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Abstract—Graph summarization is a valuable approach for
in-memory processing of a big graph. A summary graph is
compact, yet it maintains the overall characteristics of the
underlying graph, thus suitable for querying and visualization.
To summarize a big graph, the idea is to compress the similar
nodes in dense regions of the graph. The existing approaches
find these similar nodes either by nodes ordering or pair-wise
similarity computations. The former approaches are scalable but
cannot simultaneously consider the attributes and neighborhood
similarity among the nodes. In contrast, the pair-wise summa-
rization methods can consider both the similarity aspects but
are impractical for a big graph. In this paper, we propose a set-
based summarization method that aggregates the sets of similar
nodes in each iteration, thus provides scalability. To find each
set, we approximate the candidate similar nodes without nodes
ordering and explicit similarity computations by using Locality
Sensitive Hashing, LSH. In conjunction with an information
theoretic approach, we present the scalable solutions for lossless
summarization of both attributed and non-attributed graphs.

I. INTRODUCTION

With a continuous and overwhelming interest from people
with diverse backgrounds, the graphs like social networks,
world wide web, academic, citation networks, and chemical
compounds have become ubiquitous. Furthermore, with each
blink of a human’s eyes, the size of these graphs is continuously
increasing!. As a result, these graphs have shaped into knowl-
edge warehouses since their every change is triggered by the
real life necessities. However, retrieving the right information
at right time is hard, since the massive size does not allow their
in-memory processing. In this situation, graph summarization
is a valuable solution for in-memory processing of a big graph.
It compresses a large sized graph into a compact summary, and
maintains the properties of its underlying graph. Such compact
version is useful to identify communities and influential nodes,
information propagation and visualization.

The dense homogenous regions in the graphs play the
key role for their summarization. There exists a high overlap
of common neighborhood among the nodes in such regions,
which is directly exploited towards compression. The existing
work is classified into two main streams to find such dense
regions, i.e. compression-based and aggregation-based. The
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goal of compression-based methods is to find an intrinsic
ordering of the nodes in a graph, so that the compression
algorithm can exploit the naturally occurring properties like
locality of reference and neighborhood similarity. There exists
a plethora of research works on this aspect [1] [2] [3] [4]
[5], however the ordering produced by combining the Layered
Label Propagation and WebGraph framework in [6] provides
better compression than all the existing techniques [7]. On the
other hand, the aggregation-based methods perform pair-wise
summarization to collapse a pair of nodes into a super node
and their corresponding edges into a super edge [8] [9] [10]
[11]. These methods create a highly compact summary graph
which is directly useable for querying and visualization.

We understand that the strengths and weaknesses of both
the compression and aggregation-based methods, also depend
on the type of the graph. In case of a non-attributed graph,
the former approaches are highly scalable but does not support
direct querying and visualization since the compressed graph
is stored in a compact data structure. Furthermore, the low
degree nodes are also cause of in-compressibility, specially
in social networks [1]. However, the pair-wise super node
creation technique is insensitive to the degree of the nodes and
compresses both the nodes and edges into a summary graph.
Unfortunately, the pair-wise aggregation method is impractical
to summarize a big graph. On the other hand, the nodes ordering
cannot consider the attributes similarity among the nodes when
applied to a graph where each node is attached with multiple
attributes. In this situation, the pair-wise method provides a
superior performance since each pair-wise merge can investigate
both the neighborhood and attribute similarity. Considering
these facts, it is desirable to have a unified graph summarization
solution which is not only scalable but also applicable to variety
of the graphs, with some minor modifications.

In this paper, we present a novel set-based graph summariza-
tion technique to iteratively aggregate the Sets of Similar Nodes,
SSNs. A set-based method is effective since aggregating
multiple nodes, facilitates efficient traversal of the entire graph
for its fast summarization. Since, the members nodes of a
given set can have intra-connections apart from having common
neighbors, so the proposed approach is suitable to identify any
dense subgraph structure like clique, y—clique and bipartite
subgraph. However, locating such sets is the major challenge
without nodes ordering and explicit similarity computations.
For this purpose, we find each SSN by approximating the
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Fig. 1. Set-based approach to compress Graph G (V, E, A) (a) Set of nodes
with maximum same attributes (b) Compression using super node (c) Set of
nodes having unique attributes for each node (d) Compression using virtual
node

Candidate Sets of Similar Nodes, C'SS'Ns, using LSH. Since
LSH is an approximate technique so each CSSN may contain
nodes with varying similarities among each other. For this
purpose, we propose a pruning technique based on a heuristic
that focuses the similarities of degrees of nodes, to filter out
a SSN from each CSSN. In case of an attributed graph, LSH
cannot simultaneously consider both the neighborhood and
attributes similarity among the nodes. To solve this problem,
we modify its hashing scheme to generate SSNs, containing
nodes having high neighborhood as well as attribute similarities.
For summarization, we use the information theoretic Minimum
Description Length, M DL, principle that produces a highly
compact summary graph with corrections. In case of non-
attributed graph, MDL facilitates merging a SSN into a super
node with least edge corrections. Similarly for a multi-attributed
graph, MDL helps to compress a SSN into a super node or
aggregate its edges by adding a new virtual node, based on

highest compression with least attribute and edge corrections?.

II. MDL RULES AND PROBLEM STATEMENT
A. MDL Rules for a Summary Graph

MDL is an information theoretic principle used to minimize
the sum of the size of the theory and the associated data to
express the knowledge. In case of graphs, the minimized theory
is the summary graph and the list of corrections is the associated
data to reconstruct the original graph, if required. Our objective
to use MDL for graph summarization is to create a compact
summary graph with least corrections. Below, we explain the
MDL rules for an attributed graph which are applicable for
a non-attributed graph, while ignoring the details related to
attributes and edge aggregation using a virtual node. Following
MDL explanation is adopted from [8] but we modify it for
attributes, virtual node and summary graph with least edge
corrections.

2We do not provide the comparative analysis due to lack of space

An undirected graph G(V, E, A) consists of nodes V' and
edges F where each v € V is attached with the list of attributes
A. The MDL representation of G is formally represented
as Gypr = (Sg,C,) where Sg is the summary graph,
S (Vs, Es, As), and C,. is the list of corrections. Each node
v € Vj is either a super or virtual node. The super node
corresponds to set A, where Vo C A, isv € V in G. A virtual
node vn is a new node added to S to compress the super
edges. Similarly each edge (A, A,) € E5 is a super edge and
is the set of all edges between members of A, and A, in G,
except the super edge (A, Ayn) € Es. In Figure 1 (b) and
(d), we show the MDL representation of the graphs in (a) and
(c) after compression using super and virtual node, along with
the corrections.

The rules to create the super edges and corrections vary for
super nodes and virtual nodes. For edge correction using super
node, we define II as the set of all possible edges between
(Ay, Ay) € Vg and A, as the actual edges between members
of A, and A,. A super edge is created between A, and A,
if Ay, > (JII]4+1)/2 otherwise positive edge corrections are
created between their members. The negative edge corrections
are created for the edges IT — A,,,. Since we are interested in
a compact summary with least corrections, so we create either
super edges with positive edge corrections or only negative
edge corrections, which have minimum memory requirements.
For each super node, we set its attributes by picking the
values which have maximum repetition in the given SSN. The
remaining attribute values are marked as attribute corrections.
Using virtual nodes, only edge corrections are possible. In this
case, we create negative edge corrections for a pair of nodes,
appearing as connected through virtual node and positive edge
correction in vice versa case.

The cost of the summary graph depends upon its storage
cost and corrections. The storage cost of the mapping of super
nodes is small compared to those of F; and C,., so we ignore
it. Thus the cost of summary is computed as cost(Gpypr) =
|EL|+]C, .

B. Problem Statement

Given an undirected graph G, our goal is to efficiently
find the SSNs to create a compact summary graph with least
corrections.

In a non-attributed graph, there exist high neighborhood sim-
ilarities among the member nodes of each SSN. The summary
graph of such a graph is attached with edge corrections only. On
the other hand, there are attribute as well as edge corrections
for summary of an attributed graph. Similarly, the member
nodes of each SSN are similar from both the neighborhood as
well as attributes similarity.

III. SUMMARIZING A NON-ATTRIBUTED GRAPH

In this section, we illustrate how we apply LSH on graph
G(V, E) and briefly explain the proposed pruning technique.
It should be noted that the we identify the SSNs using a query
node-based approach, where we iteratively select a query node
q to identify its SSN. This approach provides each node at least
one chance of merger. We skip the explanation for bucket-based
SSN retrieval approach and related details due to lack of space.
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Fig. 2. LSH applied on graph (a) G (V, E, A) (b) Binary representation of
neighbors list and hash functions (c) Minhash matrix (d) Division of matrix
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Fig. 3. Relationship between the neighborhood similarity and degree of nodes.
(a) Nodes having same degrees and same similarities (b) Variation in degree
of nodes, producing edge corrections

A. Identifying SSNs

We create the super nodes using SSNs. To find the SSN,
we apply LSH on G using steps in Figure 2, and retrieve CSSNs
against each ¢. Since each SSN is a subset of its corresponding
CSSN, so we propose a heuristic based on similarities among
degrees of nodes and use it to propose a pruning technique.

1) Similar Degree Heuristic: Given a CSSN, the similar
degree heuristic aims to identify its subset of nodes by choosing
the nodes having similar degree to that of ¢q. By having the
similar degrees, the similarity among the member nodes of
each SSN increases, resulting in super nodes with least edge
corrections. Note that the nodes having same degree to that
of g, are considered by default. Normally, the nodes having
varying degree reduce the neighborhood overlap. Thus we find
that there is a relationship between the similarity of nodes and
their degrees. Consider a CSSN = {1,2, 3,4} in Figure 3 (a).
From this CSSN, the SSN contains all the nodes which on
aggregation produces a super node with no edge corrections.
We observe that in this SSN, the neighborhood of any given
node n; is same to every other node (1) and also to that of ¢

2).
Nbrs(n;) = Nbrs(ny)N...N Nbrs(n,) (1)
where Vn; € SSN and n; # q
Nbrs (n;) = Nbrs (q) )

Investigating the degree of each node in the given SSN, we
find that degree of any n; € SSN is also equal to every other
node in it (3) and also to that of ¢ (4).

Degree (n;) = Degree (ny) = ... = Degree (n.)  (3)

Degree (n;) = Degree (q) 4)

Lets evaluate a case where we obtain some edge corrections,
when the similarities between the nodes in a SSN are slightly
varying. Consider the bipartite graph in Figure 3 (b) which on
aggregation, produces a super node with two edge corrections.
This illustrates that there are no edge corrections when the
degrees are same, Figure 3 (a), but they occur when a change
happens in the degrees, Figure 3 (b). So it is evident that the
edge corrections from a super node, depend upon the deviation
in the degree of each n; from that of ¢ (5).

|Degree (q) — Degree (n;)| < § x Degree(q) (5)

We add any n; € C'SSN to SSN if its degree difference
with ¢ satisfies 0 x Degree (q) (5). Otherwise, there are more
edge corrections from a super node compared to the desired
compression ratio. We bound § by 0 < § < 0.5, where the lower
limit targets each n; having complete neighborhood overlap
with ¢. Similarly, the upper limit of J enforces to have more
common to that of non-common neighbors between n; and
q. Thus we observe that the nodes having similar degrees in
CSSN, have higher probability to be more similar. By defining
the range of §, pruning the least similar nodes in a CSSN
is facilitated. Using (5), we also obtain the lower and upper
bounds to extract a SSN from a given CSSN (6).

Omin X Degree (q) < Degree,; < dmaz X Degree(q) (6)

When each n; have similar degree to that of ¢ then there is
a high probability to have large neighborhood overlap between
n; and q. However, simply relying on similar degrees, produce
inconsistent results in some of the cases. Fortunately, we
resolve this inconsistency and identify the required nodes using
proposed pruning method.

2) Auto Pruning: The objective of auto pruning is to filter
the nodes from a CSSN, which minimize the overlap of common
neighbors. The similar degree heuristic directly helps prune the
nodes having large deviation from the degree of q.

To prune the least similar nodes, we first sort the CSSN
using degree of nodes. This sort brings the nodes having similar
degree to ¢ closer to it in the sorted order. We then start the
search of SSN by iteratively comparing the overlap ratio from
the nearby nodes in the sorted order. We add a node into
SSN if its neighbors satisfy the bounds in (6) . On narrowing
the bounds, we tend to extract only the highly similar nodes
which result in lower compression ratio. Having such bounds,
the likely similar nodes at least get the chance for overlap
computation. An end to the traversal happens either when we
find the nodes violating the bounds or entire list is exhausted
if each member of CSSN has degree within the bounds.



IV. SUMMARIZING AN ATTRIBUTED GRAPH

In this section, we present the proposed approach to unify
the topological and attributes information in LSH, since the
LSH steps in Figure 2 does not consider the attributes similarity.

For each node in an attributed graph G(V,E, A), the
adjacency list Nbrs and attributes set Attribs are semantically
two different entities. Whereas, the adjacency list of each node
holds its structural information, the set of attributes describe
its identity. Apart from their semantic differences, usually the
neighborhood of each node has much larger size compared
to its attributes set, | Nbrs|>> | Attribs|. Since in real world
graphs like social networks, users often do not provide all the
attribute information. On the other hand, the graphs having
power law properties have large number of low degree nodes,
leading to |Nbrs|< |Attribs|. Both of these information can
be considered as the two dimensions of each node and the
problem is how to unify or reduce them such that their output
preserve the intrinsic properties from both the aspects. In our
scenario, we refer this problem as the “curse of dimensionality”
due to the semantic differences between the two dimensions,
rather than upon their count.

Since the existing dimension reduction methods, both linear
and non-linear, operate on n-dimensional data where n can be
large but have semantic homogeneity like spatial information.
So we observe that these techniques are not applicable for
G(V,E, A). However, influenced by the projection techniques
we propose to project the two dimensions of each node into
a single unified granularity level. To be precise, we union the
attributes set of each node with its adjacency list and perform
LSH on the unified list. By such unification, the subsequent
minhash signatures of each node contains the representation
from both the aspects. This is so since any value in the combined
list can become the minimum value against a given hash
function 7. Thus, the resulting CSSNs have high probability
to be similar from both the aspects. We now formally define
the proposed unified information in Definition 1.

Definition 1. [Neighbors Attributes List] Given a node
v; € V along with its list of neighbors N; and attributes
A;, the Neighbors Attributes List (NAL) is a unified list that
concatenates N; and A;.

Figure 4 (a) shows a graph G (V, E, A) where each v; € V
is attached with two attributes. In Figure 4 (b), we map the
attributes into numeric values to unite them with the adjacency
lists. The Figure 4 (c) illustrates the NALs for nodes 1 and 6.

With the unification of attribute and neighborhood informa-
tion, we can compute the minhash values using hash functions.
Since now we consider both the information for minhash
computation, it is desirable that their representation must be
preserved in hash functions. We now formally define the hash
function in Definition 2.

Definition 2. [Unified Hash Functions] The random per-
mutations {m1,Ta, ..., Tm } is a set of hash functions where T; is
a permutation of {1,2,...,n,n+ 1,...,k}. The set {1,2,...,n}
are the total nodes in G and {n+1,...,k} is the union of all
cardinal values from each attribute.

We illustrate the sample hash function in Figure 4 (d). Here
each function is the random permutation from total nodes in
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Fig. 4. Tllustrating the Unified LSH concept (a) Graph G (V,E,A) (b) Attributes
Mapping (c) Sample Nodes from G with their NALs (d) Hash functions

the G and possible attribute values from all the attributes, after
mapping.

A. Balance between Neighborhood and Attribute Information

Having NAL for each node and unified hash functions, we
can find the CSSNs. However, this procedure may still not
reveal the nodes similar from both the aspects. For instance,
consider the NAL; of a node v;. Using (7), we find that each
element in NAL; has the equal probability to be minimum
against a given hash function, ;. On the other hand, since
the sizes of adjacency lists and attributes sets are not same.
So Yu; € V, whose |Nbrs|>> | Attribs|, their attributes have
very low probability to be minimum in any of the hash function,
compared to that of their neighbors, (8). This results in creation
of minhash signature columns preserving the neighborhood
information only, thus minimizing the influence of attribute
information. In worst case, a pair of nodes (u,v) € V having
a complete overlap of neighbors but no attributes similarity
or vice versa, will produce exactly same minhash signatures.
For example, consider the node 1 in Figure 4 (a). Using (7),
the probability of each element in its VAL to be considered
as minimum is 0.2. However, the probability of any neighbor
in NAL; to become minimum is larger than that of any of
its attribute value, 0.6 and 0.4 respectively. Now in Figure 4
(c) consider the nodes 1, 6 as worst case scenario, where
both share all of their neighbors but have no attribute in
common. Conclusively, their Jaccard similarity does not depict
the real situation and may produce more attribute corrections
on aggregation into a super node.

Pr (min (n (NAL;)) =Vx € NAL;) = m @)

Pr(min (r (NAL;)) =Vx € Nbrs;) >
Pr (min (7 (NAL;)) = Vy € Attribs;) (8)

Ideally the minhash signatures of each node must have the
representation from its neighbors as well attributes. For this
purpose, we propose to enforce representation from both the



aspects in the minhash signatures so that the bias towards either
aspect is minimized.

In our approach, we use a parameter p to preserve the neigh-
borhood and attributes information in the minhash signatures for
each node. Specifying p guarantees that certain proportion of
minhash values are computed from each component, restricting
the large percentage of minhashes from either component. Using
p, the equations (9) and (10) state the fraction of minhash values
from each of the two components in NAL; for each v;. We
understand that the right selection of p plays a key role to
assign certain weight to each of the two components in NAL;.
For instance, if p = 15 and total hash functions are 30 then
using (9) and (10), the minhash signature column for the node
1 in Figure 4 (c), contains 50% minhash values from each of
the component, (11). Thus, we find with the inclusion of p, the
probability to have minhash values from attributes increases
from 0.4 to 0.5.

Minhashrrs = =L ©)
m

MinhashAttries = L (10)
! m

Pr (min (n (NAL;)) =Vx € Nbrs;) =
Pr (min (m (NAL;)) = Vy € Attribs;) (11)

We observe that the enforced inclusion of neighborhood and
attribute information in the minhash signatures, may produce
erroneous results when we generate CSSNs in hash tables.
Figure 2 (d) displays the step when we split the minhash
matrix into b bands of r rows each, to create CSSNs on the
basis of hash codes. If a given band gets a portion of minhash
column where all the minhash values are either from neighbors
or attributes then the corresponding buckets will contain the
nodes similar from that very aspect only. There is a higher
probability for this situation in the case when we use higher
count of hash functions, since then the length of resulting
minhash column for each node is also high. This situation is
possible in both the random and sequential selection of minhash
values for each band. To overcome this limitation, we propose
a concept called Bi — Minhashing which produces minhash
signatures preserving the representation from both the aspects
from NAL; of each v;.

B. Bi-Minhashing

In bi-minhashing, we compute the minhash signatures of
each v; where both of its dimensions (neighbor or attribute)
has the equal probability to be chosen as minimum against
any hash function, 7. Using (9) and (10), we first compute
the minhash signatures My 47, from neighbors and attributes.
Next, we again apply minhasing on My 47 to compute its
minhash signatures using the same hash functions to create
M J<, 4z~ This second level hashing completely randomizes the

minhash representation of both the aspects from N AL; of each
v;. Thus it rightly approximates the true Jaccard similarity

between any pairs of nodes (v;, v;).

We find the significance of bi-minhashing is two-folded.
First, it creates a balance between neighborhood and attribute
information, i.e., when |Nbrs|>> |Attribs| or vice versa.
Since setting p to 50%, the initial hashing creates the minhash
signatures where each of the two component has balanced
representation. Secondly, the equal minhash representation is
itself the solution of selecting the appropriate value of p.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a set-based approach for
graph summarization. A set-based approach is scalable
since it aggregates multiple nodes in each iteration. We
understand that the proposed approach adds a new di-
mension in aggregation-based summarization since we di-
rectly target the inherent occurrence of phenomenon like
friends of friends have many common friends in social
networks without nodes ordering or explicit similarity compu-
tations. Currently, our approach is applicable to both attributed
and non-attributed graphs, but we plan to build a unified solution
to summarize further types of graphs like heterogeneous and
weighted graphs.
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