
Lecture 1: Introduction

Computational Problems and Algorithms

Definition: A computational problem is a
specification of the desired input-output relationship.

Definition: An instance of a problem is all the inputs
needed to compute a solution to the problem.

Definition: An algorithm is a well defined
computational procedure that transforms inputs into
outputs, achieving the desired input-output relation-
ship.

Definition: A correct algorithm halts with the correct
output for every input instance. We can then say that
the algorithm solves the problem.

1



Example of Problems and Instances

Computational Problem: Sorting

• Input: Sequence of n numbers 〈a1, · · · , an〉.

• Output: Permutation (reordering)

〈a′1, a
′
2, · · · , a

′
n〉

such that a′1 ≤ a′2 ≤ · · · ≤ a′n.

Instance of Problem:

• Input: Permutation

〈8,3,6,7,1,2,9〉

• Output: Permutation (reordering)

〈1,2,3,6,7,8,9〉

2



Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage
beyond that needed for the data.

Pseudocode: A is an array of numbers

for j = 2 to length(A)
{ key = A[j];

i = j − 1;
while (i ≥ 1 and A[i] > key)
{ A[i + 1] = A[i];

i = i− 1;
}
A[i + 1] = key;

}

Pause: How does it work?

3



Insertion Sort: an Incremental Approach

To sort a given array of length n, at the ith step it
sorts the array of the first i items by making use of the
sorted array of the first i − 1 items in the (i − 1)th
Step.

Example: Sort A = 〈6,3,2,4〉 with Insertion Sort.

Step 1: 〈6,3,2,4〉

Step 2: 〈3,6,2,4〉

Step 3: 〈2,3,6,4〉

Step 4: 〈2,3,4,6〉

4



Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)

2. Running time (time complexity)

Remark: Really depends on the model of computa-
tion, e.g.,
sequential vs. parallel or
internal memory vs. external memory.
In this class we usually assume
sequential and internal memory.

5



Analyzing Algorithms – Continued

Running time: the number of primitive operations
used to solve the problem.

Primitive operations:
e.g., addition, multiplication, comparisons.
In more advanced models could be page faults
or Map/Reduce calls

Running time: depends on problem instance, often
we find an upper bound: F(input size)

Input size: rigorous definition given later.

1. Sorting: number of items to be sorted

2. Multiplication: number of bits, number of digits.

3. Graphs: number of vertices and edges.

6



Three Cases of Analysis

Best Case: constraints on the input, other than size,
resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size,
resulting in the slowest possible running time.
Example. In the worst case Quicksort runs in Θ(n2)

time on an input of n keys.

Average Case: average running time over every pos-
sible type of input (usually involve probabilities of dif-
ferent types of input).
Example. In the average case Quicksort runs in Θ(n logn)

time on an input of n keys. All n! inputs of n keys are
considered equally likely.

Remark: All cases are relative to the algorithm under
consideration.

7



Three Analyses of Insertion Sorting

Best Case: A[1] ≤ A[2] ≤ A[3] ≤ · · · ≤ A[n].

The number of comparisons needed is equal to

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−1

= n− 1 = Θ(n).

Worst Case: A[1] ≥ A[2] ≥ A[3] ≥ · · · ≥ A[n].

The number of comparisons needed is equal to

1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
= Θ(n2).

Average Case: Θ(n2) assuming that each of the n!

instances are equally likely.

8



Some thoughts on Algorithm Design

• Algorithm Design, as taught in this class, is mainly
about designing algorithms that have small big
O() running times.

• “All other things being equal”,
O(n logn) algorithms will run more quickly than
O(n2) ones and
O(n) algorithms will beat O(n logn) ones.

• Being able to do good algorithm design lets you
identify the hard parts of your problem and deal
with them effectively.

• Too often, programmers try to solve problems us-
ing brute force techniques and end up with slow
complicated code! A few hours of abstract thought
devoted to algorithm design could have speeded
up the solution substantially and simplified it.

9



Note: After algorithm design one can continue on to
Algorithm tuning which would further concentrate on
improving algorithms by cutting cut down on the con-
stants in the big O() bounds. This needs a good un-
derstanding of both algorithm design principles and
efficient use of data structures. In this course we will
not go further into algorithm tuning. For a good intro-
duction, see Chapter 9 in Programming Pearls, 2nd
ed by Jon Bentley.

10


