
Lecture 9: Greedy Algorithms

version of September 28b, 2016

A greedy algorithm always makes the choice that looks best at

the moment and adds it to the current partial solution.

Greedy algorithms don’t always yield optimal solutions, but when

they do, they’re usually the simplest and most efficient

algorithms available.

Interval Scheduling

Interval scheduling.

 Job 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Two jobs are compatible if they don't overlap.

 Goal: find maximum size subset of mutually compatible jobs.

2

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Interval Scheduling

Interval scheduling.

 Job 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Two jobs are compatible if they don't overlap.

 Goal: find maximum size subset of mutually compatible jobs.

3

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

{a,g} is NOT a
maximum-size
subset.

Interval Scheduling

Interval scheduling.

 Job 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Two jobs are compatible if they don't overlap.

 Goal: find maximum size subset of mutually compatible jobs.

4

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

{b,e,h} is a
maximum-size
subset.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take a job provided it's

compatible with the ones already taken.

 [Earliest start time] Consider jobs in increasing order of start time

𝑠𝑗.

 [Earliest finish time] Consider jobs in increasing order of finish

time 𝑓𝑗.

 [Shortest interval] Consider jobs in increasing order of interval

length 𝑓𝑗 − 𝑠𝑗.

 [Fewest conflicts] For each job, count the number of conflicting

jobs 𝑐𝑗. Schedule in ascending order of conflicts 𝑐𝑗.

5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take a job provided it's

compatible with the ones already taken.

6

cba d
e breaks earliest start time

a b
c

breaks shortest interval

cba d
e
h
j

g
i
k

f
breaks fewest conflicts

Chooses {e} instead of {a,b,c,d}

Chooses {c} instead of {a,b}

Chooses {f} which forces
choosing {a,f,d} instead of
{a,b,c,d}

Interval Scheduling

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken

7

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

1

4

8

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Running time: Θ(𝑛 log𝑛).

 Remember the finish time of the last job added to 𝐴.

 Job 𝑗 is compatible with 𝐴 if 𝑠𝑗 𝑙𝑎𝑠𝑡.

Remember: Correctness (optimality) of greedy algorithms is usually not

obvious. Need to prove!

8

Sort jobs by finish times so that 𝑓1 𝑓2 … 𝑓𝑛
𝐴 ← ∅, 𝑙𝑎𝑠𝑡 ← 0
for 𝑗 ← 1 to 𝑛

if 𝑠𝑗 ≥ 𝑙𝑎𝑠𝑡 then 𝐴 ← 𝐴 ∪ {𝑗}, 𝑙𝑎𝑠𝑡 ← 𝑓𝑗
return 𝐴

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Proof.

 Assume greedy is different from OPT. Let's see what’s different.

 Let 𝑖1, 𝑖2, … 𝑖𝑘 denote the set of jobs selected by greedy.

 Let 𝑗1, 𝑗2, … 𝑗𝑚 denote set of jobs in the optimal solution.

Find largest possible value of 𝑟 such that 𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟

9

𝑗1 𝑗2 𝑗𝑟

𝑖1 𝑖1 𝑖𝑟 𝑖𝑟+1

. . .

Greedy:

OPT: 𝑗𝑟+1

In OPT, we replace job 𝑗𝑟+1with job 𝑖𝑟+1 , keeping the remainder of OPT the same.
=> OPT still has the same number of jobs, so it remains optimal.

This has created a new optimal solution that shares its first r+1 jobs with Greedy.

By definition of Greedy, job 𝑖𝑟+1 finishes before 𝑗𝑟+1

𝑖𝑟+1

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Proof.

 Assume greedy is different from OPT. Let's see what’s different.

 Let 𝑖1, 𝑖2, … 𝑖𝑘 denote the set of jobs selected by greedy.

 Let 𝑗1, 𝑗2, … 𝑗𝑚 denote set of jobs in the optimal solution with

𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟 for the largest possible value of 𝑟.

 Do this replacement repeatedly until OPT is the same as greedy.

– Important: Since cost remains the same, final solution we’ve

created, which is Greedy, is optimal!
10

𝑗1 𝑗2 𝑗𝑟

𝑖1 𝑖1 𝑖𝑟 𝑖𝑟+1

. . .

Greedy:

OPT:

must still be compatible

job 𝑖𝑟+1 finishes before 𝑗𝑟+1

The Fractional Knapsack Problem

Input: A set of 𝑛 items, where item 𝑖 has weight 𝑤𝑖 and value 𝑣𝑖, and a

knapsack with capacity 𝑊.

Goal: Find 0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 such that 𝑖=1
𝑛 𝑥𝑖𝑤𝑖 ≤ 𝑊 and 𝑖=1

𝑛 𝑥𝑖𝑣𝑖 is

maximized.

There are two different versions of this problem:

 The 𝑥𝑖 ’s must be 0 or 1: The 0/1 knapsack problem.

 The 𝑥𝑖 ’s can take fractional values: The fractional knapsack problem
11

Optimal 0/1 Optimal
Fractional

The Greedy Algorithm for Fractional Knapsack

Idea:

 Sort all items by value-per-pound

 For each item, take as much as possible

Running time: Θ(𝑛 log 𝑛)

Note: This algorithm cannot solve the 0/1 version optimally (why).

12

Sort items so that
𝑣1

𝑤1
>

𝑣2

𝑤2
> ⋯ >

𝑣𝑛

𝑤𝑛
𝑤 ← 𝑊
for 𝑖 ← 1 to 𝑛

if 𝑤𝑖 ≤ 𝑤 then

𝑥𝑖 ← 1
𝑤 ← 𝑤 −𝑤𝑖

else

𝑥𝑖 ← 𝑤/𝑤𝑖
return

return

Greedy Algorithm: Correctness

Theorem: The greedy algorithm is optimal.

Proof: We will assume that 𝑖=1
𝑛 𝑤𝑖 ≥ 𝑊. Otherwise the algorithm is

trivially optimal.

Let the greedy solution be 𝐺 = 𝑥1, 𝑥2, … , 𝑥𝑘 , 0, … , 0

 Note: All 𝑥𝑖 ’s must be equal to 1, except possibly for 𝑖 = 𝑘.

Consider any optimal solution 𝑂 = 𝑦1, 𝑦2, … , 𝑦𝑛
 Note: Both 𝐺 and 𝑂 must fully pack the knapsack.

Look at the first item 𝑖 where the two solutions differ.

 That is

𝐺 = 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 , … , 𝑥𝑘 , 0, … , 0

𝑂 = 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑦𝑖 , …………… , 𝑦𝑛
 By definition of greedy , 𝑥𝑖 > 𝑦𝑖
 Let 𝑥 = 𝑥𝑖 − 𝑦𝑖

13

Greedy Algorithm: Correctness (continued)

Recall 𝑥 = 𝑥𝑖 − 𝑦𝑖
𝐺 = 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 , … , 𝑥𝑘 , 0, … , 0 𝑂 = 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑦𝑖 , …………… , 𝑦𝑛

We will modify 𝑂 as follows:

 Set 𝑦𝑖 ← 𝑥𝑖 and

remove 𝑥𝑤𝑖 units of total weight from items 𝑖 + 1 to item 𝑛

 This is always doable because, in 𝑂, the total weight of items 𝑖 to

𝑛 is the same as that in 𝐺

After the modification:

 The total value cannot decrease, since all the subsequent items

have lesser or equal value-per-pound.

 Since 𝑂 is already an optimal solution, its value cannot increase.

 So 𝑂‘s value must stay the (optimal) same.

By repeating this process, we will eventually convert 𝑂 into 𝐺, without

changing the total value of the selection. Therefore 𝐺 is also optimal.

14

Interval Partitioning

Interval partitioning.

 Lecture 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Goal: find the minimum number of classrooms to schedule all

lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

15

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Interval Partitioning

Interval partitioning.

 Lecture 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Goal: find the minimum number of classrooms to schedule all

lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

16

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

17

Sort intervals by starting time so that 𝑠1 𝑠2 … 𝑠𝑛.
𝑑 ← 0 // # classrooms used so far

for 𝑗 ← 1 to 𝑛
if lecture 𝑗 is compatible with some classroom 𝑘 then

schedule lecture 𝑗 in classroom 𝑘
else

allocate a new classroom 𝑑 + 1
schedule lecture 𝑗 in classroom 𝑑 + 1
𝑑 ← 𝑑 + 1

Interval Partitioning

Interval partitioning.

 Lecture 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Goal: find the minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

ALG: Sort by start time. Insert in order, opening new classroom when needed

18

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

8

1

3

4

7

6

9

10

3 3:30 4 4:30

5

2

1

2

3

4

5

6

7

8

9

10

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any time instance.

Key observation. Number of classrooms needed depth.

Ex: Depth of schedule below = 3 this schedule is optimal.

We will show: The # classrooms used by the greedy algorithm = depth.

19

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Interval Partitioning: Correctness

Theorem. Greedy algorithm is optimal.

Pf.

 Let 𝑑 = number of classrooms opened by greedy algorithm .

 Classroom 𝑑 is opened because we needed to schedule a lecture, say 𝑗,

that is incompatible with all 𝑑 − 1 other classrooms.

 Since we sorted by start time, all these incompatibilities are caused by

lectures that all start no later than 𝑠𝑗 and finish later than than 𝑠𝑗.

 Thus, we have 𝑑 lectures all overlapping at time 𝑠𝑗 + for some > 0;

the d-1 incompatible ones and lecture 𝑗.

 depth ≥ 𝑑.

 Thus, Since every algorithm uses at least depth classrooms

Greedy is optimal.
20

Interval Partitioning: Running Time

Running time: Θ(𝑛 log 𝑛)

 To implement line (*) the algorithm maintains, for each classroom, the

finishing time of the last item placed in the classroom. It then

compares 𝑠𝑗 to those finishing times. If 𝑠𝑗 ≥ one of those finishing

times, it places lecture j in the associated classroom

 A Brute-force implementation of line (*) takes 𝑂(𝑛) time

⇒ 𝑂(𝑛2) in total

 Observation: If 𝑗 is not compatible with the classroom with the earliest

finish time, then 𝑗 is not compatible with any other classroom 21

Sort intervals by starting time so that 𝑠1 𝑠2 … 𝑠𝑛.
𝑑 ← 0 // # classrooms used so far

for 𝑗 ← 1 to 𝑛
if lecture 𝑗 is compatible with some classroom 𝑘 then (*)

schedule lecture 𝑗 in classroom 𝑘 (**)

else

allocate a new classroom 𝑑 + 1
schedule lecture 𝑗 in classroom 𝑑 + 1 (***)

𝑑 ← 𝑑 + 1

Interval Partitioning: Running Time

Running time: Θ(𝑛 log 𝑛)

 To implement line (*) we can keep the classrooms in a min priority queue using

the finishing times of the last class in the room as key

 To check whether there is a compatible classroom we do an extract-min to find

the minimum finishing time in the priority queue.

 If (**) is implemented then just add the new finishing time 𝑠𝑗 to p. queue

 If (***) is implemented then re-insert that minimum finishing time back into the

p. queue AND insert the new finishing time 𝑠𝑗 into the p. queue

22

Sort intervals by starting time so that 𝑠1 𝑠2 … 𝑠𝑛.
𝑑 ← 0 // # classrooms used so far

for 𝑗 ← 1 to 𝑛
if lecture 𝑗 is compatible with some classroom 𝑘 then (*)

schedule lecture 𝑗 in classroom 𝑘 (**)

else

allocate a new classroom 𝑑 + 1
schedule lecture 𝑗 in classroom 𝑑 + 1 (***)

𝑑 ← 𝑑 + 1

𝑂(log𝑛)

𝑂(log𝑛)

𝑂(log𝑛)

