in (0, 0.5).
Plugging this circumradius bound into Lemma 3.2(i, iv) shows that edge flips can provably
smooth the mesh. Theorem 2(iii) further states that edge flips can be applied to the local
neighborhood of any subset of vertices in time linear in the subset size.

Theorem 2 For every constant c ∈ (0, 0.5) and every constant α ∈ [0, π/3], there exists ε0 ∈
(0, 1) depending on c and α such that for every ε ∈ (0, ε0], if T is an (ε, α)-mesh of a connected
closed smooth surface, then the following properties are satisfied.

(i) We can flip flippable edges in T until no edge is flippable in time linear in the number of
vertices in T . An (ε, α)-mesh T ′ is produced in the end and for every triangle τ ∈ T ′,
B(cτ , (1− εc)γτ ) does not contain any vertex.

(ii) For every vertex p ∈ T and every triangle τ ∈ star(p), if B(cτ , (1−εc)γτ ) does not contain
any vertex, then γτ ≤ (ε+O(ε1+c))f(p).

(iii) Given any subset V of vertices of T , we can flip flippable edges in O(|V |) time to produce
an (ε, α)-mesh T ′ so that for every triangle τ ∈ T ′ that is incident to a vertex in V or a
neighbor of a vertex in V , B(cτ , (1− εc)γτ ) does not contain any vertex.

Proof. We assume that ε0 is small enough that T is a dense (ε, α)-mesh. Let n denote the
number of vertices in T . Consider (i). The edge flips take O(n) time by Lemma 4.3. Suppose
for the sake of contradiction that there is a vertex p ∈ T ′ and a triangle τ ∈ T ′ such that
d(p, cτ ) < (1 − εc)γτ . Let (τ1 = τ, τ2, . . . , τk) be the shortest prefix of seq(p, τ) such that
d(p, cτk) ≥ (1−√ε)γτk . Lemmas 6.1 and 6.6 imply that k ≤ κseq and Lemma 6.5 implies that

d(p, cτ ) ≥
(

1− 2k−1(cscα)2k−2
√
ε
)
γτ .

Since c ∈ (0, 0.5), the inequality above implies that d(p, cτ ) ≥ (1−εc)γτ for a sufficiently small ε,
contradicting the assumption that d(p, cτ ) < (1−εc)γτ . Hence, every vertex in T ′ is at distance
(1− εc)γτ or more from cτ .

Consider (ii). Recall that ν denotes the nearest point map of the given closed surface. Take
any triangle τ ∈ star(p). By Lemma 3.2(i), γτ ≤ µεf(p). We apply Lemma 2.2(iii) with c = µ
to obtain:

d(cτ , ν(cτ )) ≤ 10µεγτ (25)

d(p, µ(cτ )) ≤ (2µε+ 20µ2ε2)f(p) (26)

There is a vertex q at distance εf(ν(cτ )) or less from ν(cτ ) as the vertices of T form an ε-sample
of the closed surface. By (i), d(q, cτ ) ≥ (1− εc)γτ , which implies that εf(ν(cτ )) ≥ d(q, ν(cτ )) ≥
d(q, cτ )− d(cτ , ν(cτ )) ≥ (1− εc − 10µε)γτ . Therefore,

γτ ≤
ε

1− εc − 10µε
f(ν(cτ )).
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By (26) and Lemma 2.1(v), f(ν(cτ )) ≤ (1 + 2µε + 20µ2ε2)f(p). Therefore, for a sufficiently
small ε, γτ ≤ ε

1−εc−10µεf(ν(cτ )) = (ε+O(ε1+c))f(p).
Consider (iii). We flip flippable edges that are within κseq edges away from any vertex p ∈ V

until no such flippable edge can be found. Lemma 4.2 implies that there are O(1) vertices within
κseq edges away from p in the graph G defined in Lemma 4.2. Therefore, the edges that are
flipped are incident to O(|V |) vertices. The neighborhood of each such vertex can only change
O(1) times as argued in the proof of Lemma 4.3. It follows that the edge flips terminate in
O(|V |) time. Let T ′ denote the dense (ε, α)-mesh produced.

Let τ be any triangle in T ′ that is incident to a vertex in V or a neighbor of a vertex in V .
Suppose for the sake of contradiction that there is a vertex p ∈ T ′ such that d(p, cτ ) < (1−εc)γτ .
Extract the shortest prefix (τ1 = τ, τ2, . . . , τk) of seq(p, τ) such that d(p, cτk) ≥ (1 − √ε)γτk .
Since every edge that is at most κseq edges away from τ is non-flippable, Lemmas 6.1 and 6.6
imply that k ≤ κseq. Then Lemma 6.5 implies that d(p, cτ ) ≥

(
1− 2k−1(cscα)2k−2

√
ε
)
γτ , which

yields the same contradiction of d(p, cτ ) ≥ (1 − εc)γτ as in the analysis of (i). Hence, every
vertex in T ′ is at distance (1− εc)γτ or more from cτ .

The algorithm in the proof of Theorem 2(iii) is simple, but it may be impractical as κseq is
large. A more practical method works as follows. Let V be a subset of vertices. Let F denote
the triangles incident to a vertex in V or a neighbor of a vertex in V . We initialize a variable
m to be a small constant, say 3, and then flip flippable edges that are within m edges away
from V , and then mark triangles that are within m edges away from V . (The set F is updated
correspondingly.) Afterwards, we check if the diametric ball of every triangle in F intersects
marked triangles only. If the diametric ball of some triangle in F intersects a non-marked
triangle, then we double the value of m and repeat the above. Each iteration runs in O(|V |)
time. There are at most O(log κseq) iterations, but potentially much smaller in practice.

7 Experiments

We performed experiments on three datasets, including the surface meshes of a sphere, a torus,
and an object of a boomerang shape. The experiments were run on a machine with an Intel
Xeon E5450 3.00GHZ CPU with 16GB RAM. Our program uses CGAL and is compiled with
options “-O3 -DNDEBUG”.

The spherical and toroidal surface meshes are generated as follows. We uniformly sample
10K points on a unit sphere and a torus with major radius 5 and minor radius 3. We run
the Cocone algorithm [3, 9] on the sample points to produce the surface meshes. The output
meshes of the Cocone algorithm are usually good, so we need to worsen its quality in order
to demonstrate the effect of edge flips. We worsen the mesh quality by performing five rounds
of random edge flips. In each round, every edge is flipped with probability 1/2, provided that
the flip does not produce a dihedral angle smaller than 120◦. Given the worsened mesh, the
smoothed mesh is obtained by repeatedly flipping flippable edges.

For the sphere data, Table 1 shows the statistics of dihedral angles, deviation of triangle
normals from the surface normals at the vertices of the trinagles, circumradii, and triangle
angles. Figures 19–22 show the distributions of these quantities. There were 108953 edge
flippability tests and 15148 edge flips. The total running time is 15 milliseconds.

Table 2 shows the statistics for the torus data. Figures 23–26 show the corresponding
distributions. There were 107214 edge flippability tests and 14816 edge flips. The total running
time is 16 milliseconds.

We also experimented with a boomerang-like object obtained from a snapshot of the defor-
mation of a topological ball [13, 19]. There are 5802 vertices in the mesh and the deformation
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snapshot is produced by a mesh maintenance algorithm developed by us [7]. Figure 27 shows
the snapshot. We worsen the snapshot in the same way as described before for the sphere and
torus cases. Then, we smooth the mesh by repeatedly flipping flippable edges. Table 3 shows
some statistics on the dihedral angles, circumradii, and triangle angles. (We do not provide
statistics on normal deviations because we do not know the surface normals.) Figures 28–30
show the distributions of of these quantities. There were 58901 edge flippability tests and 8002
edge flips. The total running time is 7 milliseconds.

In all three datasets, it is clear that repeated edge flips are efficient and effective in improving
the mesh quality and smoothing surface meshes.

8 Conclusion

We proposed the class of (ε, α)-meshes of closed surfaces and study the effect of edge flips on
them. In R3, our definition of edge flippability is different from the usual empty circumsphere
criterion. Given a dense (ε, α)-mesh, we prove that repeated edge flips can lower the circumra-
dius of every mesh triangle to ε+O(εκ) times the local feature size at any vertex of the triangle,
where κ is any fixed constant in (1, 1.5). Then, standard surface sampling results in the lit-
erature show that the normal deviation becomes smaller and the dihedral angles in the mesh
become closer to π. That is, the mesh is smoother. This helps to explain why edge flips are
effective in improving the mesh quality and smoothing surface meshes as observed in practice.
Our experimental results also confirm this observation. The vertex densities in our datasets are
not high in contrast to the condition on ε required by our theoretical results. A corollary of our
techniques is that, in R2, every triangulation with a constant lower bound on the angles can be
flipped in linear time to the Delaunay triangulation.
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Table 1: Surface meshes of a unit sphere.
Normal deviation 180◦− Dihedral angle circumradius triangle angle
(mean/SD/max) (mean/SD/max) (mean/SD/max) (mean/SD/min/max)

Cocone output 1.5/0.56/3.8 1.4/0.87/5.3 0.027/0.010/0.066 60/29.4/0.2/170.6

Worsened mesh 5.5/7.68/59 8.8/10.56/60 0.10/0.13/0.87 60/52.4/0.07/179.3

Smoothed mesh 1.5/0.56/3.8 1.4/0.87/5.3 0.027/0.010/0.066 60/29.4/0.2/170.6
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Figure 19: Distributions of the normal deviations in the spherical meshes.
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Figure 20: Distributions of the dihedral angles in the spherical meshes.
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Figure 21: Distributions of the circumradii in the spherical meshes.
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Figure 22: Distributions of the triangle angles in the spherical meshes.

Table 2: Surface meshes of a torus.
Normal deviation 180◦− Dihedral angle circumradius triangle angle
(mean/SD/max) (mean/SD/max) (mean/SD/max) (mean/SD/min/max)

Cocone output 2.6/1.50/16.8 2.6/1.93/16.3 0.18/0.07/0.46 60/29.6/0.3.171.6

Worsened mesh 6.8/8.11/63.7 10/11.09/60 0.63/1.32/92.8 60/51.6/0.02/179.9

Smoothed mesh 2.6/1.49/15.8 2.6/1.92/16 0.18/0.07/0.44 60/29.6/0.3/171.6
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Figure 23: Distributions of the normal deviations in the toroidal meshes.
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Figure 24: Distributions of the dihedral angles in the toroidal meshes.
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Figure 25: Distributions of the circumradii in the toroidal meshes.

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180

%

triangle angles (degree)

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180

%

triangle angles (degree)

(a) Worsened mesh (b) Smoothed mesh

Figure 26: Distributions of the triangle angles in the toroidal meshes.

Table 3: Surface meshes of the boomerang-like object.
180◦− Dihedral angle circumradius triangle angle

(mean/SD/max) (mean/SD/max) (mean/SD/min/max)

Deformation snapshot 4.3/5.23/50.8 0.006/0.003/0.028 60/23.3/13.9/143.9

Worsened mesh 11.2/12.11/60 0.024/0.078/6.3 60/50.2/0.03/179.9

Smoothed mesh 4.3/5.23/50.9 0.006/0.003/0.028 60/23.3/13.9/143.9
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Figure 27: The snapshot produced by a maintenance algorithm developed by us [7].
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Figure 28: Distributions of the dihedral angles in the meshes of the boomerang-like object.
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Figure 29: Distributions of the circumradii in the meshes of the boomerang-like object.
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Figure 30: Distributions of the triangle angles in the meshes of the boomerang-like object.
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