Kruskal’s MST Algorithm
CLRS Chapter 23, DPV Chapter 5
Version of October 11, 2016

Main Topics of This Lecture

e Kruskal’s algorithm
Another, but different, greedy MST algorithm

e Introduction to UNION-FIND data structure.
Used in Kruskal’s algorithm
Will see implementation in next lecture.

Idea of Kruskal’s Algorithm

Build a forest.
Initially, trees of the forest are the vertices (no edges).
In each step add the cheapest edge that does not create a cycle.

Continue until the forest is a single tree.
(Why is a single tree created?)

This is a minimum spanning tree
(we must prove this).

Outline by Example

0 %, @ ®

@® |
ke ©
© 02 G @
original graph forest —— MST
. €dge weight Forest (V, A)

..... {d,c} .2 .

..... {a e .3 .

e {ad 5

..... {gd%g

........ JCh .9

..... Ea,_b}__...._.....__..10...__.... A={

..... {b,d} . 12

Outline of Kruskal’s Algorithm

Step 0: Set A = () and ' = FE, the set of all edges.

Step 1: Choose an edge e in F' of minimum weight,
and check whether adding e to A creates a cycle.

o If “yes”, remove e from F..

e If “n0”, move e from F' to A.

Step 2: If I = (), stop and output the minimal spanning tree
(V, A). Otherwise go to Step 1.

Remark: Will see later, after each step, (V, A) is a subgraph of
a MST.

4

Outline of Kruskal’s Algorithm

Implementation Questions:

e How does algorithm choose edge e € F with minimum
weight?

e How does algorithm check whether adding e to A creates a
cycle?

How to Choose the Edge of Least Weight

Question:
How does algorithm choose edge e € F' with minimum weight?

Answer: Start by sorting edges in E in order of increasing
weight.

Walk through the edges in this order.

(Once edge e causes a cycle it will always cause a cycle so it can be thrown

away.)

How to Check for Cycles

Observation: At each step of the outlined algorithm, (V, A) is
acyclic so it is a forest.

If w and v are in the same tree, then adding edge {u,v} to A
creates a cycle.

If v and v are not in the same tree, then adding edge {u, v} to
A does not create a cycle.

Question: How to test whether v and v are in the same tree?

High-Level Answer: Use a disjoint-set data structure
Vertices in a tree are considered to be in same set.
Test if Find-Set(u) = Find-Set(v)?

Low -Level Answer:
The UNION-FIND data structure implements this:

The UNION-FIND Data Structure

UNION-FIND supports three operations on collections of dis-
joint sets: Let n be the size of the universe.

Create-Set(u): O(1)
Create a set containing the single element w.

Find-Set(u): O(logn)
Find the set containing the element w.

Union(u, v): O(logn)
Merge the sets respectively containing v and v into a com-
mon set.

For now we treat UNION-FIND as a black box.
Will see implementation in next lecture.

Kruskal’s Algorithm: the Details

Sort FE in increasing order by weight w; O(|F|log |FE|)
/* After sorting E = ({u1,v1}, {uz,v2}, ..., {ug,vpg}) ™/

A=}
for (each w in V') CREATE-SET (u); O(|V])
for i from 1 to |E| do O(|F|log |E])

if (FIND-SET(u;) != FIND-SET(v;))
{ add {ui, Ui} to A;

UNlON(’UJZ, Ui);
h

return(A);

Remark: With a proper implementation of UNION-FIND, Kruskal’s algorithm
has running time O(|E|log |E|).

Correctness of Kruskal’s Algorithm

Sort the graph edges in nondecreasing order so that
w(er) <w(ez) < -+ <wlem)

Let A; be A in Kruskal's algorithm after processing e;.

Set Ag = (. Then

If ;41 forms a cycle with A;, = A;41 = A;
|t €i+1 doesn’t form a cycle with A;, = Ai—l—l = A; U {B,H_]_}

We will prove that, Vi, 3 MST T} such that A; C T;.

In particular, this means that
AOgAl"'gAmng
which implies (why?) Kruskal’s algorithm produces MST T,.

10

Correctness of Kruskal’s Algorithm

Need to prove that Vi, 3 MST T; such that A; C T;.
Proof will be by induction on

Obviously true for base : = 0. If : > 0,
(@) If e;4 1 forms a cycle with A;, = A;4 1 = A;
(b) |f €i41 doesn’t form a CYCle with A; = Ai—|—1 = A;U {87;_|_1}

Claim is true for case (a).

To prove for case (b)

note that Tj is forest on n nodes.

Let C1,C5, Uk, be connected components (trees) of forest.
Let V1, Vo, ..., Vi, be their vertices.

Without loss of generality,
let 1 contain one of the endpoints of e;4 ;.
Note that the other endpoint is not in V7.
11

Correctness of Kruskal’s Algorithm

Recall Lemma proved previously

e Let G = (V, E) be a connected, undirected graph with a real-valued

weight function w defined on E
] e A be a subset of E that is included in some MST for G.
et
e (S,V —.5)beany cut of G that respects A
e c be alight edge crossing the cut (S,V — S)

Then, AU {e} is included in some MST for G.

Now plug in the information from previous slide.

LetS =V, A= A;and e = €41

Induction hypothesis is that A; is in some MST.

Since V7 is CC of A;, (V1,V — V1) respects A,.

Easy to see (how?) that e, ; is a light edge crossing the cut.
S0, A;41 = A; U{e;41} isincluded in some MST for G,

and laim is proven.
12

Odds and Ends

On previous slide we stated that it's easy to see that e; 1 is a
light edge crossing the cut.

Suppose that this was not true

Then 3 some e; with w(e;) < w(e;41) that crosses the cut.
By definition, if edge crosses the cut, its endpoints are in differ-
ent connected components of T; (and therefore A;) so it can’t
form a cycle with A;.

w(e;) < w(e;41) S0 j < i+ 1 and e; is processed before
ej41. Since A;_1 C A; and e; doesn’t form a cycle with A;,
e; also doesn’t form a cycle with A;_1.

Thus, e; would have been added to A; by Kruskal’s algorithm!
But this contradicts fact that e; can notbe in A; since it connects
two items that are not connected in A;.

13

