
Kruskal’s MST Algorithm
CLRS Chapter 23, DPV Chapter 5

Version of October 11, 2016

Main Topics of This Lecture

• Kruskal’s algorithm
Another, but different, greedy MST algorithm

• Introduction to UNION-FIND data structure.
Used in Kruskal’s algorithm
Will see implementation in next lecture.

1

Idea of Kruskal’s Algorithm

Build a forest.

Initially, trees of the forest are the vertices (no edges).

In each step add the cheapest edge that does not create a cycle.

Continue until the forest is a single tree.
(Why is a single tree created?)

This is a minimum spanning tree
(we must prove this).

2

Outline by Example

a b

c

de

a b

c

de

original graph

edge weight

3 5

7

10

12

9

2

{d, c} 2
{a, e} 3
{a, d} 5
{e, d} 7
{b, c} 9
{a, b} 10
{b, d} 12

E

forest MST

Forest (V, A)

A={ }

3

Outline of Kruskal’s Algorithm

Step 0: Set A = ∅ and F = E, the set of all edges.

Step 1: Choose an edge e in F of minimum weight,
and check whether adding e to A creates a cycle.

• If “yes”, remove e from F .

• If “no”, move e from F to A.

Step 2: If F = ∅, stop and output the minimal spanning tree
(V,A). Otherwise go to Step 1.

Remark: Will see later, after each step, (V,A) is a subgraph of
a MST.

4

Outline of Kruskal’s Algorithm

Implementation Questions:

• How does algorithm choose edge e ∈ F with minimum
weight?

• How does algorithm check whether adding e to A creates a
cycle?

5

How to Choose the Edge of Least Weight

Question:
How does algorithm choose edge e ∈ F with minimum weight?

Answer: Start by sorting edges in E in order of increasing
weight.
Walk through the edges in this order.
(Once edge e causes a cycle it will always cause a cycle so it can be thrown

away.)

6

How to Check for Cycles

Observation: At each step of the outlined algorithm, (V,A) is
acyclic so it is a forest.

If u and v are in the same tree, then adding edge {u, v} to A
creates a cycle.

If u and v are not in the same tree, then adding edge {u, v} to
A does not create a cycle.

Question: How to test whether u and v are in the same tree?

High-Level Answer: Use a disjoint-set data structure
Vertices in a tree are considered to be in same set.
Test if Find-Set(u) = Find-Set(v)?

Low -Level Answer:
The UNION-FIND data structure implements this:

7

The UNION-FIND Data Structure

UNION-FIND supports three operations on collections of dis-
joint sets: Let n be the size of the universe.

Create-Set(u): O(1)
Create a set containing the single element u.

Find-Set(u): O(logn)
Find the set containing the element u.

Union(u, v): O(logn)
Merge the sets respectively containing u and v into a com-
mon set.

For now we treat UNION-FIND as a black box.
Will see implementation in next lecture.

8

Kruskal’s Algorithm: the Details

Sort E in increasing order by weight w; O(|E| log |E|)
/* After sorting E = ⟨{u1, v1}, {u2, v2}, . . . , {u|E|, v|E|}⟩ */

A = { };
for (each u in V) CREATE-SET(u); O(|V |)

for i from 1 to |E| do O(|E| log |E|)
if (FIND-SET(ui) != FIND-SET(vi))
{ add {ui, vi} to A;

UNION(ui, vi);
}

return(A);

Remark: With a proper implementation of UNION-FIND, Kruskal’s algorithm
has running time O(|E| log |E|).

9

Correctness of Kruskal’s Algorithm

Sort the graph edges in nondecreasing order so that
w(e1) ≤ w(e2) ≤ · · · ≤ w(em)

Let Ai be A in Kruskal’s algorithm after processing ei.

Set A0 = ∅. Then

If ei+1 forms a cycle with Ai, ⇒ Ai+1 = Ai

If ei+1 doesn’t form a cycle with Ai, ⇒ Ai+1 = Ai ∪ {ei+1}

We will prove that, ∀i, ∃ MST Ti such that Ai ⊆ Ti.

In particular, this means that
A0 ⊆ A1 · · · ⊆ Am ⊆ Tm

which implies (why?) Kruskal’s algorithm produces MST Tm.

10

Correctness of Kruskal’s Algorithm

Need to prove that ∀i, ∃ MST Ti such that Ai ⊆ Ti.
Proof will be by induction on i

Obviously true for base i = 0. If i ≥ 0,
(a) If ei+1 forms a cycle with Ai, ⇒ Ai+1 = Ai
(b) If ei+1 doesn’t form a cycle with Ai, ⇒ Ai+1 = Ai∪{ei+1}

Claim is true for case (a).
To prove for case (b)
note that Ti is forest on n nodes.
Let C1, C2, CK, be connected components (trees) of forest.
Let V1, V2, . . . , Vk, be their vertices.

Without loss of generality,
let V1 contain one of the endpoints of ei+1.
Note that the other endpoint is not in V1.

11

Correctness of Kruskal’s Algorithm

Recall Lemma proved previously
• Let G = (V,E) be a connected, undirected graph with a real-valued

weight function w defined on E
• A be a subset of E that is included in some MST for G.

Let
• (S, V − S) be any cut of G that respects A
• e be a light edge crossing the cut (S, V − S)

Then, A ∪ {e} is included in some MST for G.

Now plug in the information from previous slide.

Let S = V1, A = Ai and e = ei+1
Induction hypothesis is that Ai is in some MST.

Since V1 is CC of Ai, (V1, V − V1) respects Ai.

Easy to see (how?) that ei+1 is a light edge crossing the cut.

So, Ai+1 = Ai ∪ {ei+1} is included in some MST for G,
and laim is proven.

12

Odds and Ends

On previous slide we stated that it’s easy to see that ei+1 is a
light edge crossing the cut.

Suppose that this was not true
Then ∃ some ej with w(ej) < w(ei+1) that crosses the cut.
By definition, if edge crosses the cut, its endpoints are in differ-
ent connected components of Ti (and therefore Ai) so it can’t
form a cycle with Ai.

w(ej) < w(ei+1) so j < i + 1 and ej is processed before
ei+1. Since Aj−1 ⊆ Ai and ej doesn’t form a cycle with Ai,
ej also doesn’t form a cycle with Aj−1.

Thus, ej would have been added to Aj by Kruskal’s algorithm!
But this contradicts fact that ej can not be in Ai since it connects
two items that are not connected in Ai.

13

