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Abstract—Graph is an extremely versatile data structure in
terms of its expressiveness and flexibility to model a range of
real life phenomenon, such as social, biological, sensor, and
computer networks. Finding groups of vertices based on their
similarity is the fundamental graph mining task to get useful
insights. The existing methods suffer from scalability issues due
to enormous computations of an exact similarity estimation.
Therefore, we introduce Collaborative Similarity Measure (CSM)
based on shortest path strategy, instead of all paths, to define
structural and semantic relevance among vertices efficiently. We
evaluate this measure for personalized email community detection
as an application scenario. However, an abundance of structural
information has resulted in non-trivial graph traversals. Shortcut
construction is among the utilized techniques implemented for
efficient shortest path (SP) traversals on graphs. The shortcut
construction, being a computationally intensive task, required
to be exclusive and offline, often produces unnecessary auxil-
iary data. To overcome this issue, we present Shortest Path
Overlapped Region (SPORE), a performance-based initiative that
improves the shortcut construction performance by exploiting SP
overlapped regions. Path overlapping with empirical analysis has
been overlooked by shortcut construction systems. SPORE avails
this opportunity and provides a solution by constructing auxiliary
shortcuts incrementally, using SP trees during traversals, instead
of an exclusive step. SPORE is exposed to a graph clustering
task, which requires extensive graph traversals to group similar
vertices together, for realistic implications. We further suggest
an optimization strategy to accelerate the performance of the
clustering process using confined subgraph traversals. Leveraging
the SPORE with multiple SP computations consistently reduces
the latency of the entire clustering process. A parameter-free
graph clustering with scalable graph traversal strategy for a
billion scale graph remain an open issue.

I. INTRODUCTION

Graph clustering is one of the fundamental mining oper-
ations for analyzing and identifying strongly related groups
of vertices in an entire graph [1][2][3][4][5]. The estimation
of the exact relevance among vertices is an expensive opera-
tion even with a linear clustering framework, e.g., K-means.
Generally, pair-wise vertex relevance measures are categorized
into either local or global methods, based on their search
space of the entire graph [6]. Local strategies [7][8] use
the direct neighborhood information of vertices to define an
approximate closeness measure. However, a global measure
[9] requires an entire scan of a graph to estimate accurate
similarity among vertices. Intuitively, it is a trade-off between
the time efficiency and effectiveness of the clustering results
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using either approach. We are interested in finding the clusters
of vertices in multi-attributed weighted graph using the global
relevance measure, without compromising the quality of the
results.

Many global measures have been proposed in literature
to define the degree of closeness between an arbitrary pair
of vertices [10][11][12][13][14]. Among them, the shortest
path (SP) strategy is inherently simple and robust [6]. Main-
stream work is either focused on the topological structure
or homogenous characteristics; unfortunately, very few recent
approaches lead us towards the conjunction of both aspects
at the expense of computation or quality of clustering results
[15] [16] [17] [18]. To overcome this problem, we introduce
an efficient global similarity measure based on SP to cluster
multi-attributed graph (section II). Dijkstra’s algorithm [19]
is a classical solution for computing the SP. It can take
several seconds to compute a single pair shortest path (SPSP)
in O(|Vl]log|V| + |E|), where |V| and |E| are the total
number of vertices and edges in a graph, respectively. The
naive clustering process, i.e., K-means, requires more than |V|
single-source shortest path (SSSP) computations which makes
it even more complicated and impractical for large graphs.

A plethora of techniques have been presented to improve
the time performance of Dijkstra’s algorithm [20][21]. These
methods either focus on reducing the total number of ex-
pansions or latency cost by introducing the auxiliary edges,
i.e., shortcuts, and an efficient indexing structure on a disk,
respectively, at the pre-processing stage [22][23][24][25][26].
It has been empirically and theoretically proven that these
auxiliary data can enhance the performance of the algorithm by
providing sufficient speed-up on the runtime traversal queries
[27]. Nevertheless, the pre-processing time and index size are
expected to be quadratic and unrealistically large for massive
graphs [25]. Therefore, we empirically analyze SP traversals
in real graphs to anticipate effective regions for auxiliary data
(section III). The key concerns of our extended study [28]
are as follows. (i) Avoid the exclusive pre-processing step and
still gain the similar speed-up, (section 1V). (ii) Reduce the
computation overhead of repeated SP traversals over the entire
graph by a restrictive search space as a subgraph, (section V).
(iv) parallel approach to compute a set of SPs by expanding
multiple vertices at the same time to reduce the CPU latency,
(section VI). However, few challenging issues,(section VII),
still need to be addressed in near future.



II. EFFICIENT GLOBAL SIMILARITY MEASURE

We propose an alternate similarity measure, i.e., Collab-
orative Similarity Measure (CSM), for intra graph cluster-
ing problem [29][30]. The similarity measure determines the
strength of relationship or connectivity among pair of vertices.
CSM leverages the graph clustering solution with structural
and contextual, i.e. semantic, traits to achieve comparatively
similar quality at less computational cost. It belongs to the
category of graph vertex clustering, an un-supervised method.
It requires the number of clusters as an input parameter prior to
find the clusters. It also provides an opportunity to control the
connectivity or similarity strength among the clustered nodes
through single parameter. The proposed method deviates from
existing state-of-the-art approaches in terms of the following
facets: (a) an efficient pair-wise similarity measure based on
shortest path strategy rather than all possible paths, (b) simple
and an effective strategy by considering both structural and
contextual aspects concurrently, (c) a linear iterative partition-
ing strategy for clustering, (d) captures three basic scenarios for
vertex pair connectivity, i.e. connected, indirectly connected,
or disconnected.

The collaborative similarity among an arbitrary pair of
vertices, source to destination in a graph, is computed through
structural and contextual similarity inspired by Jaccard simi-
larity coefficient [31]. The structural similarity between two
vertices is defined as the weighted ratio of common neigh-
bors to all the neighbors of both vertices. One of the key
aspects of our approach is to consider contextual similarity
to attain structural cohesiveness among nodes. Its importance
is evident from the applications where the nodes emerge in
different contexts. For instance, in social network, the users
are represented by nodes and edges reflect their relationships.
Each user can have different roles or contexts like occupation
as student, doctor, engineer, or designer. The combine effect
of structure and context relevance among vertices is defined in
Eq. (1). The parameter « is introduced to control the influence
of both similarity aspects.
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The collaborative similarity value is calculated for indi-
rectly connected vertices by following a path. However, a pair
of vertices can have multiple paths. We choose the shortest path
as a candidate path to estimate the similarity value. In order
to extend the similarity using shortest path approach, we must
utilize the desirable property, i.e., similarity (distance) value
decreases (increases) as we move far from the source vertex.
We achieve this by taking the reciprocal of similarity measure
by defining a distance function in Eq. 2. The distance value
in close proximity is expected to be low due to transitivity
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Fig. 1. [32] Sally-Beck’s Four Personalized Communities.

property. In a weighted graph, shortest path between two
vertices may not be unique. We pick the one with least
distance value at initial expansions. The time complexity for
estimating the collaborative similarity or distance among all
pair of vertices is non-linear. However, the symmetric property
and shortest path strategy, which is done efficiently in order
of O(|V|?log|V|) instead O(|V'|?), where V and E are the set
of vertices and edges, respectively, in a graph G.

Application To elaborate the effectiveness of the proposed
similarity measure, we present a personalized community
detection method over an email network [32], which is solely
based on emails extracted from email account. Personal emails
of a user describe social activities that are transformed to an
undirected weighted graph for structural and semantic analysis.
Each user, i.e., either sender or receiver, is represented by
a node and an edge reflects shared emails, where frequency
is associated as an edge weight. The first phase extracts the
communication patterns of interest (C'PI) using emails as
informative features to describe the communication behavior
of each user. Subsequently, the second phase detects user
communities via an intra-graph clustering method [30] b
contemplating structural and semantic aspects together. We
validate the effectiveness of the proposed technique on real
email dataset in terms of various performance measures, i.e.,
density, entropy, and f-score. The personalized communities
are visualized in Fig. 1.

III. SHORTEST PATH TRAVERSAL ANALYSIS

Our intention is to empirically validate the traversal pat-
terns shown in Fig. 2, i.e., high degree vertices have higher
probability to be encountered during majority shortest path
traversals. Consequently, we have the following concerns to-
wards graph traversals; (a) Identifying frequently occurring
vertices (b) the role of high degree vertices, i.e., hub-nodes
(c) speculating effective regions for auxiliary data using social
graph properties, e.g. degree distribution (d) participation of set
of vertices together in SPs (e) repetitive exploration of graph
regions.

We provide an empirical analysis on continuous overlapped
regions (COREs) through SP traversals in social networks
[34][33]. The term CORE refers to the portion of the graph
which is traversed through multiple shortest paths. In other
words, it is a sequence of adjacent vertices or edges. First,
we compute the shortest paths between set of vertices. Each



Fig. 2. [33] Shortest Path (SP) Traversal Patterns (a) Toy graph with two high
degree nodes and (b) SP from low to degree region vertices (c¢) SP passing
through high degree vertices (d) SP followed by low degree vertices.

Fig. 3. [34] Visualization of the Facebook Network (a) Original graph, and
(b) Shortest path traversals.

shortest path is considered as one transaction. Second, we
utilize the pattern mining approach to identify the frequency of
occurrences of the vertices in all transactions. We also provide
statistical analysis in terms of network properties, e.g. degree
distribution, average shortest path, and clustering coefficient.
The CORE provides an opportunity for constructing space ef-
ficient auxiliary data to speedup SP queries. The contributions
of this study are as follows:

e  Empirically prove that the significant amount of short-
est paths are overlapped.

e The behavior of the overlapped regions in diverse
networks, e.g. Scale free networks.

e The impact of hub-nodes on the shortest paths, e.g.
What portion of the shortest paths are pass through
the hub nodes or across dense regions?

e  Visual analysis on the coverage of the entire graph
through shortest paths.

After extensive experiments on real datasets, we observed
that the degree distribution of the vertices is preserved in
terms of frequency of occurrences of vertices during shortest
path traversal, as shown in Fig. 3. It shows that high degree
vertices are encountered in majority shortest paths. We have
also noticed that the average degree vertices are less likely
to appear in SPs. The visual description of the shortest path
trajectories have preserved the original structure of the graph.

IV. SHORTEST PATH OVERLAP REGIONS FOR
PRE-COMPUTATION

We introduce a novel concept based on SP overlapped
region (SPORE) [28], i.e., the portion of the graph which
is traversed through multiple SPs. The process of answering

(a) () (©

Fig. 4. Occurrence of vertices (or edges) through SPs (a) Original graph
with unit edge weights, i.e., 1.0 (b) SSSP traversal from vertex A (c) SSSP
traversal from vertex B.

SP queries, i.e., global search, over a large graph requires
traversing the graph repeatedly. During this repetitive traversal
process, we observe that a set of edges is visited frequently.
This reveals that a set of SPs shares a sequence of vertices (or
edges) among them. We illustrate the concept of SP overlap
by visiting edges multiple times in Fig. 4. We have an original
undirected graph with unit edge weights. We perform an SSSP
search from vertices A and B successively. The solid line of
an edge represents the pair of vertices of an edge being visited
during SP traversal and the strength reflects the frequency of
occurrence. Therefore, the vertices are expected to be visited
again and again.

The SP computation for mining large graphs, e.g., graph
clustering, is a computationally intensive task. For instance,
the naive approach for graph clustering using the K-means
framework requires all pairs of SP computations in each cluster
to update the centroids, i.e., O(|V|?), where |V| is the number
of vertices in a graph. Shortest path searching generally adopts
a BFS to traverse a graph. A large-scale sparse graph exhibits
longer SPs. Therefore, a BFS requires a large number of
iterative expansions for huge graphs. In order to overcome
this problem, several algorithms [22][35][36][37][38][39] use
a two-stage framework. In the first stage, it computes auxiliary
data, such as additional edges (shortcuts) and labels or values
associated with vertices or edges. In the second stage, the aux-
iliary data is then used to accelerate point-to-point (from the
source to destination vertex) SP queries, typically by pruning
or directing Dijkstra’s algorithm [19] with fewer expansions.
The pre-processing is practical and produces a modest amount
of auxiliary data [27].

We propose an effective strategy to construct the potential
shortcuts, using the SPORE idea. The shortcuts constructed
through the proposed idea are called SPOREs. We use the
recent computation for the SPORE construction, instead of a
blind or exhaustive approach. Our aim is to add SP segments,
i.e., SPOREs, in an incremental way based on few recent SP
traversals. We believe that recently visited edges are expected
to be visited in successive iterations, which we call potential
edges.

For instance, we have a distance graph prior to clustering
as shown in the Fig. 5. We compute the SSSP from vertex
A then we get an SP-tree rooted at A which has four levels.
We traverse the SP-tree to construct the shortcuts. At each
level of the SP-tree, from top to bottom, we add a shortcut to
its children except for the direct descendants. In this way, we
are not required to explicitly compute SPs from intermediate
nodes in the SP-tree to their child nodes using the original
graph, e.g., from C to E and F are SPORE:s.
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Fig. 5. Augmenting graph with shortcuts using SPORE through SP-tree. (a)

Transmuted distance graph, (b) Potential shortcuts from SP-Tree rooted at A
are presented as dotted lines, and (c) Augmented graph.
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Fig. 6. Restricted subgraph computation, (a) Graph clusters after centroid
initialization, and (b) Subgraphs from each cluster without inter-cluster edges
for cluster updates.

V. RESTRICTED TRAVERSALS AND GRAPH CLUSTERING

The notion of subgraph computation helps us to reduce
the search space for SP computation. We propose a heuristic
approach to compute all SP pairs on a restricted graph [28]. It
has marginal impact on both the overall distance computation
and convergence of the clustering algorithm. Assume that after
good centroid initialization we get clusters, as shown in Fig.
6(a). We partition the graph into subgraphs, e.g., gl and g2
in Fig. 6(b), where each cluster is represented as a subgraph
by excluding the inter-cluster edges. The search space for SP
traversal in a subgraph is much smaller than the entire graph.
In this way, we reduce the overall computation time for APSP
to update the centroids.

Intuitively, an SP between a pair of vertices can follow
inter-cluster edges. This means that an SP can have a transition
from one cluster to another along the way. However, this
phenomenon rarely happens in real life graphs due to hub
nodes, i.e., high degree nodes which connect dense regions.
The transition probability from hub nodes to the other nodes
of the graph is too low. The distance is estimated as the linear
addition of edge weights on a transmuted graph. Therefore,
a longer path passing through inter-cluster edges following a
hub node leads to a high distance value.

VI. PARALLEL SHORTEST PATH COMPUTATION

In this section, we explain our strategy to speed-up the
pair-wise SP computations during the clustering process. We
achieve parallelism by computing the set of SPs concurrently
[28]. In practice, each SP can be computed independently with
the static graph.

The SPs are either computed in a sequential or parallel
manner. The former approach computes multiple SSSPs from
each source one after another, i.e., the element approach. The
traversal of an entire graph for each SSSP in sequential order
incurs an enormous amount of latency for the entire clustering
procedure. We reduce the overall latency through parallelism,
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Fig. 7. SSSP computation from two vertices, (a) Original graph, (b) Element
approach with sequential order, and (c) Set approach with parallel strategy.

by traversing the graph for multiple SSSPs at the same time,
i.e., the set approach. For instance, we need to compute the
SSSP from two source vertices, A and D, as shown in Fig.
7(a). The SSSPs for A and D require two iterations where two
exclusive scans of the entire graph are required for traversal;
this is presented in Fig. 7(b). We parallelize it by unifying the
set of SSSP traversals to reduce the total number of iterations.
However, we do not explicitly process it with a multi-threaded
program for simplicity.

VII. CONCLUSION AND OPEN CHALLENGING ISSUES

In this study, we improved the time complexity of pair wise
similarity computation by introducing collaborative similarity
measure using shortest path for intra-graph clustering problem.
We have provided an extensive empirical analysis for shortest
path traversals in real life graphs to identify useful patterns. We
also presented SPORE, an effective, scalable, and performance
efficient shortcut construction strategy for shortest path compu-
tation. The restricted and set of shortest path traversals further
reduce the overall computation overhead. These optimizations
show the significant improvement in graph clustering process.

However, We have few open issues which need to be solved
in near future. To predict an appropriate number of clusters in
a graph is essential with linear clustering frameworks. The set
approach has a trivial issue for the APSP computation through
multiple SSSPs on billion scale graphs. It requires significant
storage for maintaining the intermediate path expansions for
each SP. It becomes non-trivial when we deal with scale-
free graphs, where vertices follow a power law distribution.
An empirical justification for shortest path traversals and
overlapped regions on directed and weighted graphs are yet
to be made.
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