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Abstract—In this thesis we propose new techniques for using
parallel languages to improve query processing. Optimizing a
query plan and its particular implementation is important for
efficient processing on modern systems. First, we present our
work on a parallel representation of queries using partitioned
global address space languages that enables new optimizations.
Next, we propose future work on cooperative optimization of
query plans and imperative programs in the context of parallel
applications that include queries.

I. INTRODUCTION

For high performance query processing, multiple layers of
the compute stack must be considered. Recent systems have
demonstrated orders of magnitude performance improvements
over conventional interpreted, iterator-based query processing
by specializing the implementation of a query plan before
execution [4], [22], [26], [29].

Although distributed memory clusters are important for
scaling up performance on large query workloads, the principle
of multi-level optimization has not been applied in this context.
Query systems that generate distributed programs do so by
generating program fragments for individual processors and
stitching them together with communication calls [12], [28],
[24], confounding further optimization of the whole program.
We hypothesize that important optimizations can be applied
on an intermediate representation (IR) of the query that is
both parallel, like a query plan, and detailed, like a source or
bytecode program.

The completed contributions of this thesis are:

1) We designed new techniques for compiling queries
into fast code for distributed memory systems by in-
cluding a partitioned global address space (PGAS) IR;
this enables new optimization opportunities. Pipelines
of operators are converted into parallel loops that can
be optimized as a whole, even across communica-
tion boundaries. We implemented the techniques in
RADISH, a query compiler that translates relational
queries into PGAS code that runs on distributed
memory systems. To the best of our knowledge,
RADISH is also the first query processing system
that integrates with PGAS languages.

2) We built a PGAS language and runtime, Grappa, and
generated programs for it using RADISH. GRAPPA’s
runtime features, like message buffering, task inlining,
and lightweight task scheduling mitigate the overheads
of fine-grained, data-centric code that RADISH emits.
The system executes queries 12.5× faster than
Shark, which has been shown to have performance

comparable to parallel analytical databases. Although
we only evaluate code generated for GRAPPA, RADISH
is extensible to target other PGAS languages.

Queries are often components of larger applications. Achiev-
ing the highest performance on these applications will require
optimizing queries within the context of a parallel program.
Existing work on integrating queries in parallel languages
has been restricted to data parallel programming models like
Dryad [35], MapReduce [30], [14], [36], and Spark [34]. Many
efficient parallel programs rely on fine-grained manipulation
of shared data and task-level parallelism; these features are
provided by high-performance parallel languages, including
PGAS.

We propose the following additional contribution for this
thesis: We will explore how query plan optimization and
optimization of PGAS programs can be composed. There are
two directions that the research can take. 1) Explore the benefits
of a query optimizer that can use a PGAS compiler to inform it
about UDFs, or conversely, that can pass assertions to the PGAS
compiler based on data statistics and algebraic semantics. 2)
Explore the benefits of using the PGAS application context of
language-integrated queries for informing the query optimizer.

II. RADISH: AN IR FOR OPTIMIZING DISTRIBUTED QUERY
PLANS

We identified a shortcoming in all existing distributed query
processing systems that generate code. These systems compile
plans for individual processors and stitch them together with
communication calls. This approach misses important optimiza-
tions because it throws away information about parallelism.
We hypothesize that those optimizations can be applied on an
IR of the query that is both parallel, like a query plan, and
detailed, like a source or bytecode program.

In [1], we explore this hypothesis by translating queries into
a program in a PGAS language. The key feature of a PGAS
language is that memory is explicitly partitioned so that memory
access to different regions has different costs. This approach
unlocks a collection of optimizations that are accessible to
neither query plan optimizers nor sequential language compiler.

A. Background: PGAS languages

PGAS languages are the dominant shared memory lan-
guages for programming distributed memory clusters (Figure 1).
Their critical attribute beyond traditional shared memory
programming models is an explicit partitioning of the shared
address space across nodes of the cluster. Partitions allow the
programmer and language compiler to reason about locality for



a non-uniform memory access (NUMA) architecture. PGAS
languages enable higher productivity than message passing
libraries and in some cases better performance due to a
distributed-aware compiler and runtime optimizations enabled
by language support for parallelism and data distribution [13],
[5], [6], [7], [18]. For the techniques in our work, we assume
that a target PGAS language provides the following constructs
beyond those of a conventional shared memory language:

1) concurrent tasks: spawn t forks a new asynchronous
task whose reference is t; s.sync blocks the calling
task until task s is finished

2) parallel for loops: parallel forall i in I:
body runs an iteration of body for each element in
the collection; iterations only may be run in parallel,
so they are allowed to synchronize with each other
but may not have inter-dependences

3) control over data partitioning
4) task movement: on partition(L): body indi-

cates that the calling task must move to the partition
L before executing body; L may be a constant
expression or dynamically evaluated expression of
type Integer.

Fig. 1: The global-view PGAS programming model on a
distributed memory cluster. Memory is abstracted as a shared,
partitioned heap and concurrency is expressed with tasks.

B. Motivating example

We illustrate in an example how using a PGAS representa-
tion of the query will enable a unique optimization. Consider
the SQL query in Figure 2a (top). We use the query execution
plan in Figure 2b where the join of R and S is performed by
hash partitioning both tables on key b. The code generated by
current systems for probing a hash table of S tuples with tuples
of R is in the form of Figure 2a (middle). The multiplication
could be performed in producer task before line 4 or in the
consumer task as shown on line 8, but the compiler has too
little knowledge to perform such reasoning, so this decision
can only be made earlier: in the query optimizer. However,
at the level of the query plan, there is no obvious difference
between these two choices; in either case, two numbers will be
sent over the network: (r.a*r.b, r.b) in one case, and
(r.a, r.b) in the other.

Now consider the PGAS implementation in Fig-
ure 2a(bottom). From this code, the PGAS compiler is able to
explore an additional class of decisions related to distributed
execution on the target machine. The on partition (line 2)
indicates that the execution of the loop iteration must move
to the partition specified by the value in brackets. In this case
it is the partition corresponding to the hash of the value r.b.

The parallel language compiler that reasons over the PGAS
code a detailed, imperative IR of the query will consider
the likelihood that the multiply functional unit is available to
choose the best place for the multiplication: either at line 2 or
on the other partition after line 3. This kind of optimization
is inaccessible to both a database-style algebraic optimizer
that cannot reason at the level of detail of instructions and an
ordinary shared memory compiler (LLVM, JVM, .NET) that
cannot reason about partitions.

C. Generating PGAS programs

We extend techniques for pipeline-based code generation
for query plans [26] to produce distributed parallel programs.
RADISH parallelizes query execution using tasks and shared
memory in three ways. First, RADISH reduces communication
and supports fine-grained updates via careful layout of global
data structures: memory locations that are accessed together
are placed in the same partition. Second, RADISH considers
diverse space of plans by considering operators that involve
fine-grained (tuple granularity) and coarse-grained (relation
granularity) synchronization between pipelines. Third, RADISH
produces efficient, data-centric parallel code for each pipeline.
Within a processor, data-centric code makes efficient use of
memory bandwidth by sending one tuple through a pipeline
of operators at a time. Since the PGAS compiler understands
communication, its optimization window extends across a whole
pipeline regardless of communication boundaries.

III.GRAPPA: DISTRIBUTED SHARED MEMORY FOR HIGHLY
CONCURRENT APPLICATIONS

Data-intensive applications with random access patterns
pose a challenge for distributed memory platforms. To tol-
erate even the relatively low microsecond latency of RDMA
network operations requires significant memory concurrency.
Having and managing significant concurrency is not enough.
Network interfaces also do not have sufficient injection rate to
use the full bisection bandwidth of the network under a load
of small messages. These challenges complicate the NUMA
shared memory machine model for distributed memory. In
addition to synchronization and locality, a programmer must
also avoid small messages. Compilers have addressed this gap
with a variety of communication avoiding, overlapping, and
coalescing optimizations [3], [2], but they are currently limited
in the scope of optimizations.

We built Grappa [25], a global-view PGAS runtime for
C++11, to address these limitations. It is designed to have an
execution model that is efficient for distributed memory systems
while not being onerous to programmers. To do this it comprises
1) lightweight tasks to manage enough concurrency to overlap
network requests, 2) execution moving to eliminate network
hops, and 3) an aggregating network stack to increase small
message performance. These runtime features of Grappa are
important for RADISH, whose task-per-tuple execution model
generates many tasks and small network messages.

IV.OPTIMIZING QUERY PLANS AND PGAS PROGRAMS

RADISH demonstrated the benefit of introducing a low-
level parallel IR into query plan evaluation. It is also the
first step towards integrating query processing with PGAS



1 -- SQL query
2 SELECT R.a*R.b, R.b, S.b
3 FROM R,S
4 WHERE R.b=S.a;

1 // Existing solutions
2 submit task:
3 local forall r in R:
4 push r to hash(r.b)
5

6 submit task:
7 while(r = pull()):
8 t = r.a*r.b
9 local forall s in hashtable.lookup(r.b)

10 emit t, r.b, s.b

1 // Using PGAS as a query IR
2 submit task:
3 global forall r in R:
4 on partition [ hash(r.b) ]
5 t = r.a*r.b
6 global forall s in

hashtable.lookup(r.b)
7 emit t, r.b, s.b

(a)

Store(public:adhoc:OUTPUT)

SymmetricHashJoin(($1 = $3); $0,$1,$2)

ShuffleConsumer

Apply(t=(a * b), b=b)

ShuffleProducer(h($1))

Scan(public:adhoc:R)

ShuffleConsumer

ShuffleProducer(h($1))

Scan(public:adhoc:S)

Store(public:adhoc:OUTPUT)

SymmetricHashJoin(($0 = $3); $1,$0,$2)

ShuffleConsumer

ShuffleProducer(h($0))

Apply(b=b,t=(a * b))

Scan(public:adhoc:R)

ShuffleConsumer

ShuffleProducer(h($1))

Scan(public:adhoc:S)

(b)

Fig. 2: Why using a low-level parallel language as an intermediate query representation is useful. (a) (top) SQL query to evaluate.
The middle and bottom listings show concurrent program implementations of the probe side of the join. In code generated by
existing systems, the compiler cannot reorder the multiplication (shown at line 8) between disparate parts of the program. In
the PGAS code generated by Radish, the compiler can now reorder the multiplication. (b) Two candidate parallel query plans.
Left applies the multiplication (in green) after hash partitioning and right applies the multiplication before hash partitioning. A
conventional query planner has no basis to pick between these plans: both have the same cost as the number of attributes sent
over the network (in pink) is equal.

languages. However, so far the integration has been quite loose:
RADISH only adds code generation to link a conventional query
optimizer with a PGAS compiler. Many applications are built
as complex queries comprising UDFs or general purpose code
with language-integrated queries. We will discuss opportunities
for improving program optimization in each of these situations.

A. Queries with UDFs

1) Related work

User-defined functions (UDFs) are written in an imperative
language rather than the query language. Query optimizers
that reason over only a known set of physical operators and
treat UDFs as black boxes may pick poor query plans. A
number of research efforts have analyzed UDFs to improve
query planning. These efforts have addressed two challenges:
integrating UDFs into query optimization and analyzing UDFs
to determine important properties.

Chaudhuri et al. and Hellerstein present algorithmically
efficient optimization techniques for query plans that include
UDFs that are expensive to evaluate [8], [17]. Hellerstein’s
approach requires estimation of computation cost and selectivity
but leaves estimation as future work.

Including operators with UDFs in query optimization
requires that their properties be known. Manimal [21] and
HadoopToSQL [20] use simple static analyses on map UDFs
in MapReduce jobs to infer selections and projections to apply
database-style optimizations. Specifically, Manimal reduces

usage of disk bandwidth using relational indexing and column-
oriented storage and HadoopToSQL executes the extracted
query on a database. Hueske et al. [19] presents techniques
to automatically reorder a plan of “MapReduce-style” UDFs
using static analysis and reordering proofs. Tupleware [12] is
initial work that uses LLVM to analyze UDFs to estimate two
factors for an operator: compute time and load time. The query
planner uses a simple comparison of compute time and load
time to decide whether a map operator should be pipelined or
vectorized. GraphX [15] dynamically uses the JVM bytecode
introspection to find unreferenced fields to remove joins.

2) Proposed research

Implementing analyses of UDFs in the style of Tupleware
in a Radish query would enable better cost-based optimization
of query plans. However, we hypothesize that exhaustively
adding the extraction or annotation of more properties of UDFs
to the cost estimation is an unscalable effort. A complimentary
approach suggests a new research question. In a system like
Radish that generates intermediate code, a complimentary
approach would be to provide more information to the in-
termediate compiler to allow it to apply its optimizations more
effectively. Specifically, we could empower the intermediate
compiler by providing it more complete semantic information
about the program generated from the query. Two types of
useful information that the query planner can provide are (1)
data statistics and constraints and (2) semantic behavior of data
structures.

Data statistics and constraints would allow the IR compiler



1 forall r0 in R {
2 // r0 is only being stored for use elsewhere
3 hash.insert(r0[2], r0)
4 }
5

6 forall s in S {
7 forall r1 in hash.lookup(s[2]) {
8 // the query planner knows this r1 is r0
9 // and is the only use of r0

10 emit my_udf(r1, s)
11 }
12 }

Fig. 3: Generated code for hash table join. The knowledge that
tuples r0 are entering and exiting a join is lost in the program.
If the compiler has this knowledge then its optimization window
could extend from reading r0 in line 1 to using it in line 10.

to infer constants or optimize based on stronger symbolic
constraints for variables. For eample, if the compiler knows
the bounds of loops then it can perform aggressive unrolling
and blocking optimizations. Some limited types of assumptions
that would be useful work with existing compilers [27].

Properties of operators that were provable in the query plan
are lost during translation to the IR program. An example is
shown in Figure 3. In a hash table join, the build tuples actually
are stored into the hash table and are only accessed when they
are looked up by the probe code. The link between the insertion
and use of build tuples is lost because the compiler cannot
prove that the probe pipeline is the only site where lookups
occur. Restoring this link in the generated program widens
the optimization window for the compiler. Approaches may
draw inspiration from work like the Broadway Compiler [16],
which accepts libraries annotated by an annotation language
that summarizes effects of procedure calls.

Interesting research questions are (1) how do you pass
semantic information down in a way that is maintainable and
flexible? (2) what is the best assignment of concerns between
the query optimizer/code generator and the intermediate com-
piler? (3) what optimizations are unlocked by larger windows
and how much benefit is gained?

B. Programs with language-integrated queries

1) Related work

Declarative queries and imperative programming languages
differ in several ways: how they are optimized, how they are
expressed and tuned, and in their approaches to data types and
modularity [11]. The term “impedance mismatch” [23] usually
refers to the inefficiencies in object-relational mappings but
also applies to these other differences. This mismatch remains
an open problem but there are numerous relatively successful
integrated systems, as surveyed by Cook and Ibrahim [11]. We
focus on work that optimizes across programs and integrated
queries, rather than techniques that optimize queries in isolation
(e.g., [24] and [31] optimize individual LINQ queries).

Weidermann et al. [32], [33] use static analysis of programs
with implicit database interaction to extract more efficient
queries. Their approach uses an operational semantics of the
host language for discovering data traversal paths and conditions
in the program. These paths and conditions are combined to

form a database query. The technique supports translating joins
that are generated by iteration of an object field (e.g., for
each employee print their managers name) but does not infer
joins from conditions in the code. Cheung et al. [10] achieve a
similar goal and infer more queries. The authors take a different
approach: their technique generates Hoare style verification
conditions for a code fragment and then uses constraint-based
synthesis to find a relational algebra expression that satisfies
the conditions. This technique is able to translate looping code
beyond just iteration: it handles joins derived from program
conditions, as well as aggregates. So far no such system supports
updates or insertions to the database. There are further research
opportunities in enhancing the query optimizer with information
from the application context [9].

2) Proposed research

We hypothesize that consideration of application context for
query optimization becomes even more important in distributed
programs. To avoid costly data movement, the query optimizer
needs to consider the distribution of the input and output data.
This sort of information is available in a conventional parallel
database in the form of metadata about partitions and clustered
indexes.

Since PGAS languages are partition-aware, this flavor of
information is available to feed to the query engine. However,
this data distribution information typically stops short of
semantics of data structures. For example, an input table to
a language-integrated query is might already in the form
of an index (e.g., in a distributed hash table). Interesting
research questions are (1) what kinds of contextual information
from a parallel application are useful for optimization of
integrated queries? (2) how can we automatically infer structural
information about distributed data structures that aids query
optimization? (3) how do we balance the high-performance
programmers intuition with portability and the query optimizers
decisions? (4) what is the most effective way to profitably pick
a distribution for optimizing the whole application?

V. CONCLUSION

Building efficient data processing systems requires effort at
multiple levels of the compute stack. In this thesis we explore
how flexible parallel languages and query optimizers can
cooperate to generate efficient parallel programs. We draw from
work in both data management and programming languages,
especially on specializing query plan implementations and
static analyses of imperative programs. Our work impacts pro-
gramming productivity and optimization of high-performance
parallel applications that involve both irregular and data parallel
computation.
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