
Sorting and Searching

Lecture 2: Priority Queues, Heaps, and Heapsort

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 1 / 24



Priority Queue: Motivating Example

3 jobs have been submitted to a printer in the order A, B, C.
Consider the printing pool at this moment.

Sizes: Job A — 100 pages
Job B — 10 pages
Job C — 1 page

Average finish time with FIFO service:

(100+110+111) / 3 = 107 time units

Average finish time for shortest-job-first service:

(1+11+111) / 3 = 41 time units

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 2 / 24



Priority Queue: Motivating Example

The elements in the queue are printing jobs, each with the
associated number of pages that serves as its priority

Processing the shortest job first corresponds to extracting the
smallest element from the queue

Insert new printing jobs as they arrive

A queue capable of supporting two operations: Insert and
Extract-Min?

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 3 / 24



Priority Queue

Priority queue is an abstract data structure that supports two
operations

Insert: inserts the new element into the queue

Extract-Min: removes and returns the smallest element from
the queue

Priority Queue
Extract-Min Insert

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 4 / 24



Possible Implementations

unsorted list + a pointer to the smallest element

Insert in O(1) time
Extract-Min in O(n) time, since it requires a linear scan to find
the new minimum

sorted array

Insert in O(n) time
Extract-Min in O(1) time

sorted doubly linked list

Insert in O(n) time
Extract-Min in O(1) time

Question

Is there any data structure that supports both these priority queue
operations in O(log n) time?

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 5 / 24



(Binary) Heap

Pack to the left

Heaps are “almost complete binary trees”

All levels are full except possibly the lowest level

If the lowest level is not full, then nodes must be packed to
the left

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 6 / 24



Heap-order Property

1

2 5

634

A min-heap

4

2 5

631

Not a heap

Heap-order property:

The value of a node is at least the value of its parent — Min-heap

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 7 / 24



Heap Properties

If the heap-order property is maintained, heaps support the
following operations efficiently (assume there are n elements
in the heap)

Insert in O(log n) time
Extract-Min in O(log n) time

Structure properties

A heap of height h has between 2h to 2h+1 − 1 nodes. Thus,
an n-element heap has height Θ(log n).

The structure is so regular, it can be represented in an array
and no links are necessary !!!

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 8 / 24



Array Implementation of Heap

CA B D E F G H I J

A

B C

D E F G

H I J

31 2 4 5 6 7 8 9 10

The root is in array position 1

For any element in array position i

The left child is in position 2i
The right child is in position 2i + 1
The parent is in position bi/2c

We will draw the heaps as trees, with the understanding that
an actual implementation will use simple arrays

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 9 / 24



Insertion

Add the new element to the next available position at the
lowest level
Restore the min-heap property if violated

General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

2

3 4

5 4 6 5

76 8

Correctness: after each swap, the min-heap property is
satisfied for the subtree rooted at the new element
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 10 / 24



Insertion

Add the new element to the next available position at the
lowest level
Restore the min-heap property if violated

General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

2

3 4

5 4 6 5

76 8 1 Insert 1

Correctness: after each swap, the min-heap property is
satisfied for the subtree rooted at the new element
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 11 / 24



Insertion

Add the new element to the next available position at the
lowest level
Restore the min-heap property if violated

General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

2

3 4

5 1 6 5

76 8 4

swap
Percolate up to maintain
the min-heap property

Correctness: after each swap, the min-heap property is
satisfied for the subtree rooted at the new element
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 12 / 24



Insertion

Add the new element to the next available position at the
lowest level
Restore the min-heap property if violated

General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

2

1 4

5 3 6 5

76 8 4

swap

Percolate up to maintain
the min-heap property

Correctness: after each swap, the min-heap property is
satisfied for the subtree rooted at the new element
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 13 / 24



Insertion

Add the new element to the next available position at the
lowest level
Restore the min-heap property if violated

General strategy is percolate up (or bubble up): if the parent
of the element is larger than the element, then interchange the
parent with child.

1

2 4

5 3 6 5

76 8 4
Percolate up to maintain
the min-heap property

swap

Correctness: after each swap, the min-heap property is
satisfied for the subtree rooted at the new element
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 14 / 24



Extract-Min: First Attempt

3 4

4 5 6 5

76 8

3 4

4 5 6 5

76 8

3

4

4 5 6 5

76 8

3

4 4

5 6 5

76 8

3

4 4

6 5 6 5

7 8

2

Min-heap property preserved, but completeness not preserved!

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 15 / 24



Extract-Min

Copy the last element to the root (i.e., overwrite the
minimum element stored there)
Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

2

3 4

4 5 6 5

76 8

Correctness: after each swap, the min-heap property is
satisfied for all nodes except the node containing the element
(with respect to its children)
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 16 / 24



Extract-Min

Copy the last element to the root (i.e., overwrite the
minimum element stored there)
Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

8

3 4

4 5 6 5

76
Copy the last element to the
root

Correctness: after each swap, the min-heap property is
satisfied for all nodes except the node containing the element
(with respect to its children)
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 17 / 24



Extract-Min

Copy the last element to the root (i.e., overwrite the
minimum element stored there)
Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

3

8 4

4 5 6 5

76
Percolate down to maintain
the min-heap property

swap

Correctness: after each swap, the min-heap property is
satisfied for all nodes except the node containing the element
(with respect to its children)
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 18 / 24



Extract-Min

Copy the last element to the root (i.e., overwrite the
minimum element stored there)
Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

3

4 4

8 5 6 5

76
Percolate down to maintain
the min-heap property

swap

Correctness: after each swap, the min-heap property is
satisfied for all nodes except the node containing the element
(with respect to its children)
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 19 / 24



Extract-Min

Copy the last element to the root (i.e., overwrite the
minimum element stored there)
Restore the min-heap property by percolate down (or bubble
down): if the element is larger than either of its children, then
interchange it with the smaller of its children.

3

4 4

6 5 6 5

78
Percolate down to maintain
the min-heap property

swap

Correctness: after each swap, the min-heap property is
satisfied for all nodes except the node containing the element
(with respect to its children)
Time complexity = O(height) = O(log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 20 / 24



Heapsort

Build a binary heap of n elements

the minimum element is at the top of the heap
insert n elements one by one
=⇒ O(n log n)
(A more clever approach can do this in O(n) time.)

Perform n Extract-Min operations

the elements are extracted in sorted order
each Extract-Min operation takes O(log n) time
=⇒ O(n log n)

Total time complexity: O(n log n)

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 21 / 24



Summary

A Priority queue is an abstract data structure that supports
two operations: Insert and Extract-Min.

If priority queues are implemented using heaps, then these two
operations are supported in O(log n) time.

Heapsort takes O(n log n) time, which is as efficient as merge
sort and quicksort.

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 22 / 24



New Operation

Sometimes priority queues need to support another operation
called Decrease-Key

Decrease-Key: decreases the value of one specified element

Decrease-Key is used in later algorithms, e.g., in Dijkstra’s
algorithm for finding Shortest Path Trees

Question

How can heaps be modified to support Decrease-Key in O(log n)
time?

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 23 / 24



Going Further

For some algorithms, there are other desirable Priority Queue
operations, e.g., Delete an arbitrary item and Melding or
taking the union of two priority queues

There is a tradeoff between the costs of the various
operations. Depending upon where the data structure is used,
different priority queues might be better.

Most famous variants are Binomial Heaps and Fibonacci
Heaps

Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 24 / 24


