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Computational Problems and Algorithms

• A computational problem is a specification of the
desired input-output relationship.

• An instance of a problem is all the inputs needed
to compute a solution to the problem.

• An algorithm is a well defined
computational procedure that transforms inputs
into outputs, achieving the desired input-output
relationship.

• A correct algorithm halts with the correct output
for every input instance. We then say that the
algorithm solves the problem.



Example of a Problem and an Instance

Computational Problem: Sorting
• Input: Sequence of n numbers 〈a1, · · · , an〉.
• Output: Permutation (reordering)

〈a′1, a′2, · · · , a′n〉

such that a′1 ≤ a′2 ≤ · · · ≤ a′n.



Example of a Problem and an Instance

Computational Problem: Sorting
• Input: Sequence of n numbers 〈a1, · · · , an〉.
• Output: Permutation (reordering)

〈a′1, a′2, · · · , a′n〉

such that a′1 ≤ a′2 ≤ · · · ≤ a′n.

Instance of Problem Sorting
• Input: Permutation

〈8, 3, 6, 7, 1, 2, 9〉

• Output: Permutation (reordering)

〈1, 2, 3, 6, 7, 8, 9〉
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In-Place Sort: uses only a fixed amount of storage
beyond that needed for the data.
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Pause:
How does it work?
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Insertion Sort: an Incremental Approach

To sort an array of length n: n steps
ith step sorts the array of the first i items by inserting ith
item properly into sorted array of the first i− 1 items
(created in previous step)

Example: Sort A = 〈6, 3, 2, 4〉 with Insertion Sort.

Step 1: 〈6, 3, 2, 4〉

Step 2: 〈3, 6, 2, 4〉

Step 3: 〈2, 3, 6, 4〉

Step 4: 〈2, 3, 4, 6〉
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Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)
2. Running time (time complexity)

Remark: Depends on model of computation, e.g.,

sequential vs. parallel or
internal memory vs. external memory.

In this class we usually assume
sequential and internal memory.
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Analyzing Algorithms (Continued)

Running time: the number of primitive operations used to
solve the problem.

Primitive operations:
e.g., addition, multiplication, comparisons. In more advanced
models could be page faults or Map/Reduce calls

Running time: depends on problem instance, often we find an
upper bound: F(input size)

Input size: rigorous definition given later.
1. Sorting: number of items to be sorted
2. Multiplication: number of bits, number of digits.
3. Graphs: number of vertices and edges.
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Best Case: constraints on the input, other than size, resulting
in the fastest possible running time.
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Three Types of Algorithmic Analyses

Best Case: constraints on the input, other than size, resulting
in the fastest possible running time.

Worst Case: constraints on the input, other than size,
resulting in the slowest possible running time.
Example. In the worst case Quicksort runs in Θ(n2) time on an

input of n keys.

Average Case: average running time over every possible type
of input (usually involve probabilities of different types of
input).
Example. In average case Quicksort runs in Θ(n logn) time on an

input of n keys. All n! inputs of n keys are considered equally likely.

Remark: All cases are relative to the algorithm under
consideration.
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The number of comparisons needed is equal to

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−1

= n− 1 = Θ(n).
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1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
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The number of comparisons needed is equal to

1 + 2 + · · ·+ (n− 1) =
n(n− 1)
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= Θ(n2).



Three Analyses of Insertion Sorting

Best Case: A[1] ≤ A[2] ≤ A[3] ≤ · · · ≤ A[n].

The number of comparisons needed is equal to

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−1

= n− 1 = Θ(n).

Worst Case: A[1] ≥ A[2] ≥ A[3] ≥ · · · ≥ A[n].

The number of comparisons needed is equal to

1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
= Θ(n2).

Average Case: Θ(n2) assuming that each of the n! instances are
equally likely.



Further thoughts on algorithm design
• Algorithm Design, as taught in this class, is mainly about

designing algorithms that have small big O() running times.

• “All other things being equal”,
O(n log n) algorithms will run more quickly than O(n2)
ones and
O(n) algorithms will beat O(n log n) ones.

• Being able to do good algorithm design lets you identify the
hard parts of your problem and deal with them effectively.

• Too often, programmers try to solve problems using brute
force techniques and end up with slow complicated code! A
few hours of abstract thought devoted to algorithm design
could have speeded up the solution substantially and
simplified it.



Final Note

Note: After algorithm design one can continue on to Algorithm
tuning which would further concentrate on improving
algorithms by cutting cut down on the constants in the big O()
bounds. This needs a good understanding of both algorithm
design principles and efficient use of data structures.

In this course we will not go further into algorithm tuning. For
a good introduction, see Chapter 9 in Programming Pearls,
2nd ed by Jon Bentley.


