
More Applications of Max Flow

1

2

Disjoint path problem. Given a directed graph 𝐺 = (𝑉, 𝐸) and two nodes

𝑠 and 𝑡, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Application: Communication networks.

s

2

3

4

Edge Disjoint Paths

5

6

7

t

3

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Proof.

 Suppose there are 𝑘 edge-disjoint paths 𝑃1, … , 𝑃𝑘.

 Set 𝑓(𝑒) = 1 if 𝑒 participates in some path 𝑃𝑖; else set 𝑓(𝑒) = 0.

 Since paths are edge-disjoint, 𝑓 is a flow of value 𝑘.

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

4

Max flow formulation: assign unit capacity to every edge.

Proof.

 Let 𝑓 be a max flow in 𝐺′ of value 𝑘 computed by Ford-Fulkerson

 𝑓 𝑒 = 1 or 0 for every edge 𝑒 (integrality property).

 Consider any edge (𝑠, 𝑢) with 𝑓(𝑠, 𝑢) = 1.

– By conservation, there exists an edge (𝑢, 𝑣) with 𝑓(𝑢, 𝑣) = 1

– Continue to find the next unused edge out of 𝑣 until reaching 𝑡.

 After finding one path, flow value decreases by 1.

 Repeat the process 𝑘 times to find 𝑘 edge-disjoint paths.

 The proof above also provides an algorithm.

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

5

Input: A directed connected graph 𝐺 = 𝑉, 𝐸 , where

 every edge 𝑒 ∈ 𝐸 has a capacity 𝑐(𝑒);

 a number of source vertices 𝑠1, 𝑠2, …, each with a supply of 𝑠𝑢𝑝(𝑠𝑖) and

a number of target vertices 𝑡1, 𝑡2, …, each with a demand of 𝑑𝑒𝑚 𝑡𝑖 ;

 𝑖 𝑠𝑢𝑝 𝑠𝑖 ≥ 𝑖 𝑑𝑒𝑚(𝑡𝑖)

Output: A flow 𝑓 that meets capacity and conservation conditions, and

 At each source vertex 𝑠𝑖, 𝑒 out of 𝑠𝑖 𝑓 𝑒 − 𝑒 into 𝑠𝑖 𝑓 𝑒 ≤ 𝑠𝑢𝑝 𝑠𝑖 ;

 At each target vertex 𝑡𝑖, 𝑒 into 𝑡𝑖 𝑓 𝑒 − 𝑒 out of 𝑡𝑖 𝑓 𝑒 = 𝑑𝑒𝑚 𝑠𝑖 .

3

10 6

7

8

13

6

4

9

9

3

8

7

4

4

6

6

7

1

4 2

flow

Circulation with Demands

capacity demand

supply

6

Solving Circulation with Demands using Max Flow

Algorithm:

 Add a “super source” 𝑠 and a “super target” 𝑡.

 Add an edge from 𝑠 to each 𝑠𝑖 with capacity 𝑠𝑢𝑝 𝑠𝑖 .

 Add an edge from each 𝑡𝑖 to 𝑡 with capacity 𝑑𝑒𝑚 𝑡𝑖 .

 Compute the max flow 𝑓.

 If 𝑓 = 𝑖 𝑑𝑒𝑚(𝑡𝑖), then return 𝑓; else return “no solution”.

G':

supply

3

10 6 9

7

4

7

4

s

t

8 13

7 8 6

demand

Baseball Elimination

Rule: Order teams by the number of wins.

Q: Does Team 4 still have a chance to finish in the first place (tie is

OK)?

A: No, obviously.

7

Team
𝑖

Remaining Against = 𝑟𝑖𝑗Wins
𝑤𝑖

To play
𝑟𝑖 1 2 3 4

4 0 2 0 1 1 -

3 2 3 1 1 - 1

2 2 3 1 - 1 1

1 3 2 - 1 1 0

Baseball Elimination

Q: Does Team 4 still have a chance to finish in the first place (tie is

OK)?

A: No, because

 Team 4 has to win both remaining games against team 2 and 3.

 Team 1 has to lose both remaining games against team 2 and 3.

 Then 2 and 3 will both have 3 wins.

 The game between team 2 and 3 will give one of them one more win.

Suppose you need to do this for MLB / Premier League…

8

Team
𝑖

Remaining Against = 𝑟𝑖𝑗Wins
𝑤𝑖

To play
𝑟𝑖 1 2 3 4

4 1 2 0 1 1 -

3 2 3 1 1 - 1

2 2 3 1 - 1 1

1 3 2 - 1 1 0

Baseball Elimination: Formal Definition

Input:

 𝑛 teams: 1, 2, … , 𝑛

 One particular team, say 𝑛 (without loss of generality)

 Team 𝑖 has won 𝑤𝑖 games already

 Team 𝑖 and 𝑗 still need to play 𝑟𝑖𝑗 games, 𝑟𝑖𝑗 = 0 or 1.

 Team 𝑖 has a total of 𝑟𝑖 = 𝑗 𝑟𝑖𝑗 games to play

Output:

 “Yes”, if there is an outcome for each remaining game such that

team 𝑛 finishes with the most wins (tie is OK).

 “No”, if no such possibilities.

Brute-force algorithm:

 For each remaining game, consider two possible outcomes.

 Try all 2𝑟 possible combinations, where 𝑟 = 𝑖,𝑗 𝑟𝑖𝑗

9

10

Can team 𝑛 finish with most wins?

 Assume team 𝑛 wins all remaining games ⇒ 𝑤𝑛 + 𝑟𝑛 wins.

 All other teams must have ≤ 𝑤𝑛 + 𝑟𝑛 wins.

Flow network construction:

 A source 𝑠 and a target 𝑡

 A node for each remaining game (𝑖, 𝑗); and an edge from 𝑠 to it with

capacity 1

 A node for each team 𝑖 = 1, 2, … , 𝑛 − 1; and an edge from it to 𝑡 with

capacity 𝑤𝑛 + 𝑟𝑛 − 𝑤𝑖
 Game node (𝑖, 𝑗) has edges to team node 𝑖 and 𝑗, with capacity 1

Baseball Elimination: Max Flow Formulation

s

1-2

2-3

1

2 t1-31

1

𝑤4 + 𝑟4 −𝑤2

team 2 is allowed
to win this many
more games

1

game nodes team nodes

3

11

Claim: There is a way for team 𝑛 to finish in the first place iff the max

flow has value 𝑟 = 𝑖,𝑗 𝑟𝑖𝑗.

Proof: “⇒”: Suppose there is an outcome for each remaining game such

that team 𝑛 finishes the first. First set 𝑓 𝑠, 𝑖, 𝑗 = 1 for all (𝑖, 𝑗).

For each remaining game 𝑖, 𝑗 :

 if 𝑖 wins, set 𝑓 𝑖, 𝑗 , 𝑖 = 1 and 𝑓 𝑖, 𝑗 , 𝑗 = 0;

 if 𝑗 wins, set 𝑓 𝑖, 𝑗 , 𝑗 = 1 and 𝑓 𝑖, 𝑗 , 𝑖 = 0.

Team 𝑖 wins ≤ 𝑤𝑛 + 𝑟𝑛 − 𝑤𝑖 games, so it can send all incoming flow to 𝑡.

Baseball Elimination: Max Flow Formulation

s

1-2

2-3

1

2 t1-31

1

𝑤4 + 𝑟4 −𝑤2

team 2 is allowed
to win this many
more games

1

game nodes team nodes

3

12

Proof: “⇐”: Suppose the max flow 𝑓 has 𝑓 = 𝑟. It must saturate all

edges out of 𝑠.

Look at each game node 𝑖, 𝑗 . Exactly one of its outgoing edges must

have 1 unit of flow (integrality property):

 If 𝑓 𝑖, 𝑗 , 𝑖 = 1, let 𝑖 win the game;

 If 𝑓 𝑖, 𝑗 , 𝑗 = 1, let 𝑗 win the game.

Team node 𝑖 receives ≤ 𝑤𝑛 + 𝑟𝑛 − 𝑤𝑖 units of flow, each corresponding

to one win, so it cannot beat team 𝑛.

Baseball Elimination: Max Flow Formulation

team 2 is allowed
to win this many
more games

s

1-2

2-3

1

2 t1-31

1

𝑤4 + 𝑟4 −𝑤2

1

game nodes team nodes

3

Baseball Elimination: Extensions

Q: What if 𝑟𝑖𝑗 can be more than 1?

Q: Can this be used for football (soccer) leagues?

 Using the old rule: Winner takes 2 points, loser 0 point; each team

gets 1 point in case of a tie.

13

