
Dynamic Programming II
DP over Intervals
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DP Over Intervals

All of the problems in this lecture share the following structural properties 

(similar to Matrix-Chain Multiplication)

 Goal is to find optimal (min or max) solution on problem with 

 Problem of size n

 ordered input  of items  1,2…,n

 Define substructure as 

 Ordered input of items  i..j

 Problem of size j-i+1

 Recurrence gives optimal solution of subproblem

as function of optimal solution of smaller subproblems

 Algorithm fills in DP table from smallest to largest problem size

 Often, final subproblem filled is solution for original problem 

Sometimes, solution of original problem is  min/max over table values
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Longest Palindromic Substring

Def: A palindrome is a string that reads the same backward or forward.

Ex:

 radar, level, racecar, madam

 “A man, a plan, a canal – Panama!” (ignoring space, punctuation, etc.)

Problem: Given a string 𝑋 = 𝑥1𝑥2…𝑥𝑛, find the longest palindromic 

substring.

Ex:

 𝑋 = ACCABA

 Palindromic substrings: ACCA, ABA

 Longest palindromic substring: ACCA

Note:

 Brute-force algorithm takes 𝑂(𝑛3) time.

 Recall:  A substring must be contiguous
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Dynamic Programming Solution

Def: Let 𝑝[𝑖, 𝑗] be 𝑡𝑟𝑢𝑒 iff 𝑋[𝑖. . 𝑗] is a palindrome.

The Recurrence: 

Initial Conditions (subproblems of sizes 1 & 2)

 𝒑 𝒊, 𝒊 = 𝒕𝒓𝒖𝒆, for all 𝒊

– ACBBCABA   

 𝒑 𝒊, 𝒊 + 𝟏 = 𝒕𝒓𝒖𝒆 if 𝒙𝒊 = 𝒙𝒊+𝟏
– ACBBCABA

The Actual Recurrence

 𝒑 𝒊, 𝒋 = 𝒕𝒓𝒖𝒆

if 𝒙𝒊 = 𝒙𝒋 AND  𝒑 𝒊 + 𝟏, 𝒋 − 𝟏 = 𝒕𝒓𝒖𝒆

– ACBBCABA

– ACBBCABA
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A Completed DP Table
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i 1 2 3 4 5 6 7 8

B A B B C C C B

i/j 1 2 3 4 5 6 7 8
1 T F
2 T F
3 T T
4 T F
5 T T
6 T T
7 T F
8 T

i/j 1 2 3 4 5 6 7 8
1 T F T
2 T F F
3 T T F
4 T F F
5 T T T
6 T T F
7 T F
8 T

i/j 1 2 3 4 5 6 7 8
1 T F T F
2 T F F F
3 T T F F
4 T F F F
5 T T T F
6 T T F
7 T F
8 T

i/j 1 2 3 4 5 6 7 8
1 T F T F F
2 T F F F F
3 T T F F F
4 T F F F T
5 T T T F
6 T T F
7 T F
8 T

i/j 1 2 3 4 5 6 7 8
1 T F T F F F F F
2 T F F F F F F
3 T T F F F F
4 T F F F T
5 T T T F
6 T T F
7 T F
8 T

Initial Condition
j=i;  j=i+1

j=i+2

j=i+3

j=i+4

j>i+4

Largest is
BCCCB



The Algorithm

Running time: 𝑂(𝑛2)

Space: 𝑂(𝑛2) but can be improved to 𝑂(𝑛)
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𝑚𝑎𝑥 ← 1

for 𝑖 ← 1 to 𝑛 − 1 do initial conditions

𝑝[𝑖, 𝑖] ← 𝑡𝑟𝑢𝑒 j=i

if 𝑥𝑖 = 𝑥𝑖+1 then 

𝑝 𝑖, 𝑖 + 1 ← 𝑡𝑟𝑢𝑒, 𝑚𝑎𝑥 ← 2 j=i+1

else 𝑝[𝑖, 𝑖 + 1] ← 𝑓𝑎𝑙𝑠𝑒

for 𝑙 ← 3 to 𝑛 do

for 𝑖 ← 1 to 𝑛 − 𝑙 + 1 do       j=i + (l-1)

𝑗 ← 𝑖 + 𝑙 − 1

if 𝑝 𝑖 + 1, 𝑗 − 1 = 𝑡𝑟𝑢𝑒 and 𝑥𝑖 = 𝑥𝑗 then

𝑝 𝑖, 𝑗 ← 𝑡𝑟𝑢𝑒, 𝑚𝑎𝑥 ← 𝑙

else 𝑝[𝑖, 𝑗] ← 𝑓𝑎𝑙𝑠𝑒

return 𝑚𝑎𝑥



Binary search trees (BST)
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The (worst-case) search time in a balanced BST is Θ(log 𝑛)

Q: If we know the probability of each key being searched for, can we 

design a (possibly unbalanced) BST to optimize the expected search time?

Tree-Search(𝑇, 𝑘):

𝑥 ← 𝑇. 𝑟𝑜𝑜𝑡

while 𝑥 ≠ 𝑛𝑖𝑙 and 𝑘 ≠ 𝑥. 𝑘𝑒𝑦 do

if 𝑘 < 𝑥. 𝑘𝑒𝑦 then 𝑥 ← 𝑥. 𝑙𝑒𝑓𝑡

else 𝑥 ← 𝑥. 𝑟𝑖𝑔ℎ𝑡

return 𝑥



The Optimal Binary Search Tree Problem
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Problem Definition (simpler than the version in textbook):

Given 𝑛 keys 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, with weights 𝑓(𝑎1), … , 𝑓(𝑎𝑛), find a 

binary search tree 𝑇 on these 𝑛 keys such that 

𝐵 𝑇 = 

𝑖=1

𝑛

𝑓 𝑎𝑖 (𝑑 𝑎𝑖 + 1)

is minimized, where 𝑑(𝑎𝑖) is the depth of 𝑎𝑖. 

Note: This is similar to the Huffman coding problem but with 2 key 

differences:

 The tree has to be a BST, i.e., the keys are stored in sorted 

order. In a Huffman tree, there is no ordering among the leaves.

 Keys appear as both internal and leaf nodes. In a Huffman tree, 

keys (characters) appear only at the leaf nodes.

Motivation: If the weights are the probabilities of the elements being 

searched for, then such a BST will minimize the expected search cost.



Greedy Won’t Work

Greedy strategy: Always pick the heaviest key as root, then recursively 

build the tree top-down.
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𝐵 𝑇 = 0.4 ⋅ 1 + 0.3 ⋅ 2 + 0.2 ⋅ 3 + 0.1 ⋅ 4 = 2

𝐵 𝑇 = 0.4 ⋅ 2 + 0.3 ⋅ 1 + 0.2 ⋅ 2 + 0.1 ⋅ 3 = 1.8



Dynamic Programming: The Recurrence

Def: 𝑒 𝑖, 𝑗 = the minimum cost of any BST on 𝑎𝑖 , … , 𝑎𝑗

Idea: The root of the BST can be any of 𝑎𝑖 , … , 𝑎𝑗. We try each of them.

Recurrence:

Let 𝑤 𝑖, 𝑗 = 𝑓 𝑎𝑖 +⋯+ 𝑓 𝑎𝑗

Suppose we knew  min-cost BST  𝑇𝑖,𝑗 for [i,j]  and that its root was 𝑎𝑘 .

Its left subtree 𝑇𝑖,𝑘−1 must be optimal for [i,k-1] 

and its right subtree 𝑇𝑖,𝑘−1 must be optimal for  [k+1,j]

Nodes in  𝑇𝑖,𝑘−1 and  𝑇𝑖,𝑘−1 are one level deeper in

𝑇𝑖,𝑗 than in their original trees.  So the cost of the

new tree is 

𝑒 𝑖, 𝑘 − 1 + 𝑤 𝑖, 𝑘 − 1 + 𝑒 𝑘 + 1, 𝑗 + 𝑤 𝑘 + 1, 𝑗 + 𝑓 𝑎𝑘

= 𝑒 𝑖, 𝑘 − 1 + 𝑒 𝑘 + 1, 𝑗 + 𝑤[𝑖, 𝑗]
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𝑇𝑖,𝑗

𝑎𝑖 𝑎𝑘−1 𝑎𝑘+1 𝑎𝑗

𝑇𝑖,𝑘−1 𝑇𝑘+1,𝑗

𝑎𝑘

We try out every possible 
value of  k and  return  the 
one which minimizes cost!



Dynamic Programming: The Recurrence

Def: 𝑒 𝑖, 𝑗 = the minimum cost of any BST on 𝑎𝑖 , … , 𝑎𝑗

Idea: The root of the BST can be any of 𝑎𝑖 , … , 𝑎𝑗. We try each of them.

Recurrence:

Let 𝑤 𝑖, 𝑗 = 𝑓 𝑎𝑖 +⋯+ 𝑓 𝑎𝑗

𝑒 𝑖, 𝑗 = min
𝑖≤𝑘≤𝑗
{𝑒 𝑖, 𝑘 − 1 + 𝑤 𝑖, 𝑘 − 1 + 𝑒 𝑘 + 1, 𝑗 + 𝑤 𝑘 + 1, 𝑗 + 𝑓(𝑎𝑘)}

= min
𝑖≤𝑘≤𝑗
{𝑒 𝑖, 𝑘 − 1 + 𝑒 𝑘 + 1, 𝑗 + 𝑤 𝑖, 𝑗 }

𝑒 𝑖, 𝑗 = 0 for 𝑖 > 𝑗.

Note: All 𝑤[𝑖, 𝑗]’s can be 

pre-computed  in 𝑂(𝑛2) time.
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𝑇𝑖,𝑗

𝑎𝑖 𝑎𝑘−1 𝑎𝑘+1 𝑎𝑗

𝑇𝑖,𝑘−1 𝑇𝑘+1,𝑗

𝑎𝑘



The Algorithm

Idea: We will do the bottom-up computation by the increasing order of 

the problem size.

Running time: 𝑂 𝑛3

Space: 𝑂(𝑛2)
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let 𝑒[1. . 𝑛, 1. . 𝑛], 𝑤[1. . 𝑛, 1. . 𝑛], 𝑟𝑜𝑜𝑡[1. . 𝑛, 1. . 𝑛] be new arrays of all 0
for 𝑖 = 1 to 𝑛
𝑤 𝑖, 𝑖 ← 𝑓 𝑎𝑖
for 𝑗 = 𝑖 + 1 to 𝑛

𝑤 𝑖, 𝑗 ← 𝑤 𝑖, 𝑗 − 1 + 𝑓(𝑎𝑗)
for 𝑙 ← 1 to 𝑛 length of [i,j]

for 𝑖 ← 1 to 𝑛 − 𝑙 + 1
𝑗 ← 𝑖 + 𝑙 − 1
𝑒 𝑖, 𝑗 ← ∞
for 𝑘 ← 𝑖 to 𝑗 Find k that 

𝑡 ← 𝑒 𝑖, 𝑘 − 1 + 𝑒[𝑘 + 1, 𝑗] + 𝑤[𝑖, 𝑗] minimizes

if 𝑡 < 𝑒[𝑖, 𝑗] then    𝑒 𝑖, 𝑘 − 1 + 𝑒[𝑘 + 1, 𝑗] + 𝑤[𝑖, 𝑗]

𝑒 𝑖, 𝑗 ← 𝑡
𝑟𝑜𝑜𝑡 𝑖, 𝑗 ← 𝑘

return Construct-BST(𝑟𝑜𝑜𝑡, 1, 𝑛)



Construct the Optimal BST

Running time of this part: 𝑂(𝑛)
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Construct-BST(𝑟𝑜𝑜𝑡, 𝑖, 𝑗):
if 𝑖 > 𝑗 then return 𝑛𝑖𝑙
create a node 𝑧
𝑧. 𝑘𝑒𝑦 ← 𝑎[𝑟𝑜𝑜𝑡 𝑖, 𝑗 ]
𝑧. 𝑙𝑒𝑓𝑡 ← Construct-BST(𝑟𝑜𝑜𝑡, 𝑖, 𝑟𝑜𝑜𝑡 𝑖, 𝑗 − 1)
𝑧. 𝑟𝑖𝑔ℎ𝑡 ← Construct-BST(𝑟𝑜𝑜𝑡, 𝑟𝑜𝑜𝑡 𝑖, 𝑗 + 1, 𝑗)
return 𝑧
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RNA Secondary Structure

RNA.  String 𝐵 = 𝑏1𝑏2𝑏𝑛 over alphabet { A, C, G, U }.

Secondary structure.  RNA is single-stranded so it tends to loop back 

and form base pairs with itself. This structure is essential for 

understanding the behavior of molecules.

Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

complementary base pairs:  A-U, C-G
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RNA Secondary Structure

Secondary structure.  A set of pairs 𝑆 = {(𝑏𝑖 , 𝑏𝑗)} that satisfy:

 [Watson-Crick.]  𝑆 is a matching and each pair in 𝑆 is a Watson-Crick 

complement: A-U, U-A, C-G, or G-C.

 [No sharp turns.]  The ends of each pair are separated by at least 4 

intervening bases: If 𝑏𝑖 , 𝑏𝑗 ∈ 𝑆, then 𝑖 < 𝑗 − 4.

 [Non-crossing.]  If (𝑏𝑖 , 𝑏𝑗) and (𝑏𝑘 , 𝑏𝑙) are two pairs in 𝑆, then we 

cannot have 𝑖 < 𝑘 < 𝑗 < 𝑙.
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The Problem

Free energy.  Usual hypothesis is that an RNA molecule will form the 

secondary structure with the optimum total free energy, which is 

proportional to the number of base pairs.

Goal.  Given an RNA molecule 𝐵 = 𝑏1𝑏2𝑏𝑛, find a secondary structure 

𝑆 that maximizes the number of base pairs.

That is,  find the maximum number of base pairs that can be matched 

satisfying the no sharp turns and no crossing constraints
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The Recurrence

Def. 𝑀 𝑖, 𝑗 = maximum number of base pairs in a secondary structure of 

the substring 𝑏𝑖𝑏𝑖+1𝑏𝑗.

Recurrence. 

 Case 1.  If 𝑖  𝑗 − 4.

– 𝑀 𝑖, 𝑗 = 0 by no-sharp turns condition.

 Case 2.  i< j-4

– Case 2a:  Base 𝑏𝑗 is not matched in optimal solution for [i,j]

 𝑀[𝑖, 𝑗] = 𝑀[𝑖, 𝑗 − 1]

– Case 2b:   Base 𝑏𝑗 pairs with 𝑏𝑘 for some 𝑖  𝑘 ≤ 𝑗 − 5.

 Try matching  𝑏𝑗 to all possible  𝑏𝑘. 

 non-crossing constraint decouples problem into sub-problems

 𝑀[𝑖, 𝑗] = 1 + max
𝑘
{𝑀[𝑖, 𝑘 − 1] + 𝑀[𝑘 + 1, 𝑗 − 1]}

Take max over 𝑘 such that 𝑖  𝑘 ≤ 𝑗 − 5 and
𝑏𝑘 and 𝑏𝑗 are Watson-Crick complements
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The Algorithm

Running time: 𝑂 𝑛3

Space: 𝑂(𝑛2)

let 𝑀[1. . 𝑛, 1. . 𝑛], 𝑠[1. . 𝑛, 1. . 𝑛] be new arrays of all 0
for 𝑙 ← 1 to 𝑛

for 𝑖 ← 1 to 𝑛 − 𝑙 + 1
𝑗 ← 𝑖 + 𝑙 − 1
𝑀 𝑖, 𝑗 ← 𝑀[𝑖, 𝑗 − 1]
for 𝑘 ← 𝑖 to 𝑗 − 5

if 𝑏𝑘 and 𝑏𝑗 are not complements then continue

𝑡 ← 1 + 𝑀 𝑖, 𝑘 − 1 +𝑀[𝑘 + 1, 𝑗 − 1]
if 𝑡 > 𝑀[𝑖, 𝑗] then
𝑀 𝑖, 𝑗 ← 𝑡
𝑠 𝑖, 𝑗 ← 𝑘

Construct-RNA(𝑠, 1, 𝑛)

Construct-RNA(𝑠, 𝑖, 𝑗):
if 𝑖 ≥ 𝑗 − 4 then return

if 𝑠 𝑖, 𝑗 = 0 then Construct-RNA(𝑠, 𝑖, 𝑗 − 1)
print 𝑠 𝑖, 𝑗 ,”-”,𝑗
Construct-RNA(𝑠, 𝑖, 𝑠 𝑖, 𝑗 − 1)
Construct-RNA(𝑠, 𝑠 𝑖, 𝑗 + 1, 𝑗)


