Sorting and Searching
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Priority Queue: Motivating Example

3 jobs have been submitted to a printer in the order A, B, C.
Consider the printing pool at this moment.

Sizes: Job A — 100 pages
Job B — 10 pages
Job C — 1 page

Average finish time with FIFO service:

(100+1104111) / 3 = 107 time units

Average finish time for shortest-job-first service:

(14+11+111) / 3 = 41 time units
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Priority Queue: Motivating Example

@ The elements in the queue are printing jobs, each with the
associated number of pages that serves as its priority

@ Processing the shortest job first corresponds to extracting the
smallest element from the queue

@ Insert new printing jobs as they arrive

A queue capable of supporting two operations: Insert and
Extract-Min?
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Priority queue is an abstract data structure that supports two

operations

@ Insert: inserts the new element into the queue

@ Extract-Min: removes and returns the smallest element from

the queue

Extract-Min
e

Priority Queue

Insert
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Possible Implementations

@ unsorted list + a pointer to the smallest element
o Insert in O(1) time
o Extract-Min in O(n) time, since it requires a linear scan to find
the new minimum
@ sorted array
o Insert in O(n) time
e Extract-Min in O(1) time
@ sorted doubly linked list

o Insert in O(n) time
e Extract-Min in O(1) time

Is there any data structure that supports both these priority queue
operations in O(log n) time?

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching



(Binary) Heap

Pack to the left

Heaps are “almost complete binary trees”
@ All levels are full except possibly the lowest level

@ If the lowest level is not full, then nodes must be packed to
the left
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Heap-order Property
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A min-heap Not a heap

Heap-order property:
The value of a node is at least the value of its parent — Min-heap
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Heap Properties

o If the heap-order property is maintained, heaps support the
following operations efficiently (assume there are n elements
in the heap)

o Insert in O(log n) time
e Extract-Min in O(log n) time

@ Structure properties

o A heap of height h has between 2" to 2/*1 — 1 nodes. Thus,
an n-element heap has height ©(log n).

o The structure is so regular, it can be represented in an array
and no links are necessary !!!

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching



Array Implementation of Heap

1 23456738 910
[A[B[C[D[E[F[G[H]1]J]

@ The root is in array position 1

@ For any element in array position i

e The left child is in position 2/
e The right child is in position 2i + 1
e The parent is in position [//2]

@ We will draw the heaps as trees, with the understanding that
an actual implementation will use simple arrays
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Insertion

@ Add the new element to the next available position at the
lowest level
@ Restore the min-heap property if violated
o General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.
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Insertion

@ Add the new element to the next available position at the
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Insertion

@ Add the new element to the next available position at the
lowest level
@ Restore the min-heap property if violated
o General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

swap
Percolate up to maintain
the min-heap property
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Insertion

@ Add the new element to the next available position at the
lowest level
@ Restore the min-heap property if violated
o General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

Percolate up to maintain
@ e the min-heap property
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Insertion

@ Add the new element to the next available position at the
lowest level
@ Restore the min-heap property if violated
o General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

swap /

Percolate up to maintain
the min-heap property

@ Correctness: after each swap, the min-heap property is
satisfied for the subtree rooted at the new element
e Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching



Extract-Min: First Attempt

Min-heap property preserved, but completeness not preserved!
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Extract-Min

e Copy the last element to the root (i.e., overwrite the
minimum element stored there)

@ Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.
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Extract-Min

e Copy the last element to the root (i.e., overwrite the
minimum element stored there)

@ Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

Copy the last element to the
root
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Extract-Min

e Copy the last element to the root (i.e., overwrite the
minimum element stored there)

@ Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

H\V&l])/

Percolate down to maintain
the min-heap property
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Extract-Min

e Copy the last element to the root (i.e., overwrite the
minimum element stored there)

@ Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

swap

Percolate down to maintain
the min-heap property
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Extract-Min

e Copy the last element to the root (i.e., overwrite the
minimum element stored there)

@ Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

Percolate down to maintain
the min-heap property

o Correctness: after each swap, the min-heap property is
satisfied for all nodes except the node containing the element

(with respect to its children)
e Time complexity = O(height) = O(log n)
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@ Build a binary heap of n elements
o the minimum element is at the top of the heap
e insert n elements one by one
= O(nlog n)
(A more clever approach can do this in O(n) time.)

@ Perform n Extract-Min operations

o the elements are extracted in sorted order
o each Extract-Min operation takes O(log n) time
= O(nlog n)

e Total time complexity: O(nlog n)
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@ A Priority queue is an abstract data structure that supports
two operations: Insert and Extract-Min.

o If priority queues are implemented using heaps, then these two
operations are supported in O(log n) time.

@ Heapsort takes O(nlog n) time, which is as efficient as merge
sort and quicksort.
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Sometimes priority queues need to support another operation
called Decrease-Key

@ Decrease-Key: decreases the value of one specified element

@ Decrease-Key is used in later algorithms, e.g., in Dijkstra’s
algorithm for finding Shortest Path Trees

How can heaps be modified to support Decrease-Key in O(log n)
time?

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching



Going Further

@ For some algorithms, there are other desirable Priority Queue
operations, e.g., Delete an arbitrary item and Melding or
taking the union of two priority queues

@ There is a tradeoff between the costs of the various
operations. Depending upon where the data structure is used,
different priority queues might be better.

@ Most famous variants are Binomial Heaps and Fibonacci
Heaps
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