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Abstract

Let T be a planar subdivision with n vertices. Each face of T has a weight from
[1, ρ] ∪ {∞}. A path inside a face has cost equal to the product of its length and the
face weight. In general, the cost of a path is the sum of the subpath costs in the faces
intersected by the path. For any ε ∈ (0, 1), we present a fully polynomial-time approximation
scheme that finds a (1 + ε)-approximate shortest path between two given points in T in
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time, where k is the smallest integer such that the sum of the k smallest

angles in T is at least π. Therefore, our running time can be as small as O
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n
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ε

)
if

there are O(1) small angles and it is O
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n4

ε log2 ρn
ε

)
in the worst case.
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1 Introduction

Let T be a planar subdivision with n vertices. Each face f of T is associated with a weight
wf ∈ [1, ρ] ∪ {∞}. Faces with weight ∞ serve as obstacles. An edge e shared by faces f and
g has weight we = min{wf , wg}. An edge e of f not shared with another face (i.e., e is on the
boundary of T ) has weight we = wf . The cost for a path P is cost(P ) =

∑
face f wf · |P ∩ f |+∑

edge ewe · |P ∩ e|, where | · | denotes the length of a subpath or total lengths of subpaths.
Without of generality, we assume that all faces in T are triangles. Given two points in T ,
the shortest path is the minimum-cost path joining the two points. For ε ∈ (0, 1), a path is a
(1 + ε)-approximate shortest path if its cost is at most 1 + ε times the optimum.

Finding exact shortest paths in a weighted subdivision seems difficult, and only approxi-
mation algorithms are known so far. Mitchell and Papadimitriou first studied the problem and
proposed an algorithm based on the continuous Dijkstra paradigm that runs in O(n8 log Nρn

ε )
time, where N is the largest vertex coordinate in the input [30]. They also give an example
showing that an optimal path could have Ω(n2) links. There has been extensive research on
lowering the dependence on n by discretizing the geometric environment [28, 26, 6, 7, 37]. The
idea is to add Steiner points, form a dense graph on the input vertices and the Steiner points,
and then return the shortest path in the graph as a (1 + ε)-approximate solution. The two
best results in this category are due to Aleksandrov et al. [7] and Sun and Reif [37]. Alek-
sandrov et al. [7] obtained a running time of O( n√

ε
log n

ε log 1
ε ), where the hidden constant is

O(Γ log(ρ/θmin)) and Γ is the average of the reciprocals of the sinuses of the angles in T . Sun and
Reif [37] developed the BUSHWHACK algorithm which has a running time of O(nε log n

ε log 1
ε ),

where the hidden constant is O((1/θmin) log(1/θmin)). Therefore, a single tiny angle in T can
ruin the running time bounds in [7, 37]. Cheng et al. [15] use a different discretization scheme

and obtained a running time of O
(
ρ log ρ
ε n3 log ρn

ε

)
.

In this paper, we present an algorithm for finding a (1 + ε)-approximate shortest path in

weighted regions that runs in O(kn+k
4

ε log2 ρnε ) time, where k is the smallest integer such that
the sum of the smallest k angles in T is at least π. The hidden constant does not depend on
any other parameter. In the worst case, k could be Θ(n), but when there are not too many
“small” angles, say k = O(n1/3), then the running time is simply Õ(kn/ε). Our running time
bound is the first that is small for “easy” instances and yet bounded by a polynomial in n and
log ρ

ε in the worst case. The exponent of the polynomial in n is also much smaller than the
result by Michell and Papadimitriou [30].

The improvement comes from a few innovations. We observe that the discretization schemes
in [6, 37] work very well in the absence of small angles. Our idea is not to place Steiner points
on the two edges that bound a small angle. First, we refine the input triangulation into a new
triangulation with O(n + k2) vertices such that each triangle has at most one angle that is
less than π/(2k). This allows us to group triangles with angles less than π/(2k) into disjoint
strips that do not contain vertices in the interior. Since the dual graph of a strip is a simple
path, for every pair of points on the strip boundary, the shortest transversal path between them
that lies inside the strip crosses a unique edge sequence that is predetrmined. Next, we place
Steiner points on the strip boundaries. Since those edges bound only large angles, the number
of Steiner points is under control. To build the discrete graph, we need to connect two Steiner
points on the boundary of the same strip using approximate shortest path inside the strip. For
further speed up, we adapt the BUSHWHACK algorithm [37] carefully inside strips to avoid
building the entire discrete graph.

We introduce some notation. A path consists of links and nodes, where each link is a
maximum segment that lies inside a triangle or on an edge, and a node is an endpoint of a
link. Without loss of generality, we assume that a path does not have bend in the interior of
a face as such a bend can be removed to shorten the path. That is, all nodes are on edges. A
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T ′ T ∗

Figure 1: (a) The original subdivision is shown in bold, and its angles that are less than 2θ are
shaded. The light polylines are propagation polylines. (b) Obtain the final triangulation by
adding diagonals to quadrilaterals and triangulating triangular faces using incenters.

node is transversal if its two inciddent links lie in the interiors of two different faces. A path
is transversal if all nodes, except its source and destination, are transversal nodes. A node is
critical if it is in the interior of an edge e, one of its incident link (called the critical link) is on
e, and the other incident link is in the interior of a face.

Consider two consecutive links pq and qr of a path such that pq is in face f , qr is in face g,
and q is in the interior of the edge f ∩ g. Let ` be the line through q perpendicular to f ∩ g.
Let θf (resp. θg) be the non-obtuse angle between ` an pq (resp. qr). We say the path obeys
Snell’s law at q if ` separates pq from qr and wf sin θf = wg sin θg. A path that obeys Snell’s
law at all non-vertex nodes is called a refraction path.

Lemma 1.1 ([30]). There exists a shortest path P such that it is a refraction path and for
every pair of critical links that appear consecutivey along P , the subpath between them contains
a vertex.

2 Triangulation refinement

Let k be the smallest integer such that the sum of the smallest k angles in T is at least π.
Define θ = min{π/(2k), π/12}. By definition, the k-th smallest angle is at least π/k ≥ 2θ. In
this section, we show how to refine the original subdivision T into T ∗ in which every triangle
has at most one angle less than θ. There is a known refinement with O(n2) vertices and angles
at most 11

15π [38]. We present a simpler algorithm with worse angle bound (while still good
enough for our purposes) but the number of vertices is sensitive to k.

A propagation polyline (p0, p1, . . . , pm) is a polyline such that for every i ∈ [0,m−1], pi is on
an edge ei of T , ei and ei+1 bound a face fi such that the angle of fi at ei∩ ei+1 is less than 2θ,
ei and ei+2 do not bound the same face, and pipi+1 is parallel to the angle bisector of the largest
angle in fi.

1 By definition, a propagation polyline does not intersect itself or another propation
polyline. For any triangle in T that has an angle less than 2θ, we generate a propagation
polyline by starting from its largest angle and extending the polyline while maintaining the
above properties until it cannot be extended further. See Figure 1(a).

For two edges e, e′ in the same triangle, ∠(e, e′) denotes the angle formed by the two edges,
which is in (0, π).

Lemma 2.1. Let (e0, e1, . . . , em) be any sequence of edges in T such that for i ∈ [0,m− 1], ei
and ei+1 bound a face angle less than 2θ and ei and ei+2 do not bound the same face. Then
m < k and for any i < j − 1, ei and ej do not bound the same face in T .

Proof. We have
∑

0≤i<k ∠(ei, ei+1) < π as ∠(ei, ei+1) < 2θ for any i. In order for two edges
ei, ej , where i < j−1, to bound the same face, the edges ei, ei+1, . . . , ej must turn a total angle

of at least π, i.e.
∑j−1

r=i ∠(er, er+1) ≥ π. This is impossible. So m < k and for any i < j − 1, ei
and ej do not bound the same face.

1If there are more than one largest angle in fi, we break ties by choosing the vertex with the largest index.
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Lemma 2.2. There are fewer than k propagation polylines, and each propagation polyline has
fewer than than k segments and crosses any face of T at most once.

Proof. Each propagation polyline starts at a vertex of a triangle that has an angle less than 2θ.
There are at most k − 1 such triangles, so there are at most k − 1 propagation polylines. The
second part of the lemma follows directly from Lemma 2.1.

Let T ′ be the overlay of T and all the propagation polylines. By the definition of propagation
polylines, one can verify that T ′ has the following properties.

P1. Each face of T ′ is either a triangle or a quadrilateral.

P2. Every triangular face of T ′ has at most one angle less than 2θ and such an angle is an
angle in T .

P3. In every quadrilateral face of T ′, there are two parallel sides that lie on propagation
polylines, and there are two other sides that lie on two edges in T which bound a face
angle less than 2θ in T .

P4. A propagation polyline ends either at a vertex or on the boundary of a trianguar face in
T ′ (also a face in T ) with all angles at least 2θ.

For every quadrilateral in T ′, triangulate it by adding an arbitrary diagonal. For every
triangle f ∈ T ′ with all angles at least 2θ, if some propagation polyline ends on the boundary
of f , we connect the incenter of f (the common intersection of the angle bisectors) to the
vertices of f and the propagation polyline endpoints on the boundary of f . See Figure 1(b).
This gives the final triangulation T ∗.

Theorem 2.1. Given a triangulation T with n vertices such that the sum of the k smallest
angles is at least π, one can compute in O(n+ k2) time a refined triangulation T ∗ that enjoys
the following properties. Let θ = min{π/(2k), π/12}.

(i) T ∗ has no more than n+ k2 + k vertices.

(ii) Every triangle in T ∗ has at most one angle less than θ.

(iii) Let (e1, e2, . . . ) be any sequence of edges in T ∗ such that for any i, ei and ei+1 bound a
face angle less than θ, and ei and ei+2 do not bound the same face. This sequence has
O(k) edges and no repetitions.

Proof. The running time is clearly linear in the size of T ∗, which is O(n + k2), assuming (i)
holds. Let T ′ be the overlay of T and the propagation polylines. Consider (i). The vertices of
T ∗ that are not in T are either intersections between propagation polylines and edges of T or
incenters of some triangles in T ′. There are fewer than k2 vertices of the former type, because,
by Lemma 2.2, fewer than k such vertices are generated by one propagation polyline and there
are less than k propagation polylines. The incenter of a triangle is only added as a vertex when
there are propagation polylines end at the boundary of that triangle, so at most k such vertices
are created. In total, T ∗ has no more than n+ k2 + k vertices.

Consider (ii). In general, the angle between the angle bisector of the largest angle of a
triangle and any edge of that triangle is at least π/6 because it is at least half of the largest angle.
It follows that any angle in a quadrilateral in T ′ is in (π/6, 5π/6). Therefore, a quadrilateral
of T ′ is divided by an diagonal into two triangles each of which has at most one angle less
than θ ≤ π/12. What about triangles in triangular faces of T ′? By P2, every triangular face
of T ′ has at most one angle less than 2θ. If a triangular face τ has one angle less than 2θ, no
refinement is needed by P4, so τ will be outputted directly as a triangle in T ∗. If all angles
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of τ are no less than 2θ, we may need to triangulate τ using its incenter. Consider a segment
from τ ’s incenter to an edge of τ . The acute angle between the segment and that edge of τ is
at least half of the smallest angle of τ . So a triangle in the refinement of τ has at most one
angle that is smaller than θ, which is at τ ’s incenter.

Consider (iii). Suppose that an edge e1 in the sequence is incident to an incenter of some
triangle in T ′. By the above analysis, e2 must be incident to the same incenter as well, and
inductively, all ei’s are incident to the same incenter. Observe that a vertex at an incenter has
degree at most k + 3, implying that at least one angle at the vertex is at least 2π/(k + 3) > θ.
So no repetition is possible, and the sequence contains no more than k + 3 edges.

Suppose that e1 is on an edge of the original subdivision T . Then for any i, ei is either
part of some edge of T , or a diagonal of a quadrilateral of T ′. Remove diagonal edges from
the original edge list (e1, e2, . . . ) and replace others with the corresponding edges in T , and let
(e′1, e

′
2, . . . ) be the result. Since the original sequence does not contain two consecutive diagonal

edges, the length of the new sequence is at least half of the length of the original one, e′i and
e′i+1 are in a same face of T , and ∠(e′i, e

′
i+1) < 2θ. By Lemma 2.1, the new sequence has length

O(k), and no two non-consecutive e′i and e′j bound the same face of T ′. It follows that the
original sequence also has length O(k), and it does not have repeated edges.

Suppose that e1 is is part of a propagation polylines. Then ei is a part of a propagation
polyline if i is odd, and a diagonal of some quadrilateral of T ′ if i is even. Moreover, all
these edges are inside a same triangle of T , say τ . By Lemma 2.2, there are O(k) propagation
polylines, and each intersects with τ at most once. Therefore, the sequence has length O(k).
Clearly, edge repetitions are not possibile.

The remaining case is that e1 is a diagonal of a quadrilateral of T ′. Then e2 must fall in
one of the last two categories above, so we can repeat the same argument.

3 Algorithm

3.1 Approximation graph G
We first apply Theorem 2.1 to compute a refinement T ∗ of T . We then discretize T ∗ to obtain
a discrete graph G which contains a (1 + ε)-approximate shortest path.

Let (e1, e2, . . . , em) be a longest sequence of edges that satisfies Theorem 2.1(iii). For 1 ≤
i < m, let τi be the triangle that contains ei and ei+1. Then the triangle sequence τ1, . . . , τm−1
is called a strip. Edges e2, e3, . . . , em−1 are interior edges of the strip. Edges of τi that are not
interior edges are boundary edges of the strip. So any triangle τi except τ1 and τm−1 has one
edge in the strip boundary, which is opposite the smallest angle of τi. τ1 and τm−1 have two
boundary edges of the strip, including e1 and em.

We follow the same approach used by [6, 37] to discretize boundary edges of strips and edges
outside strips. Interior edges of a strip are not discretized. Take edge vu that is not an interior
edge of any strip. Let θ = min{1/k, π/12} be the same value as in Theorem 2.1. Since vu is
not an interior edges, at least one of the two angles at u with a side vu is larger than θ. If both
angles are larger than θ, let αvu be the smaller of the two; otherwise, define αvu to be the larger
one. So αvu > θ = Ω(1/k). Let L be the length of the Euclidean shortest path form s to t,
which can be computed in O(n log n) time [22]. Place Steiner points p0, p1, . . . on vu as follows.
Let c0 and c1 be some constants to be defined later. p0 is placed at distance c0εL/n

2 from v,
and for i > 0, |pi−1pi| = (c1ε sinαvu)|vpi−1|. Similarly, also create Steiner points q0, q1, . . . such
that |q0u| = c0εL/n

2, and for i > 0, |qi−1qi| = (c1ε sinαuv)|uqi−1|.
Finally, all Steiner points outside the disk D(s, 2ρL) centered at s with radius 2ρL are

removed. Observe that, for ε < 1, any (1 + ε)-approximate shortest path has length no more
than 2ρL and hence lies in D(s, 2ρL). So removing those Steiner points does not affect the
correctness of the algorithm, and yet it is necessary for obtaining results that are independent
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of geometry parameters. The remaining Steiner points and vertices of T ∗ form the vertex set
of the approximation graph G.

In G, there is an edge between a pair of graph vertices in the same face or a pair of graph
vertices (which may not be in the same face) in the boundary of the same strip. Let (u, v) be a
pair of graph vertices between which there is a graph edge. The weight of the edge is denoted
by µ(u, v). If u and v are in the same face of T ∗, µ(u, v) is simply the cost of the straight
segment connecting them. If u and v are in the boundary of some strip, µ(u, v) is the cost of
the shortest path inside the strip from u to v.

Lemma 3.1. Each edge of T ∗ has O(kε log ρn
ε ) Steiner points. Set c0 = 1/128 and c1 = 1/16.

The shortest path in G is a (1 + ε/2)-approximate shortest path in T ∗.

Proof. Take any edge vu of T ∗. Let p0, p1, . . . be the series of Steiner points on vu created
when we process v. In the end, we remove those outside the disk D(s, 2ρL). Let the remaining
Steiner points be pi, pi+1, . . . , pm. Since |vpi|(1 + c1ε sinα(v))m−i = |vpm| ≤ |vpi|+ 4ρL, |vpi| ≥
|vp0| = Θ(εL/n2), and α(v) = Ω(1/k), we have m− i = O(kε log ρn

ε ).
Let P be the shortest path in T ∗. So P lies inside D(s, 2ρL). Convert it to a path in G

as follows. Take a vertex v of T ∗. Let pv and qv be the first and last nodes of P that are at
distance less than c0εL/n

2 from v. Snap both pv and qv to v and remove the subpath between
them. Do the same for all vertices in T ∗. Then, for any non-vertex node x of P such that
x lies either outside any strip or on the boundary of some strip, snap x to the closest Steiner
point on the edge of T ∗ that contains x. Let P ′ be the resulting path. It suffices to show that
cost(P ′) ≤ (1 + ε/2) cost(P ).

Snapping nodes to a vertex of T ∗ incurs an error no more than 2c0εL/n
2. T has n vertices,

so it has no more than 2n− 4 faces, which implies that k ≤ 4n− 8. By Theorem 2.1(i), T ∗ has
no more than n+ k2 + k < 16n2 vertices. By the setting of c0, the total error due to snapping
to vertices of T ∗ is no more than εL/4 ≤ (ε/4) cost(P ).

Consider the error due to snapping nodes to Steiner points. Take any such node p. Let e
be the edge containing p. If p is outside any strip, then all face angles adjacent to e are at least
θ. If p is on a strip boundary, then e must be the edge opposite the smallest angle of a triangle
τ in the strip, and therefore, the two angles of τ adjacent to e are at least θ. We conclude that
some link pq incident to p must straddle an angle φ of some triangle at a vertex v such that
φ ≥ θ. Note that v is an endpoint of e. Then, |pq| ≥ |vp| sinφ. The distance between p and
its nearest Steiner point on e is no more than 2(c1ε sinφ) · |vp| ≤ 2c1ε|pq| ≤ ε

8 |pq|. The link pq
can be charged a snapping error at most twice (once for each endpoint). Therefore, the total
snapping error charged to the links is at most (ε/4) cost(P ).

3.2 Compute an approximate shortest path in G.

G has O(kn+k
3

ε log ρn
ε ) vertices and O(k

2n+k5

ε2
log2 ρnε ) edges. Computing the shortest path using

Dijkstra algorithm directly is too slow. Sun and Reif proposed a BUSHWHACK algorithm [37],
which avoids generating all graph edges explicitly. The intuition is that we do not need to
compute graph edges that are known not to contribute to optimal paths. We adapt the basic
idea. However, one challenge is that we cannot compute shortest paths in weighted regions
exactly in general, even when the edge sequence is known. It requires care to control the errors
because our algorithm may drop graph edges to which that the optimal path is snapped.

We maintain a priority queue of vertices, Steiner points and intervals (to be explained later).
Every element a in the priority queue is associated with a cost d(a), which is the (approximate)
cost of the current best path from s to a. Initially, the priority queue contains all vertices and
Steiner points with d(s) = 0 and d(p) = ∞ for any other point p. The algorithm repeatedly
extracts the element with the minimum cost from the priority queue and uses it to update the
costs of other vertices and intervals. Once an element is dequeued, its cost is determined.
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Figure 2: Five types of intervals.

Before presenting the algorithm in detail, we need to elaborate on intervals. An interval I
on an edge e has a root, denoted by rI , which is a vertex or a Steiner point. The interval I will
be defined after d(rI) is computed, and I consists of the destinations of (approximate) shortest
paths from rI to e that cross the same sequence of edges (without passing through any vertex).
The cost of a point x ∈ I is d(rI) plus the cost of the path from rI to x. The cost of I is the
minimum of the costs of points in I.

There are five types of intervals. See Figure 2. A type-I interval and its root are in the same
face but not on the same edge, while a type-II interval and its root are on the same edge. The
cost of any point x on a type-I or type-II interval I is d(rI) + cost(rIx). A type-III interval I
lies on an edge e in the interior of a strip and its root rI lies on the strip boundary. Any point
on I is reached from rI by a path inside the strip that obeys Snell’s law and whose last link is a
critical link on e. A type-IV interval I lies on an edge e on the boundary of a strip, and its root
rI lies on the strip boundary. It can be viewed as the result of propagating a type-III interval.
Every point in I is reached from rI by a path inside the strip that obeys Snell’s law and has a
critical link on e. The cost of a point x in a type-III or type-IV interval is d(rI) plus the cost of
the refraction path inside the strip between rI and x. A type-V interval I and its root rI lie on
the boundary of the same strip, and I contains the destinations of paths whose subpaths after
rI are transversal paths. There is no known algorithm that can compute shortest transversal
paths exactly. So we have to define the cost of a point x on a type-V interval to be d(rI) plus
the cost of some approximate shortest transversal path from rI to x as explained below.

One way to define a metric is via defining its unit disk: the distance between two points p
and q is minλ{t ∈ C : p+ λt = q}, where C is the unit disk that defines the metric. Then the
unit disk for the cost function for a face f is simply a Euclidean disk centered at the origin with
radius 1/wf . For every face f , define a new metric whose unit disk is a regular polygon with h
vertices inscribed to the Euclidean disk centered at the origin with radius 1/wf . We use costD
to denote the cost of a path under this polygonal metric. One can verify that for every segment
`, cos(π/h) costD(`) ≤ cost(`) ≤ costD(`). Setting h = O(1/

√
ε) with an appropriate constant,

we can obtain costD(`) ≤ (1+cε) cost(`) for any constant c. For a point x in a type-V interval,
we define the cost of x to be d(rI) + costD(T (rI , x)), where T (rI , x) is the transversal path
inside the strip from rI to x with the minimum costD.

As mentioned before, the algorithm repeatedly extracts elements with the smallest cost.
Depending on the type of the dequeued element, we invoke either ProcessPoint or ProcessInterval
below. When creating an interval in ProcessPoint or ProcessInterval, we may also trim or prune
existing intervals. Intervals on each edge are put in groups, which we will explain when we
elaborate the interval creation below. When an interval is dequeued from the priority queue, it
is not removed from the group. Intervals in the same group are kept disjoint, but intervals from
different groups are allowed to overlap. Therefore, a Steiner point or vertex p may be shared
between two intervals I and I ′, the cost of p in I can be smaller than the cost of p in I ′, and
d(p) will be determined by the minimum cost of p in the intervals that contain p.

ProcessPoint(a Steiner point or vertex v)

1. For every edge ev that contains v and does not lie inside any strip, create and
enqueue type-II intervals on ev with v as their common root.
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2. (a) For every edge e such that e does not lie inside any strip and e is the edge
of a face opposite v, create and enqueue type-I intervals on e with v as their
common root.

(b) For every strip S that contains v on the boundary and for every edge e in
the interior of S, create and enqueue type-III intervals on e with v as their
common root.

(c) For every strip S that contains v on the boundary and for every edge e
in the boundary of S, create and enqueue type-V intervals on e with v as
their common root.

ProcessInterval(an interval I)

1. If I is a type-III interval in some strip S, create type-IV intervals on the
boundary of S that I propagates to. Note that rI is the common root of these
type-IV intervals.

2. Otherwise, let p be the Steiner point or vertex in I that has the smallest cost
and do the following.

(a) If the cost of p in I is smaller than d(p), update d(p). (If p is still in the
priority queue, this step will make p the next element to be dequeued.)

(b) We maintain the invariant that the costs for points in I are monotonic. So
all other Steiner points and vertices in I are on one side of p. Since d(p) has
already been determined, we shrink I to the shortest interval that covers
the remaining Steiner points and vertices in I. If the new I is non-empty,
its cost is the minimum cost of its two endpoints and we insert the new I
into the priority queue.

We elaborate below on the creation of intervals. For this purpopse, let S denote a strip and
Let e1, e2, . . . be the sequence of the edges in the interior of S. Orient edges from left to right
as follows. The left and right endpoints of e1 are defined arbitrarily. For i ≥ 1, orient ei so that
ei and ei+1 share a common left or right endpoint. Let ai and bi denote be the left and right
endpoints of ei, respectively.

Type-I intervals Refer to step 2(a) of ProcessPoint(v). Suppose that e is not an edge in
the interior of some strip. The distances from v to points on e is a convex function. Let p be
v’s nearest point in e, which is either an endpoint of e or such that vp is perpendicular to e.
Create two type-I intervals I1, I2 that covers the Steiner points and vertices on both sides of
p respectively. Note that the points in each interval have monotonic costs, and the endpoint
closer to p has the smallest cost. The edge e is incident to two triangles, so the roots of type-I
intervals on e can lie on the four other edges of these two triangles. We divide the type-I
intervals on e into at most four different groups depending on the location of their roots. We
may already have intervals on e in the same group as I1 and I2. If they overlap with I1 or I2,
trimming is needed to make them disjoint. When two intervals overlap, either one is strictly
inferior in the sense that its cost evaluated at every point is greater than or equal to the other
interval’s cost evaluated at the same point, in which case the inferior interval can be removed
from the group altogether, or there is a tie point in their intersection such that one interval is
better on one side of the tie point and the other interval is better on the other side, in which
case both intervals are trimmed to that tie point. Refer to [37] for a full proof. If an interval
does not contain any Steiner point or vertex after trimming, remove it from the group as well
as the priority queue. Otherwise, the cost of the trimmed interval is equal to the minimum cost
of the Steiner points or vertices at its two ends (by the cost monotonicity), and we update the
interval cost accordingly.
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Type-II intervals Refer to step 1 of ProcessPoint(v). Let a and b be the two endpoints of
ev. Consider the case that v is a Steiner point. Let p and p′ be the Steiner points in av and vb,
respectively, that are closest to v. Note that pa and p′b cover the Steiner points and vertices on
ev except for v (d(v) has already been determined). Create two intervals pa and p′b with costs
d(v) + cost(vp) and d(v) + cost(vp′), respectively. In the case that v is a or b, only one type-II
interval is created as in the above. There are two groups of type-II intervals on ev depending on
which endpoint of ev is contained by them when they were created. Suppose that two intervals
I1 and I2 in the group for a overlap. Assume that I1 contains the endpoint x of I2 that is
farther from a. If the cost of x in I1 is at most the cost of x in I2, then delete I2 from the group
and the priority queue. Otherwise, trim I1 so that I1 and I2 meet at x and their interiors are
disjoint. The case of I1 and I2 in the group for b is handled symmetrically.

Type-III intervals Refer to Step 2(b) of ProcessPoint(v). For any edge ei = aibi in the
interior of the strip, if there is a refraction path inside the strip from v to a point x ∈ ei onward
to ai such that xai is a critical link, then create a type-III interval xai. We symmetrically create
another type-III interval with endpoint bi. These two intervals can be created in O(1) time by
Lemma 3.2 below. We divide type-III intervals on ei into groups. Two intervals are in the same
group if their roots lie on the same strip boundary edge and when these intervals were created,
they contained the same endpoint of ei. The trimmings of intervals in the same group are done
in the same way as for type-II intervals.

Lemma 3.2. Let S be a strip. For every point x in the boundary of S and for every edge uv
in the interior of S, let Ruv(x, u) denote the transversal path from x to uv that enters uv at a
critical angle and will then follow uv towards u. The path Ruv(x, v) is symmetrically defined.
Note that Ruv(x, u) or Ruv(x, v) may not exist. We can preprocess S in O(k3) time so that for
any x and uv, we can report in O(1) time whether Ruv(x, u) (resp. Ruv(x, v)) exists and if so,
the destination and cost of Ruv(x, u) (resp. Ruv(x, v)).

Proof. Since Ruv(x, u) enteres uv at a critical angle, the direction of each link in Ruv(x, u) is
completely determined by Snell’s law. Let e be the boundary edge of S that contains x. The
position of the destination of Ruv(x, u) in uv is a linear function in the position of x in e.
Similarly, the cost of Ruv(x, u) is also a linear function of the position of x in e. These two
linear functions can be constructed in O(k) time by tracing from uv towards e using Snell’s
law. Repeating over all interior edges and all boundary edges of S takes O(k3) time.

Type-III intervals are intermediate intervals that lead to type-IV intervals. The advantage
of generating type-III intervals is that it becomes possible to do some pruning which allows us
to generate fewer type-IV intervals in the end.

Type-IV intervals Type-IV intervals are generated when a type-III interval I on some edge
ei in the interior of a strip is dequeued. If I extends all the way to an endpoint of ei, create
a type-IV interval for every boundary edge of the strip. Otherwise, only create one type-IV
interval on the boundary edge that rI is on. Lemma 3.3 below shows that we do not do worse
in the latter case. By Lemma 3.2, each interval can be created in O(1) time.

Lemma 3.3. Let I be a type-III interval on an interior edge e of a strip S such that I does
not contain any endpoint of e. Let P be a refraction path in S from rI to a point p in the
boundary of S such that P contains exactly one critical link, which is a subset of I, and p
and rI lie on distinct boundary edges of S. Then, P is not the shortest path in S from rI
to p, or there exists a Steiner point or vertex r on the same boundary edge as rI such that
d(r) + cost(P ∗) < d(rI) + cost(P ), where P ∗ is the shortest path in S from r to p.

8



Type-IV intervals on a boundary edge e of a strip S are divided into four groups as follows.
An type-IV interval I on e is generated from a type-III interval on some interior edge e`. We
use pred(I) to denote this type-III interval and pred idx(I) to denote the index `. Note that I
and pred(I) share the common root rI . The interval pred(I) has one of two possible orientations
depending on which endpoint of pred(I) the path from rI to pred(I) enters. We call this the
starting endpoint of pred(I). Suppose that e is incident to the face in S that is bounded by ei
and ei+1. Then, the group that I belongs to is determined by the orientation of pred(I) and
whether pred idx(I) ≤ i.

We need to update the type-IV intervals in the same group so that they do not overlap.
Let I1 and I2 be two overlapping type-IV intervals on e in the same group. Note that pred(I1)
and pred(I2) cannot be on the same edge because otherwise I1 and I2 do not overlap by the
trimming of of pred(I1) and pred(I2). Assume that pred idx(I1) < pred idx(I2) ≤ i and the two
intervals are from left to right. Let s2 be the starting endpoint of pred(I2). The trimming is
based on the following lemma.

Lemma 3.4. Suppose that pred(I1) and pred(I2) are oriented from left to right and pred idx(I1) <
pred idx(I2) ≤ i. Let si be the starting endpoint of pred(Ii). For i ∈ [1, 2] and for all y ∈ Ii, let
Pi,x denote the refraction path from rIi through pred(Ii) to x that defines Ii. For i ∈ [1, 2] and
for all x ∈ I1 ∩ I2, let Qi,x be the shortest path inside the strip from rIi to x.

(i) Suppose that d(rI1) + cost(P1,x) ≤ d(rI2) + cost(P2,x) for some point x ∈ I1 ∩ I2. If s2 is
to the right (resp. left) of P1,x with respect to its orientation from rI1 to x, then for every
point y ∈ I2 to the right (resp. left) of x, d(rI1) + cost(Q1,y) ≤ d(rI2) + cost(P2,y).

(ii) If d(rI2) + cost(P2,x) ≤ d(rI1) + cost(P1,x) for some point x ∈ I1 ∩ I2, then for every point
y ∈ I1 to the left of x, d(rI2) + cost(Q2,y) ≤ d(rI1) + cost(P1,y).

Suppose that I1 has smaller costs than I2 for all points in I1 ∩ I2. If I2 \ I1 is connected or
empty, trim I2 to I2 \ I1. If I2 \ I1 consists of two disconnected intervals, we prune away one
or more components in I2 \ I1 using Lemma 3.4(i) as follows. Let x and y be the endpoints of
I1 ∩ I2. Let P1,x, P1,y be the refraction paths from rI1 to x and y as defined in Lemma 3.4. If
s2 is to the right of both P1,x and P1,y, we trim I2 by taking the left interval in I2 \ I1. If s2 is
to the left of both P1,x and P1,y, take the right interval in I2 \ I1. If s2 is sandwiched between
P1,x and P1,y, I2 is pruned altogether.

Suppose that I2 has smaller costs than I1 for all points in I1∩I2. If I1 \I2 is connected, trim
I1 to I1 \I2; otherwise, trim I1 by taking the right interval in I1 \I2 according to Lemma 3.4(ii).

The last case is that there is some tie point x ∈ I1 ∩ I2 such that the two intervals have the
same cost at x. By Lemma 3.4(ii), the part of I1 to x’s left is suboptimal and can be trimmed,
which also implies that I1 has a smaller cost at any point in I1 ∩ I2 to the right of x. So we
trim the part of I1 to the left of x and trim the part of I2 to the right of x.

The costs of points in an type-IV interval are linear, so trimming can be done in O(1) time.

Type-V intervals

Lemma 3.5. Let e be any fixed edge on a strip boundary. After O( k
2
√
ε

log k
ε ) preprocessing

time, given any source on e and any destination on the boundary of the same strip, one can
determine whether a shortest pcost transversal path between them passes through vertices in its
interior, and return its pcost if it does not in O(log k

ε ) time.

For every pairs of boundary edges e and e′ of S, we apply Lemma 3.5 (proof in appendix) to
build a data structure so that for every point x ∈ e and every point y ∈ e′, the minimum costD
of a transversal path from x to y in S be answered in O(log k

ε ) time. The total preprocessing

time is O( k
4
√
ε

log k
ε ). When a Steiner point or vertex r in the boundary of S is dequeued, for
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every boundary edge e of S that does not contain r, we binary search with the data structure
built to find the two extreme traversal paths from r to the Steiner points or vertices on e that
do not pass through vertices in the interior of the paths. The destinations of these two paths
are the endpoints of the type-V interval on e with root r. All type-V intervals on e with roots
in the boundary of S are put into one group. If e is shared between S and another strip S′,
there may be another group of type-V intervals on e for S′.

Suppose two intervals I1 and I2 overlap. For any x ∈ Ii, let Pi,x denote the transversal path
with the minimum costD from rIi to x. First, apply Lemma 3.5 to find the tie point x ∈ I1∩ I2
such that d(r1) + costD(P1,x) = d(r2) + costD(P2,x). Lemma 3.6 below allows us to trim I1
and I2 to two disjoint intervals meeting at x without losing optimal paths. Then, update the
costs of trimmed intervals in the priority queue. If such a tie point in I1 ∩ I2 does not exist, by
Lemma 3.6, the inferior interval can be pruned altogether. A pruned interval is deleted from
both priority queue and the interval group.

Lemma 3.6. Let I1 and I2 be two type-V intervals on the boundary edge e of a strip S. If
d(rI2) + costD(P2,x) ≤ d(rI1) + costD(P1,x) for some point x ∈ I1 ∩ I2, then I1 ∩ γ can be
trimmed, where γ is the part of the boundary of S delimited by rI2 and x that excludes rI1.

Lemma 3.7. The algorithm runs in O(kn+k
4

ε log2 ρnε ) time.

Proof. Let m = O(kε log ρn
ε ) be an upper bound on the number of Steiner points placed on every

edge.
Each Steiner point propagates to O(1) type-I and type-II intervals, O(k) type-III intervals,

O(k2) type-IV, and O(k) type-V intervals. The generation of intervals from a vertex depends
on its vertex degree, but we can charge these interval generations to the neighbordng Steiner
points on the incident edges.

Consider interval trimmings. When a new interval is created, we search for overlapping in-
tervals in the same group. Since intervals in the same group are kept disjoint, we can put them
in a sorted list so finding overlapping intervals takes O(logm) time. The number trimming
done for a new interval is at most 2 plus the number of pruned intervals. An interval can only
be pruned once, so on average, a new interval is trimmed O(1) times. Trimming two intervals
of type I-IV takes O(1) time. The costs of points on a type-V interval is a convex piecewise
linear function. To find the tie point, we first do binary searches to find the linear pieces in
two functions that cross, and then compute the crossing point of the two segments. So trim-
ming type-V intervals takes O(log k

ε ) time. Creating all types of intervals takes O(mn logm),

O(mn logm), O(k2m logm), O(k3m logm), and O(k2m log km
ε ) times, respectively.

The number of groups of intervals on an edge is O(k) for type-III and a constant for type-I,
II, IV, and V. Therefore, a Steiner point is contained in O(1) intervals. (A type-III interval is
on an interior edge of strip and it contains no Steiner point.) The dequening of a Steiner point
may trigger the trimming of intervals and the associated priority queue updates. Hence, there
are O(mn) such trimmings and priority queue updates. Preprocessing takes O( k

4
√
ε

log k
ε ) time

by Lemmas 3.2 and 3.5. So the total running time is O(mn log(mn) +k2m logm+k3m logm+

k2m log km
ε + k4√

ε
log k

ε ) = O(kn+k
4

ε log2 ρnε ).

Lemma 3.8. The algorithm returns a path whose cost is no more than (1 + ε/3) times the cost
of the shortest path in the approximation graph G.

Proof.

The theorem follows from Lemmas 3.7, 3.1 and 3.8.
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Theorem 3.1. Let T be a planar triangulation with n vertices such that the sum of the smallest
k angles is at least π. Given two points on T , one can compute a (1 + ε)-approximate shortest

path in O(kn+k
4

ε log2 ρnε ) time, where ρ is the ratio of the maximum weight to the minimum
weight.
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Figure 3: (a) A path with two critical links. (b) Slide the subpath between the two critical
links to one side to eliminate one critical link. (c) Shortcutting the reflective bending point
reduces the path cost. (d) Assume wf ≤ wg. Eliminating the critical link as shown in the figure
decreases the path cost. If wg ≤ wf , the shortcut can be made inside g.

A Missing proofs in Section 3.2

Lemma A.1. Let e1, e2, . . . , em be a sequence of edges such that for i ∈ [1,m− 1], ei and ei+1

bound the same face, but ei and ei+2 do not. Let P be a refraction path from e1 to em with
exactly two (possibly degenerate) critical links on ej and e` for some 1 ≤ j < ` < m such that
P crosses e1, . . . , e`−1 at transversal nodes in order, rebounds at the critical link on e`, crosses
e`−1, . . . , ej+1 at transversal nodes in order, rebounds at the critical link at ej, and finally crosses
ej+1, . . . , em−1 at transveral nodes in order before reaching em. (Refer to Figure 3.) There exists
a path Q from the source of P to the detination of P such that Q intersects e1, . . . , em in order,
cost(Q) ≤ cost(P ), and either Q is a transversal path or Q contains exactly one critical link on
e1. Moreover, if Q has a critical link, then ej = e1.

Proof. Sliding P ’s subpath between the two critical links while maintaining the directions of
all links changes the path cost linearly. Slide the subpath to the side that does not increase
the path cost until one of the critical links shrinks to a single point. Shortcut the reflective
point. See Figure 3. The result is another path with two critical links but with a smaller cost,
and the critical links are on e`−1 and ej , or e` and ej+1. Repeat the above alternative sliding
and shortcutting until the path has only one critical link. Inductively, it can be shown that the
critical link must be on some edge ei for i ∈ [j, `]. If the critical link is not on e1, it can be
eliminated as shown in Figure 3(d).

Lemma A.2. Let P1,x, P1,y, P2,x, P2,y be four paths from r1 to x, r1 to y, r2 to x, and r2 to
y, respectively, where r1, r2, x, y are four arbitrary points in the subdivision. Suppose that P1,x

and P2,y cross at a point o. If c1 + cost(P1,x) ≤ c2 + cost(P2,x) for some real numbers c1 and
c2, and cost(P2,x) ≤ cost(P2,y[r2, o]) + cost(P1,x[o, x]), then c1 + cost(P1,x[r1, o] · P2,y[o, y]) ≤
c2 + cost(P2,y).

Proof. Combining the two given inequalities gives c1 + cost(P1,x) ≤ c2 + cost(P2,y[r2, o]) +
cost(P1,x[o, x]). The lemma follows because P1,x = P1,x[r1, o] · P1,x[o, x] and P2,y = P2,y[r2, o] ·
P2,y[o, y].

A.1 Proof of Lemma 3.3

Lemma 3.3. Let I be a type-III interval on an interior edge e of a strip S such that I does
not contain any endpoint of e. Let P be a refraction path in S from rI to a point p in the
boundary of S such that P contains exactly one critical link, which is a subset of I, and p
and rI lie on distinct boundary edges of S. Then, P is not the shortest path in S from rI
to p, or there exists a Steiner point or vertex r on the same boundary edge as rI such that
d(r) + cost(P ∗) < d(rI) + cost(P ), where P ∗ is the shortest path in S from r to p.
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Figure 4: Interval I1 causes interval I to be trimmed at y. P is the refraction path from rI to
p, which uses part of I as a critical link. Q is the shortest transversal path from rI1 to y. R is
the shortest transversal path from rI to y.

Proof. Recall that when I was created, I contained an endpoint of e, say v. Therefore, I must
have been trimmed by the algorithm in order that I does not contain v currently. It means
that some interval I1 ⊂ e caused I to be trimmed. By the working of the algorithm, I must
contain the endpoint of I1 further from v, say y, and I is trimmed at y. See Figure 4.

Let R and Q be the shortest transversal paths from rI and rI1 , respectively, to p. Let P ′

denote the subpath of P after the critical link. Since R is a transversal path, by Snell’s law, R
cannot cross P [rI , x], which means that P [rI , x], xy and R bound a closed region. It follows
that P ′ must cross R at some point o in order to reach p. Similarly, P ′ must cross Q at some
point o′.

It is sufficient to prove that that cost(R[rI , o]) < cost(P [rI , o]) or d(rI1) + cost(Q[rI1 , o
′]) <

d(rI) + cost(P [rI , o
′]). In the first case, R[rI , o] · P [o, p] is a shorter path than P from rI to p.

In the second case, d(rI1) + cost(Q[rI1 , o
′) · P [o′, p]) < d(rI) + cost(P ).

If cost(R[rI , o]) < cost(P [rI , o]), we are done. Suppose not. That is, cost(P [rI , o]) ≤
cost(R[rI , o]). Apply Lemma A.1 on the R[z, o] · P [o, rI ] to obtain a shorter path X from
z to rI . So either X is a transversal path, or its first link is a critical link on e. In the
former case, cost(X) ≥ cost(R), while in the latter case, cost(X) ≥ cost(P [rI , y] · yz). So
min{cost(P [rI , y]·yz), cost(R)} < cost(P [rI , o]·R[o, p]). By the assumption that cost(P [rI , o]) ≤
cost(R[rI , o]), we have min{cost(P [rI , y] · yz), cost(R)} < cost(R), or equivalently,

cost(P [rI , y] · yz) < cost(R). (1)

For the sake of contradiction, assume that d(rI)+cost(P [rI , o
′]) ≤ d(rI1)+cost(Q[rI1 , o

′]). One
can use the same argument to show that d(rI) + min{cost(P [rI , y] · yz), cost(R)} < d(rI1) +
cost(Q). Then, it follows from (1) that d(rI) + cost(P [rI , y] · yz) < d(rI1) + cost(Q). But then
I should have caused the algorithm to prune away I1 completely, a contradiction.

A.2 Proof of Lemma 3.4

Lemma 3.4. Suppose that pred(I1) and pred(I2) are oriented from left to right and pred idx(I1) <
pred idx(I2) ≤ i. Let si be the starting endpoint of pred(Ii). For i ∈ [1, 2] and for all y ∈ Ii, let
Pi,x denote the refraction path from rIi through pred(Ii) to x that defines Ii. For i ∈ [1, 2] and
for all x ∈ I1 ∩ I2, let Qi,x be the shortest path inside the strip from rIi to x.

(i) Suppose that d(rI1) + cost(P1,x) ≤ d(rI2) + cost(P2,x) for some point x ∈ I1 ∩ I2. If s2 is
to the right (resp. left) of P1,x with respect to its orientation from rI1 to x, then for every
point y ∈ I2 to the right (resp. left) of x, d(rI1) + cost(Q1,y) ≤ d(rI2) + cost(P2,y).

(ii) If d(rI2) + cost(P2,x) ≤ d(rI1) + cost(P1,x) for some point x ∈ I1 ∩ I2, then for every point
y ∈ I1 to the left of x, d(rI2) + cost(Q2,y) ≤ d(rI1) + cost(P1,y).

Proof. Consider (i). See Figures 5(a–c). Suppose that s2 is to the right of P1,x with respect
to its orientation from rI1 to x. Let y be a point in I2 to the right of x. Since pred idx(I1) <

16



ei

ei+1

e

pred(I1)

pred(I2)rI1

rI2
ei

ei+1

e

pred(I1)

pred(I2)rI1

rI2

x

ei

ei+1

e

pred(I1)

pred(I2)rI1

rI2

s2

y

(a) (b) (c)

x
y x

o

o

o

ei

ei+1

e

pred(I1)

pred(I2)rI1

rI2
ei

ei+1

e

pred(I1)

pred(I2)rI1

rI2

x

ei

ei+1

e

pred(I1)

pred(I2)rI1

rI2

y

s2

y

(e) (f) (g)

x
y

x

o

o
o

s2 s2

y

f

g

Figure 5: Illustrations for the proof of Lemma 3.4. The top row is for (i) and the bottom row
is for (ii).

pred idx(I2) ≤ i and rI2 is on the boundary of the strip, the subpath of P2,y after the critical link
must cross P1,x at some point o. Suppose that it crosses the subpath of P2,x after the critical
link. Refer to Figure 5(a). Since P1,x[o, x] and P2,y[o, y] cross the same sequence of edges in
order and P2,x is the shortest one among paths with the same edge sequence from rI2 to x,

cost(P2,x) ≤ cost(P2,y[rI2 , o]) + cost(P1,x[o, x]). (2)

By Lemma A.2, d(rI1) + cost(P1,x[rI1 , o] · P2,y[o, y]) ≤ d(rI2) + cost(P2,y). The lemma follows
because Q1,y by definition is no longer than P1,x[rI1 , o] ·P2,y[o, y]. One can show that (2) holds
for the other two cases left. The first case is that s2 is to the right of P1,x and P1,x crosses the
critical link of P2,y. Refer to Figure 5(b): The second case is that s2 is to the left of P1,x. Refer
to Figure 5(c).

Consider (ii). Lemma A.2 is applicable if the following triangle inequality holds:

cost(P1,x) ≤ cost(P1,y[rI1 , o]) + cost(P2,x[o, x]). (3)

If so, Lemma A.2 implies that d(rI2) + cost(P2,x[rI2 , 0] · P1,y[o, y]) ≤ d(rI1) + cost(P1,y). Since
Q2,y is the shortest path in the strip from rI2 to y, we thus obtain d(rI2) + cost(Q2,y) ≤
d(rI1) + cost(P1,y) as stated in (ii). So it remains to prove (3).

There are three cases depending on how P1,y crosses P2,x as shown in Figures 5(e–g). If
the crossing happens after the critical links of both P1,y and P2,x (Figure 5(e)), then (3) holds
because P1,y[rI1 , o] ·P2,x[o, x] and P1,x cross the same edge sequence and P1,x, being a refraction
path, is the shortest one among such paths.

Suppose that P1,y crosses the critical link of P2,x as shown in Figure 5(f). We cannot
immediately conclude that (3) holds this time because P1,y[rI1 , o] · P2,x[o, x] and P1,x do not
cross the same edge sequence—P1,y[rI1 , o] · P2,x[o, x] has a critical link on the same edge as
pred(I2) while P1,x does not. But that critical link is redundant and can be eliminated without
increasing the path cost as shown by the dashed edge in Figure 5(f). Let X be the path
from rI1 to x obtained after the shortcut. Now X and P1,x cross the same edge sequence, so
cost(P1,x) ≤ cost(X) ≤ cost(P1,y[rI1 , o]) + cost(P2,x[o, x]). Therefore, (3) still holds.
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Figure 6: (a) If ei−1 and ei meets at ei−1(0) and ei(0), then the graph of Li passes through the
origin. (b) The domain of of F ∗i is a convex polygon inside the unit square, and the projections
of the edges of the graph of F ∗i do not intersect in the interior of the domain polygon.

The last case is that the subpath of P1,y after its critical link crosses the subpath of P2,x

before the critical link of P2,x. Refer to Figure 5(g). Let p1 be the node of P1,y before o and p2
be the node of P2,x after o. Let X = P1,y[rI1 , p1]) · p1p2 · P2,x[p2, x]. The resulting path has at
most three critical links: one on the same edge as pred(I1), critical link p1p2 on an edge ej for
some j < i, and one on the same edge as pred(I2).

If ej happens to be the edge containing pred(I2), then p2 = s2 and the p1p2 merge with the
critical link on pred(I2) to form one critical link. Then, we can shortcut this merged critical
link as in Figure 5(f) and conclude that (3) holds.

In general, ej is different from the edge containing pred(I2). Let X ′ be the prefix of X from
rI1 to and including the critical link on the same edge as pred(I1). Let X ′′ be the suffix of X
after this critical link. Apply Lemma A.1 to X ′′ to shorten it to a transversal path Y . The
union of X ′ and Y is a path from rI1 to x that has the same edge sequence as P1,x. Therefore,
cost(P1,x) ≤ cost(X ′ ∪ Y ) ≤ cost(P1,y[rI1 , o]) + cost(P2,x[o, x]), i.e. (3) holds.

A.3 Proof of Lemma 3.5

Proof. Let e1, e2, . . . be the interior edges of the same strip such that e1 and e are in the same
face and ei and ei+1 are in the same face. For convenience, let e0 = e. Parametrize edges
uniformly by a parameter in [0, 1]. Use ei(λi) to denote the point on ei with parameter λi.
So ei(0) and ei(1) are endpoints of ei. Fix an arbitrary point p in e. Let Fi(λ0, λi) be the
function [0, 1]2 → R that represents the p-costs of the shortest p-cost transversal paths from
points on e to points on ei. Let Li(λi−1, λi) be the function [0, 1]2 → R that represents the
p-cost of segments from a point on ei−1 to a point on ei. We have F1 = L1 and Fi+1(λ0, λi) =
minλi∈[0,1] Fi(λ0, λi) + Li+1(λi, λi+1). We are only interested in the values of Fi+1 that can be
realized by a λi ∈ (0, 1), because otherwise the path bends at a vertex of ei, and such paths
will not be considered by the algorithm. Denote this restriction of Fi+1 by F ∗i+1.

It is clear that Li is convex and piecewise linear. Moreover, Li has O( 1√
ε
) linear pieces,

and those linear pieces meet at a single point (See Figure 6). Inductively, one can also
show that Fi is a convex piecewise linear function. If a λi ∈ (0, 1) satisfies the equation
Fi+1(λ0, λi) = Fi(λ0, λi) + Li+1(λi, λi+1), then it must be the case that ∂Fi(λ0, λi)/∂λ

+
i +

∂Li+1(λi, λi+1)/∂λ
+
i ≥ 0, and ∂Fi(λ0, λi)/∂λ

−
i + ∂Li+1(λi, λi+1)/∂λ

−
i ≥ 0 by the convexity of

Fi and Li+1.
Inductively, we claim that the domain of F ∗i is a convex polygon of size O( i√

ε
), the projection

of the graph of F ∗i does not have a vertex in the interior of the domain, and the projection of
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any edge of the graph of F ∗i is not parallel to the λi axis.

A.4 Proof of Lemma 3.6

Lemma 3.6. Let I1 and I2 be two type-V intervals on the boundary edge e of a strip S. If
d(rI2) + costD(P2,x) ≤ d(rI1) + costD(P1,x) for some point x ∈ I1 ∩ I2, then I1 ∩ γ can be
trimmed, where γ is the part of the boundary of S delimited by rI2 and x that excludes rI1.

Proof. Let y be any point in I1 ∩ γ. It suffices to prove that there exists a Steiner point or
vertex r in the boundary of S such that r is the root of an type-V interval on e that overlaps
with I1 and d(r) + cost(Qy) ≤ d(rI1) + costD(P1,y).

Since y ∈ I1∩γ, P1,y must cross P2,x, say at o. The concatenation of P1,y[rI1 , o] and P2,x[o, x]
is also a transversal path, so

costD(P1,y[rI1 , o]) + costD(P2,x[o, x]) ≥ costD(P1,x). (4)

Let Q be the path with the minimum costD from rI2 to y that crosses the sequence of
interior edges between rI2 and y. The concatenated path P2,x[rI2 , o] · P1,y[o, y] is not shorter
than Q.

If Q is a transversal path, then Q = P2,y and

costD(P2,x[rI2 , 0]) + costD(P1,y[o, y]) ≥ costD(P2,y). (5)

Adding (4) and (5) yields costD(P1,y) + costD(P2,x) ≥ costD(P1,x) + costD(P2,y). Therefore,
d(rI2)+costD(P2,y)+costD(P1,x) ≤ d(rI2)+costD(P1,y)+costD(P2,x) which is at most d(rI1)+
costD(P1,y)+costD(P1,x) by the assumption of the lemma. It follows that d(rI2)+costD(P2,y) ≤
d(rI1) + costD(P1,y).

If Q is not a transversal path, the analysis in the previous paragraph gives

d(rI2) + costD(Q) ≤ d(rI1) + costD(P1,y).

Since Q is not a transversal path, it contains some vertices in its interior. Let r be the last vertex
in Q before y. The subpath Qy from r to y is a transversal path. Also, d(r) + costD(Qy) ≤
d(rI2) + costD(Q). It follows that d(r) + costD(Q) ≤ d(rI1) + costD(P1,y).
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