Pregel meets UnCAL: a Systematic Framework for
Transforming Big Graphs

Le-Duc Tung
The Graduate University for Advanced Studies
Shonan Village, Hayama, Kanagawa 240-0193, Japan
Email: tung@nii.ac.jp
Expected graduation date: March 2016
Supervised by Zhenjiang Hu

Abstract—Graph is a multi-purpose tool to represent many
different kinds of data from tranditional datasets to social
networks. At present, Pregel is a popular graph computation
model to deal with big graphs up to billion vertices and trillion
edges. However, Pregel programming model is very low-level
and requires developers to write programs that are hard to
maintain and need careful optimizations. In this thesis we are
developing Gito, a systematic framework on top of Pregel to do
transformations over big graphs. Transformations in Gito are
expressed in a SQL-like language - UnQL - whose internal algebra
is UnCAL, and then are compiled into Pregel code. In particular,
in this paper, we show the feasibility of integrating UnCAL and
Pregel, and propose a scalable Pregel-based computation for a
subclass of UnCAL. Our preliminary results are encouraging and
allow us to go further for a complete framework.

I. INTRODUCTION

Pregel [1] is a new computation model proposed by Google
to process big graphs. It was inspired by the Bulk Synchronous
Parallel computation model in which the whole computation
consists of a sequence of supersteps. During a superstep,
every vertex executes exactly once a common function defined
by Vertex.compute(). Inside Vertex.compute(), a vertex can
receive messages from the previous superstep, do its com-
putation (i.e. updating their values, adding/removing edges
and vertices), and send messages to other vertices in the next
superstep. Changes in vertices and edges will be available in
the next superstep. Interleaving with supersteps are barriers in
order to synchronize communication data.

Although Pregel is scalable to very large graphs up to
billion vertices and trillion edges, its programming model is
very low-level in the sense that the whole computation is
condensed in a single function Vertex.compute(), resulting
in very long and complex programs. Consequently, there
are many optimizations for specific Pregel-based algorithms.
Similar issues have been raised for map-reduce model, leading
to high-level query languages such as HiveQL or PigLatin on
top of the map-reduce model. Inspired by Hive/Pig systems,
we aim to build a high-level framework on top of Pregel model.

We choose UnQL [2] as a front-end language for our
framework due to two important reasons. First, since UnQL is
a SQL-like query language designed for querying semistruc-
ture data, users in database community do not need to learn
a completely new language. Second, UnQL consists of an
optimizable algebra - UnCAL, in which UnQL queries are
translated to structural recursions to which many rewriting

rules can be applied systematically. However, despite of being
powerful, UnCAL has problems of scalability. Experiments
in [2] on a sequential version of UnCAL only dealt with graphs
up to 10 thousand nodes. Suciu [3] proposed a distributed
evaluation with a setting of graph partitions, but potentially, for
big graphs, there existed a bottleneck because its reachability
computation was done at a single site [4].

Motivated by the advantages of both Pregel and UnCAL
(the core of UnQL), we propose a systematic framework on
top of Pregel model to do graph transformations, which allows
users to express transformations in a SQL-like query language
- UnQL. UnQL queries are then compiled into a scalable
Pregel program. Such a framework has some advantages.
On the user side, they do not need to have knowledge of
how Pregel works, but still obtain an efficient and scalable
implementation automatically. On the system side, we can sys-
tematically apply many optimization rules to rewrite queries.

Our approach is to explore the potential of parallelism in
UnCAL and to point out bottlenecks that limit its scalability.
We show a subclass of UnCAL that can be potentially par-
alellized and then propose a scalable computation on top of
Pregel. Our contribution so far is a scalable framework that
can handle a subclass of UnQL. This contribution is the first
important step towards a complete framework that deals with
arbitrary UnQL queries.

II. UNCAL : A “A-CALCULUS” FOR GRAPHS

In this section, we briefly review the UnCAL (Unstructured
CALculus), a powerful graph algebra [2] that functions as a
core component in our framework.

A. Graph Data Model

UnCAL’s data model is a directed edge-labeled graph
extended by markers and e-edges [2]. Edge-labeled graphs are
in the sense that data are stored on edges, while vertices are
unique identity objects without labels. Markers are symbols to
designate certain vertices as input vertices or output vertices.
e-edges are edges labeled with a special symbol €. Such e-
edges could be thought as an “empty” transition in automata.

Let Label be a set of labels, M be an infinite set of markers
denoted by &z, &y, &z, ... There is a distinguished marker
& € M called a default marker.

(a) A 51mple graph

d , :
! ‘.@,@%

(c) Fmal result of (b) Result (i
a2d_xc function

I ®-Q
@
@..

a2d_xc function

Fig. 1: Examples of Rooted Edge-labeled Graphs

Definition 1 (Graph with Markers [2]). A graph G is a
quadruple (V,E,I,0), where V is a set of vertices, E C
V x {Label Ue} x V is a set of edges, I C M x V is an
one-to-one mapping from a set of input markers to V, and
O CV x M is a many-to-many mapping from V to a set of
output markers.

For &z, &y € M, let v = I(&x) be the unique vertex such
that (&z,v) € I, we call v an input vertex. If there exists a
(v, &y) € O, we call v an output vertex. Note that there are no
edges commg to input vertices or leaving from output vertices.
Let DBy denote data graphs with sets of 1nput markers X and
output markers). When X = {&}, DBJ is abbreviated to
DBy, and DBy is abbreviated to DB. A rooted graph is the
one that has only one input marker X = {&} and no output
markers) = (), in which the vertex v = I(&) is called the
root vertex of the graph. Graphs with multiple markers are
internal data structures for graph constructors.

Figure 1(a) shows an example of a rooted directed
edge-labeled graph in which V. = {1,2,3,4,5}, E =
{(1,q,2),(2,0,3),(2,¢,4),(4,b,5),(5,a,2)}, I = {(&,1)},
and O = {}. The vertex with identity 1 is the root of the
graph, and is marked with &.

B. Graph Constructors

Before looking at graph constructors in details, we need
to define an additional operation - to generate new markers.
The operation - returns a different marker for every pair of
&z and &y. We assume - to be associative, (&z- &y)- &z =
&z (&y- &z), and & to be its identity, &- &z = &z- & = &z.

There are nine graph constructors in UnCAL. From these
constructors, we can systematically build arbitrary edge-
labeled graphs. Definitions of the constructors are given in
Fig. 2 (Dotted arrows denote c-edges). Informally, {} con-
structs a graph of only one vertex labeled with default input
marker &, {l : G} contructs a new graph G’ from the graph
G by adding the edge [pointing to the root of G. The source
vertex of [becomes the root of G’. The operator U unions
two graphs of the same input markers with the aid of e-edges.
The next two constructors allow us to add i Eut and output
markers: &z := G takes a graph G € DBj, and relabels

Hl:etleve|&a:=el&y|()

e®ele@elcycle(e) {constructors}

\

| $g {graph variable}
| if [=1 then e else e {conditional}
\ rec(A(87,8g).e)(e) {structural recursion application}
=al$l {label (a € Label) and label variables}

Fig. 3: Core UnCAL Language

input Vertlces with the input marker &z, thus the result is
in DBy ; &y returns a graph of a single vertex labeled
with the default input marker & and the output marker &y.
() contructs an empty graph without any markers and vertices.
The disjoint union Gy & G2 requires two graphs G and Go
have disjoint sets of input markers. The operator G; @Q G2
vertically constructs a graph by plugglng output markers of
G to input markers of Gs. It requires G; € DBy and
Gy € DBY, thus G, QG5 € DBX Finally, the last operator
allows us to introduce cycles by addmg e-edges from an output
marker to the input marker named after it.

Example 1. The graph in Fig. 1(a) can be constructed as
follows. (but not uniquely)

&z Qcycle((&z :={a: &z1})

D &z :={b:{}}U{c: {b: &z}})
D (&zy:={a:&z})) O

For brevity, we write {l; : G1,...,l, : Gy} to denote
{l : G1}U...U{l,, : G, },and (G1,...,Gp) t0 G1D...®G,,.

C. UnCAL Syntax

Figure 3 depicts UnCAL’s core syntax that consists of
nine graph constructors, variables, conditionals, and structural
recursion. The graph constructors have already been mentioned
before, while variables and conditionals are self explanatory.
Hence, we focus on structural recursion, a powerful mecha-
nism to express transformations on graphs.

A function f on graphs is called a structural recursion if
it is defined by the following equations

({}) }
F({80:8g}) = e(81,89)Q f($g)
f($91U$g2) = f(8g1) U f($g2)

The first and the third equation are always in that form, so
we encode f as recs(\($1,8g).e) where e is of type DB,
sometimes for brevity, we just write rec(e). It is interesting
that though the structural recursion form is quite simple,
it is very powerful to describe many graph transformations
including all graph queries (in UnQL) [2], and non-trivial
model transformations.

Example 2. The following structural recursion a2d_xc rela-
bels edges a to d and contracts edges c. Applying this function
to the graph in Fig. 1(a) results the graph in Fig. 1(c).
a2d_xc($db) = rec(\(81, $g).
if $/ = a then {d : &}
else if $/ = c then {¢: &}
else {$7: &})(3db) O

&z =Gy G
—

&z.&yr &z.&ys &z &z &z &2o

N\ cue
G Gs <

€ £
Y VY
, Gy \ , Gy \

&y &xy &y &yo &wy &z &y1 &y
G118 G
Gy Gy SN G |G| G2 Gy

&y1 &yo

&xy &ao

&y &g &“ &.'Pz

&xy &ao

&yy &ys

1 &
&f . [
o &y

Gy
G ac cy(le (Go)
11 QG @ Go G
— I I &11 &zo

Fig. 2: Graph Constructors

III. PARALLEL EVALUATION OF STRUCTURAL
RECURSION

One of the advantages of structural recursion is the ability
of composing multiple structural recursions to describe many
complex transformations, i.e. rec(ez)orec(e;). However, com-
positions usually lead to large intermediate graphs or multiple
graph traversals. Thanks to tupling and fusion rules, we can
solve those problems systematically by rewriting multiple
structural recursions into one structural recursion [2], [5], [6].
Therefore, if we can parallelize a structural recursion and make
it scalable on Pregel, then we can achieve the scalability of
many graph transformations.

A. Parallelizable Structural Recursion

In this section, we show how systematically evaluate a
class of structural recursion that can be efficiently computed
in parallel/distributed way. It produces the same result as the
bulk semantics of structural recursion does in [2].

Proposition 1 ([2]). If the expression e($l,$g) in recz(e)
does not depend on the graph variable $g, then the following
data value equalities hold

rec(e)({}) = (&z1 == {},. ni={})
rec(e)({$!: $g}) = e($!) Qrec(e)($g)
rec(e)(Sg1 U 8g2) = rec(e)(8g1) Uree(e)($g2)
rec(e)(&a := $g) = &z - rec(e)(Sg) (D
rec(e)(&y) = (&z1 1= &y - &z1,..., &z, == &y - &zy,)
(2)
rec(e)() = ()
rec(c)($g1 @ $g2) = rec(e)(Sg1) ® rec(e)(8g2)
rec(e)($g1 @$gz) = rec(e)(Sg1) Qrec(e)(Sg2) 3)
rec(e)(cycle($g)) = cycle(rec(e)($g)) “4)
In Eq(l), &x-(&z1 = S$q1,...,&z, = 8g,.) denotes
(&x-&z1 :=$g1, ..., &z - &z := $g,). We call the function

rec(e) a parallelizable structural recursion.

This proposition suggests a divide-and-conquer computa-
tion in which we apply the function e on every edge of the in-
put graph, then constructively build a result graph. This graph,
however, contains a lot of e-edges due to graph constructors,
and we basically eliminate these s-edges by computing their
transitive closure, which is a time-comsuming task. Also note

that this divide-and-conquer computation is natural in dealing
with cycles as well.

Now, let us see how to use the above equatilies to evaluate
the structural recursion a2d_xc. Note that we have already
rewritten the input graph by constructing it from each individ-
ual edge.

recgy(e)(&z Qeycle((&z := {a: &z1},

&z :={b: {}}U{c: &z},
&zo :={b: &z3},
&zg = {a: &z21})))

= { Eq. (3), @operator; Eq. (4), promoting rec}

(& := & - &=z) @ cycle((recygy (e) (&2 := {a: &z1}),
recigy(e) (&2 == {b: {}} U{c: &z}),
recgy(e)(&zg = {b: &z3}),
recgy(e)(&z3 = {a: &21})))

= { Eq. (1); Eq. (2); rec(e) = a2d_xc on edges}

(& :=& - &z)Qceycle((&- &z :={d: &} Q (& := & - &2),
&- &z ={b: {}}U{e: &} Q& =& &z3)),
&-&zo :={b: &} Q& = & &23),

& -&zg:={d: &} Q(& =& &z1)))

Intuitively, Fig. 1(b) shows the graph produced by the
above procedure. The Fig. 1(c) is the final result after elimi-
nating e-edges from the graph in Fig. 1(b).

B. Pregel Implementation of Parallelizable Structural Recur-
sions

As shown above, evaluating a structural recursion rec(e)
basically includes two phases: the first to apply the function e
on each edge and the second to eliminate e-edges.

The first phase seems to be scalable in Pregel, but it
actually causes a serious bottleneck at the root vertex. Because
our data model is a rooted graph, every data object will be
plugged to the root (i.e. a rooted graph for storing 1 million
papers would have 1 million outgoing edges labeled Paper
from the root). During the first phase, a huge number of
new edges emanating from the root are created and the root
must take care of those edges (processing and storing them),
leading to poor scalability. Our idea is avoiding a centralized
computation at the root by creating virtual roots. We create
new e-edges (r,v) from the root r, and one data object will

emanate from one vertex v instead of r. Let us consider v as
virtual roots, evaluation thus starts from vertices v instead of
r, and properties of r are reserved to v. Technically, one can
consider this procedure as a duplication of the root vertex. But,
in theory, we need e-edges to make graphs bisimilar. After
finishing the whole evaluation, we will merge these virtual
roots into a single root of a result graph. Here, we need just
one superstep for the first phase.

The second phase is divided into three sub-phases. Each
sub-phase requires multiple supersteps. First, we compute
reachability from the root, then remove all vertices and edges
that are unreachable from the root, and finally contract e-edges.
Theoretically, an c-edge from vertex v to v’ means that all
edges going out from v should be going out from v. Therefore,
contracting an e-edge (v,v’) means removing this e-edge and
for each edge (v/,a,w), a new (v,a,w) is added.

Again, we detected another bottleneck during this e-edge
contraction. We observed that although virtual roots initially
have just one edge, after a number of supersteps of contraction,
these virtual roots have to create (and store) a huge number of
edges so that the contraction cannot finish. The reason is as
follows. After applying the function e (the first phase), virtual
roots point to e-edges, these e-edges also go to another e-
edges, resulting in a tree-like graph in which internal edges are
labeled by ¢ and its “leaf edges” are non-¢ edges. These leaf
edges finally are added to virtual roots due to the contraction,
causing a bottleneck there. This problem is typical in the
case of queries having regular expressions starting with _x
(i.e. {_*.Paper.Title}). Our solution is, instead of contracting
these -edges, we propagate virtual nodes along c-edges and
finally promote source vertices of leaf edges to be virtual roots.
This solution has two advantages. First, we do not need to
create new edges during the contraction. Second, this solution
can be integrated to the reachability phase easily.

We summarize our Pregel implementation by partially
showing a source code of the function Vertex.compute() which
applies to each vertex (Listing 1).

public void compute (
Vertex<LongWritable, BoolIntWritable, T> vertex,
Iterable<LongWritable> messages)
throws IOException {
VertexWorkerContext<T> workerc = getWorkerContext ();
switch (workerc.getPhase()) {
case SR_APPLY_FUNCTION: /+ rec(e) on {1:g} */
applySRFunction (vertex, workerc);
break;
case SR_COMP_REACHABILITY_ _ROOT_PROPAGATION:
computeReachAndRootProp (vertex, messages) ;
break;
case SR_REMOVE_REDUNDANT_PARTS:
if (isSingleVtx (vertex) || isUnreach (vertex)) {
removeVertexRequest (vertex.getId());
}
break;
case SR_CONTRACT_EPS:
contractEpsEdges (vertex, messages);
break;
case SR_FINISH:
break;
default:
break;
}
}

Listing 1: The Function compute() of a Vertex in Gito

[UnQL Queries!

_______ —————
|

UnQL Front-End

| . I
}LStructuraI Recursions |
]

v

[Optimizer (fusion, tupling, ...)]

@Eé:;i&‘r -[Pregeljob (a sequence of supersteps)
{ Pregel-like Systems } ————————— —>

Fig. 4: Gito Architecture

IV. GITO: A SYSTEMATIC FRAMEWORK OVER
PREGEL-LIKE SYSTEMS

A. Gito Architecture

We propose Gito! (Graph in Tokyo) - a systematic frame-
work over Pregel model. The architecture of Gito is shown
in Fig. 4. Gito accepts a rooted edge-labeled graph as its
input and produces a new rooted edge-labeled graph. Users
do transformations by specifying UnQL queries or structural
recursions (in UnCAL). Components in Gito are as follows.

e UnQL Front-End: parsers input UnQL queries and
transforms them to structural recursions.

e Optimizer: rewrites structural recursions to produce a
single structural recursion.

e Pregel Job: implements a structural recursion rec(e).

e Pregel-like Systems: open-source implementations of
Google Pregel computation model.

B. Preliminary Results

We used Apache Giraph? as an open-source implementa-
tion of Google Pregel computation model for our framework.
We borrowed citation network datasets of DBLP and ACM
papers>. Each paper is associated with abstract, authors, year,
venue, and title. To make the balance between edge labels,
we temporarily removed abstracts from papers. In our experi-
ments, we used the dataset Citation-network-V 1 which consists
of 629,814 papers from year 1941 to 2010 and more than
632, 752 citations. A rooted edge-labeled graph of that dataset
includes 8,252,753 vertices and 11,427,500 edges. We did
experiments on a small cluster of four machines: each one has
16 cores and 32GB RAM, network speed 56Gb/s. However,
we just used 60 cores in total, and reserved four cores (one in
each machine) to do administrator tasks.

Q1 = select
(select {Scientist : $s}
where {_x.Name : $s} in $t)
where {_x.Author : $¢} in $db

I'Source code: http://www.prg.nii.ac.jp/members/tungld/gito-Dec2014.tar.gz.
2Giraph:http://giraph.apache.org.
3Citation network datasets: http://arnetminer.org/citation.

TABLE I: The query @7 using 60 workers (60 cores)

of edges (in million) 2 4 6 8 11 (the whole graph)
of supersteps 18 18 18 18 18
Running time* (in second) 27 30 34 38 44

TABLE II: The query ()1 on the whole graph

of workers 10 20 30 40 50 60

Running time* (in second) 103 59 50 42 42 44

The above UnQL query ()1 was used in our experiments. It
finds all authors in the input graph and returns author’s names
binding with new edges labeled by Scientist.

Table I shows the scalibility of our framework. We set the
number of workers to 60 and change the size of graph from
2 million edges to 11 million edges (the whole graph). Here,
our framework computes Q1 in 18 supersteps. The result shows
that our framework is very scalable. The running time for the
whole graph is just 1.6 times slower than the one for the graph
of 2 million edges. We also see that when we increase the
size of graphs, the running time seems to be increased a bit
faster. This is because there is a dramatic increase of citations
between papers. Larger graphs consist of newer papers that
have many references to older ones.

Now, we consider the performance of our framework. We
process the whole graph, and change the number of workers.
Table II shows the result. The speedup nearly doubles when
we double the number of workers from 10 to 20. However,
after that, the speedup is not so high due to an increase in
communication cost. The function e of a structural recursion
rec(e) which applies on each edge will produce new vertices
and edges. Therefore, Giraph requires a lot of communication
to reorganize new vertices and edges. In other words, there is
a tradeoff between the number of workers and communication
cost in our framework.

V. REMAINING WORKS

Currently, our framework works well with restricted select-
where queries in UnQL [3] that can be translated to mutually
parallelizable structural recursions. In the future, we want to
deal with more complex queries such as queries with exis-
tential conditions, queries with joins. Basically, those complex
queries lead to structural recursions rec(e) whose function e
depends on the graph variable $g. It means that, to evaluate the
function e on one edge, we have to explore the other parts of
the input graph, in the worst case, the whole graph. Some
theoretical works give solutions for some particular cases.
Hidaka et. al. [6] shows that there is a class of UnCAL in which
the dependence of the function e on the graph varialbe $¢g can
be eliminated by a static analysis. Suciu [3] shows queries
with existential conditions can be evaluated by a restricted
select-where query plus an additional query. However, we need
further analyses to see whether they are suitable for Pregel
model or not.

Efficient computation of transitive closure (TC) in Pregel
environment is also an important improvement to our frame-

4in which Giraph took about 15 seconds for input, setup and shutdown

work. Afrati et. al. [7] proposes an efficient distributed algo-
rithm to compute TC on clusters. That would be interesting
to integrate that algorithm into our framework to eliminate e-
edges.

VI. RELATED WORK

UnQL together with its internal algebra UnCAL has been
proposed for a long time. Unfortunately, there are not many
practical works on these, especially for big graphs. Experi-
ments in [2] only dealt with graphs up to 10 thousand nodes.
Suciu [3] proposed a distributed evaluation with the setting
of graph partitions, but potentially there is a bottleneck when
dealing with big graphs [4]. GraphQL [8] is also a graph query
language whose core is a graph algebra. It considers graphs as
a basic unit in the query, which is not familiar as a SQL-like
query. Moreover, scalability to very large graph databases is
an open problem to GraphQL [8]. One of the few works on
processing queries using Pregel is proposed by Nole et. al. [9],
in which Brzozowski’s derivation of regular expressions are
exploited. In consequence, queries are limited to regular path
queries.

VII. CONCLUSION

Graph database is very powerful to express many kinds of
datasets and to expose important relationships amongs them.
We have proposed a systematic framework for transformations
over big graphs. Our approach is to combine the advantages
from a solid foundation of graph algebra and a practical
scalable graph processing model. Preliminary results showed
that this combination is very promising when we achieve both
good scalability and speedup. In the future we will strengthen
the framework to support more complex queries, bridging the
gap between UnCAL and big graphs.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD 10, 2010.

[2] P. Buneman, M. Fernandez, and D. Suciu, “Unql: A query language and
algebra for semistructured data based on structural recursion,” The VLDB
Journal, vol. 9, no. 1, Mar. 2000.

[3] D. Suciu, “Distributed query evaluation on semistructured data,” ACM
Trans. Database Syst., vol. 27, no. 1, Mar. 2002.

[4] L.-D. Tung, Q. Nguyen-Van, and Z. Hu, “Efficient query evaluation
on distributed graphs with hadoop environment,” in Proceedings of the
Fourth Symposium on Information and Communication Technology, ser.
SoICT ’13. New York, NY, USA: ACM, 2013.

[5] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu, “A query
language and optimization techniques for unstructured data,” SIGMOD
Rec., vol. 25, no. 2, Jun. 1996.

[6] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K. Nakano, and
I. Sasano, “Marker-directed optimization of uncal graph transformations,”
in Proceedings of the 21st International Conference on Logic-Based
Program Synthesis and Transformation, ser. LOPSTR’11, 2012.

[71 FE N. Afrati and J. D. Ullman, “Transitive closure and recursive datalog
implemented on clusters,” in Proceedings of the 15th International
Conference on Extending Database Technology, ser. EDBT *12, 2012.

[8] H. He and A. K. Singh, “Graphs-at-a-time: Query language and access
methods for graph databases,” in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’08,
2008.

[91 M. Nolé and C. Sartiani, “Processing regular path queries on giraph,” in
EDBT/ICDT Workshops, 2014.

