Quicksort

Revision of August 25, 2016

== THE DEPARTMENT OF

\&/ OMPUTER -CIENCE -7
_ﬁgfﬁmﬂ-é% HKUST # B9

Quicksort Revision of August 25, 2016 1/19

Reference: Chapter 7 of CLRS

Outline:
@ Partitions
@ Quicksort

@ Analysis of Quicksort

Quicksort Revision of August 25, 2016 2/19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q — 1] and A[q + 1..r] such that

Alul < Alq] < A[v], foranyp<u<g—landg+1<v<r

p q r
X

X = Alrl

x is called the pivot. Assume x = A[r]; if not, swap first
Quicksort works by:

@ calling partition first
@ recursively sorting A[p..q — 1] and A[q + 1..r]

Quicksort Revision of August 25, 2016 3/19

Partitioning A[p..r] with extra memory

e Copy A[p..r] to another array B[p..r]
e With p — r comparisons find the rank R of x = A[r] in Blp..r]

e Copy the items in B[p..r] back to A[p..r] placing

e items smaller than x into first R — 1 locations
e x into location p+ R—1
e items larger than x into last r — R locations

e O(r — p) time but needs extra space.

Quicksort Revision of August 25, 2016 4/19

Partition(A, p, r) without extra memory

Use A[r| as the pivot, and grow partition from left to right.
i will be largest index of processed item < x.
J will be smallest index of unprocessed item.

Y i j r
. X

= X = X unrestricted

@ Initially (i,j) = (p - 1,p)
@ Increase j by 1 each time to find a place for A[j]
At the same time increase i when necessary

© Stops when j =r

Quicksort Revision of August 25, 2016 5/19

One lteration of the Procedure Partition

Increase j by 1 each time to find a place for A[j]

At the same time increase i when necessary

p i j r
L] > | [x]
X > X

=)
- ¢/ (A) Afj] >x
p i i r
L] []x]

= X >~ X

p | i r
L] <X | [x]

= x ~ X)

. (B) Al <x

p i J r
EETTTN [|

= X = x

@ Only increase j by 1
Q@ i=i+1 A< A j=j+1

Quicksort Revision of August 25, 2016 6 /19

Example: The Operation of Partition(A, p, r)

i P r
|2[8] 7] 1[3]5]6]4]
prll r
|2[8]7]1][3]5]6]4] (2
pvi J r
2]e|7[1][3]5/6[4] (3
p,i j r
(2]8l7][1][3]5/6[4] (g
p i j r
(2]1|7[8[3]5[6[4] (9

p i i r
2[1]3]8]7][s]6]4] (9

p i j r
2[1]s]8]7]5]6[4]

p i jr
[2]1]3][8]7]5[6[4] (9

p i jr
[2]1]3[4][7]5[6[8] (9

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x =A[r]; // Alr] is the pivot element
I=p—1

for j=ptor—1do
if A[j] < x then
i=i+1;
exchange A[i] and A[j];
end
end
exchange A[i + 1] and A[r]; // put pivot in position
return i+1// g=i+1

end

Quicksort Revision of August 25, 2016 8/19

Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
x = A[r];
i=p-—1,;

for j=ptor—1do
if A[j] < x then
i=i+1;
exchange A[i] and A[j]; // O(r — p)
end
end
exchange A[i + 1] and A[r];
return / 41

end

Running time is O(r — p)
@ linear in the length of the array A[p..r]

Quicksort(A, p, r)

begin
if p < r then
g = Partition(A, p, r);
Quicksort(A, p,q — 1);
Quicksort(A,q + 1,r);
end
end

o If we could always partition the array into halves, then we
have the recurrence T(n) < 2T(n/2) 4+ O(n), hence
T(n) = O(nlogn)

@ However, if we always get unlucky with very unbalanced
partitions, then T(n) < T(n— 1)+ O(n), hence
T(n) = O(n%)

Quicksort Revision of August 25, 2016 10 /19

Outline:
@ Partition
@ Quicksort

@ Average Case Analysis of Quicksort

Quicksort Revision of August 25, 2016 11/19

Average Case Analysis of Quicksort

Measuring running time:

@ The running time is dominated by the time spent in partition.

@ The running time of the partition procedure can be measured
by the number of key comparisons.

@ Need to specify m, the size of the left partition block.

T(n): running time on array of size n.
Recurrence: T(n) = T(m)+ T(n—m—1)+ O(n)
Worst Case:

T(n) = TO)+ T(n—1)+ O(n)
T(n) = 0O(n%)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12/19

Average Case Analysis

© Worst-case doesn't make sense: for any given input, the worst
case is very unlikely to happen

@ Use Average Case Analysis

© Assume every possible input permutation of the n items are
equally likely.

@ n! permutations so each one has probability % of ocurring

@ If S, is set of all permutations, o € S, is a possible input
permutation, then average running time is

1
HZ C(o)

O'GSn

Quicksort Revision of August 25, 2016 13 /19

Average Case Analysis

Let A be the set of items in A[p..r] and o a random permutation
of A.

Q@ Ar] is equally likely to be any item in A.

@ After running the partition algorithm on A[p..r], the input to
the new left and right subproblems are again random
permutations (need to argue why).

Recall that if X is a random variable and Eq, E>, ..., E, are events
that partition the probability space then we can write the
expectation of X in terms of the Expectation of X conditioned on
E;. That is

E(X) = Z E(X|E;) Pr(E;).

Quicksort Revision of August 25, 2016 14 /19

Average Case Analysis

Assume that the input to is a random permutation of N items.

@ Let Cy be the average amount of work performed on the input
o (o=C =0.

@ Partition requires N — 1 comparisons

@ Each item has probability 1/N of being pivot.

°

If ltem k is pivot, the two remaining subproblems require
Cx_1 + Cn_k average time

1
Cy = N_1+N Z (Ck—1+ Cn—k)
1<k<N

2
= N_1+N Z Ck—1
1<k<N

Quicksort Revision of August 25, 2016 15 /19

Average Case Analysis

Multiplying both sides of previous equation by N and then
rewriting the equation for N — 1 yields

NCy=N(N—-1)+2 > Gy, (N-1)Cy_y=(N-1D(N=2)+2 > G
1<k<N 1<k<N—1

Subtracting the 2nd from the 1st and simplifying yields
NCy = (N + 1)CN71 +2N -2
Dividing both sides by N(N + 1) gives

Cn _CN_1+ 2 2
N+1 N N+1 N(N+1)

Quicksort Revision of August 25, 2016 16 / 19

Average Case Analysis

Telescoping the recurrence down to N = 3 and recalling that
C; = 0 yields

v CN—1Jr 2 2
N+1 N N+1 N(N-+1)

= /\C/N—_21 + </%/ (N—21)N) * <Nil - /v(/v2+ 1)>

o2
= 5 +2 Z/+1 IZ;//—Fl)

= 2HN+1 —2H5 + 0(1) =2HyN + O(].)

where Hy = Z,N:l 1/i and we are using the fact that
32, 1/i(i = 1) is bounded.

Quicksort Revision of August 25, 2016 17 /19

Average Case Analysis

We just saw that
Cn

N+1
Hy is called the Nth Harmonic number and it is well known that

=2Hy + O(l)

Hp =Inn+ O(1).

So, we have just proven that the average number of operations
performed running Quicksort on a random permutation of N items
is

Cny = 2(N + 1)Hy + O(N) = 2NIn N + O(N).

Quicksort Revision of August 25, 2016 18 /19

Odds and Ends

@ Quicksort is a divide and conquer algorithm.
@ The Quicksort code can be tuned

o When N is small, call Insertion Sort rather than Quicksort (on
very small N, Insertion sort is faster.

o Instead of using last item A[r] as pivot, set pivot to be median
of first, last and middle item. (Why should this help?)

@ gsort under UNIX was an extremely popular sorting routine for
decades. It was a finely tuned version of Quicksort

@ Quicksort was published by Tony Hoare in the
Communications of the ACM 4(7), 1961.

Quicksort Revision of August 25, 2016 19 /19

