
Quicksort
Revision of August 25, 2016

Quicksort Revision of August 25, 2016 1 / 19

Outline

Reference: Chapter 7 of CLRS

Outline:

Partitions

Quicksort

Analysis of Quicksort

Quicksort Revision of August 25, 2016 2 / 19

Outline

Reference: Chapter 7 of CLRS

Outline:

Partitions

Quicksort

Analysis of Quicksort

Quicksort Revision of August 25, 2016 2 / 19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q − 1] and A[q + 1..r] such that

A[u] < A[q] < A[v], for any p ≤ u ≤ q − 1 and q + 1 ≤ v ≤ r

x

p rq

x x

x = A[r]

x is called the pivot. Assume x = A[r]; if not, swap first
Quicksort works by:

1 calling partition first

2 recursively sorting A[

p..q − 1

] and A[

q + 1..r

]

Quicksort Revision of August 25, 2016 3 / 19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q − 1] and A[q + 1..r] such that

A[u] < A[q] < A[v], for any p ≤ u ≤ q − 1 and q + 1 ≤ v ≤ r

x

p rq

x x

x = A[r]

x is called the pivot. Assume x = A[r]; if not, swap first

Quicksort works by:

1 calling partition first

2 recursively sorting A[

p..q − 1

] and A[

q + 1..r

]

Quicksort Revision of August 25, 2016 3 / 19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q − 1] and A[q + 1..r] such that

A[u] < A[q] < A[v], for any p ≤ u ≤ q − 1 and q + 1 ≤ v ≤ r

x

p rq

x x

x = A[r]

x is called the pivot. Assume x = A[r]; if not, swap first
Quicksort works by:

1 calling partition first

2 recursively sorting A[

p..q − 1

] and A[

q + 1..r

]

Quicksort Revision of August 25, 2016 3 / 19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q − 1] and A[q + 1..r] such that

A[u] < A[q] < A[v], for any p ≤ u ≤ q − 1 and q + 1 ≤ v ≤ r

x

p rq

x x

x = A[r]

x is called the pivot. Assume x = A[r]; if not, swap first
Quicksort works by:

1 calling partition first

2 recursively sorting A[

p..q − 1

] and A[

q + 1..r

]

Quicksort Revision of August 25, 2016 3 / 19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q − 1] and A[q + 1..r] such that

A[u] < A[q] < A[v], for any p ≤ u ≤ q − 1 and q + 1 ≤ v ≤ r

x

p rq

x x

x = A[r]

x is called the pivot. Assume x = A[r]; if not, swap first
Quicksort works by:

1 calling partition first

2 recursively sorting A[

p..q − 1

] and A[

q + 1..r

]

Quicksort Revision of August 25, 2016 3 / 19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q − 1] and A[q + 1..r] such that

A[u] < A[q] < A[v], for any p ≤ u ≤ q − 1 and q + 1 ≤ v ≤ r

x

p rq

x x

x = A[r]

x is called the pivot. Assume x = A[r]; if not, swap first
Quicksort works by:

1 calling partition first

2 recursively sorting A[p..q − 1] and A[

q + 1..r

]

Quicksort Revision of August 25, 2016 3 / 19

Partition

Given: An array of numbers
Partition: Rearrange the array A[p..r] in place into two (possibly
empty) subarrays A[p..q − 1] and A[q + 1..r] such that

A[u] < A[q] < A[v], for any p ≤ u ≤ q − 1 and q + 1 ≤ v ≤ r

x

p rq

x x

x = A[r]

x is called the pivot. Assume x = A[r]; if not, swap first
Quicksort works by:

1 calling partition first

2 recursively sorting A[p..q − 1] and A[q + 1..r]

Quicksort Revision of August 25, 2016 3 / 19

Partitioning A[p..r] with extra memory

Copy A[p..r] to another array B[p..r]

With p − r comparisons find the rank R of x = A[r] in B[p..r]

Copy the items in B[p..r] back to A[p..r] placing

items smaller than x into first R − 1 locations
x into location p + R − 1
items larger than x into last r − R locations

O(r − p) time but needs extra space.

Quicksort Revision of August 25, 2016 4 / 19

Partitioning A[p..r] with extra memory

Copy A[p..r] to another array B[p..r]

With p − r comparisons find the rank R of x = A[r] in B[p..r]

Copy the items in B[p..r] back to A[p..r] placing

items smaller than x into first R − 1 locations
x into location p + R − 1
items larger than x into last r − R locations

O(r − p) time but needs extra space.

Quicksort Revision of August 25, 2016 4 / 19

Partitioning A[p..r] with extra memory

Copy A[p..r] to another array B[p..r]

With p − r comparisons find the rank R of x = A[r] in B[p..r]

Copy the items in B[p..r] back to A[p..r] placing

items smaller than x into first R − 1 locations
x into location p + R − 1
items larger than x into last r − R locations

O(r − p) time but needs extra space.

Quicksort Revision of August 25, 2016 4 / 19

Partitioning A[p..r] with extra memory

Copy A[p..r] to another array B[p..r]

With p − r comparisons find the rank R of x = A[r] in B[p..r]

Copy the items in B[p..r] back to A[p..r] placing

items smaller than x into first R − 1 locations
x into location p + R − 1
items larger than x into last r − R locations

O(r − p) time but needs extra space.

Quicksort Revision of August 25, 2016 4 / 19

Partition(A, p, r) without extra memory

Use A[r] as the pivot, and grow partition from left to right.
i will be largest index of processed item ≤ x .
j will be smallest index of unprocessed item.

ip j r
x

x x unrestricted

1 Initially (i , j) = (p − 1, p)

2 Increase j by 1 each time to find a place for A[j]
At the same time increase i when necessary

3 Stops when j = r

Quicksort Revision of August 25, 2016 5 / 19

Partition(A, p, r) without extra memory

Use A[r] as the pivot, and grow partition from left to right.
i will be largest index of processed item ≤ x .
j will be smallest index of unprocessed item.

ip j r
x

x x unrestricted

1 Initially (i , j) = (p − 1, p)

2 Increase j by 1 each time to find a place for A[j]
At the same time increase i when necessary

3 Stops when j = r

Quicksort Revision of August 25, 2016 5 / 19

Partition(A, p, r) without extra memory

Use A[r] as the pivot, and grow partition from left to right.
i will be largest index of processed item ≤ x .
j will be smallest index of unprocessed item.

ip j r
x

x x unrestricted

1 Initially (i , j) = (p − 1, p)

2 Increase j by 1 each time to find a place for A[j]
At the same time increase i when necessary

3 Stops when j = r

Quicksort Revision of August 25, 2016 5 / 19

Partition(A, p, r) without extra memory

Use A[r] as the pivot, and grow partition from left to right.
i will be largest index of processed item ≤ x .
j will be smallest index of unprocessed item.

ip j r
x

x x unrestricted

1 Initially (i , j) = (p − 1, p)

2 Increase j by 1 each time to find a place for A[j]
At the same time increase i when necessary

3 Stops when j = r

Quicksort Revision of August 25, 2016 5 / 19

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for A[j]

At the same time increase i when necessary

ip j r
x

x x

>x

jp i

x x

x

r

rp

x x

i j

x< x

p i j r

x x

(A) A[j] > x

(B) A[j] < x

1 Only increase j by 1

2 i = i + 1. A[i]↔ A[j]. j = j + 1

Quicksort Revision of August 25, 2016 6 / 19

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for A[j]

At the same time increase i when necessary

ip j r
x

x x

>x

jp i

x x

x

r

rp

x x

i j

x< x

p i j r

x x

(A) A[j] > x

(B) A[j] < x

1 Only increase j by 1

2 i = i + 1. A[i]↔ A[j]. j = j + 1

Quicksort Revision of August 25, 2016 6 / 19

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for A[j]

At the same time increase i when necessary

ip j r
x

x x

>x

jp i

x x

x

r

rp

x x

i j

x< x

p i j r

x x

(A) A[j] > x

(B) A[j] < x

1 Only increase j by 1

2 i = i + 1. A[i]↔ A[j]. j = j + 1

Quicksort Revision of August 25, 2016 6 / 19

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for A[j]

At the same time increase i when necessary

ip j r
x

x x

>x

jp i

x x

x

r

rp

x x

i j

x< x

p i j r

x x

(A) A[j] > x

(B) A[j] < x

1 Only increase j by 1

2 i = i + 1.

A[i]↔ A[j]. j = j + 1

Quicksort Revision of August 25, 2016 6 / 19

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for A[j]

At the same time increase i when necessary

ip j r
x

x x

>x

jp i

x x

x

r

rp

x x

i j

x< x

p i j r

x x

(A) A[j] > x

(B) A[j] < x

1 Only increase j by 1

2 i = i + 1. A[i]↔ A[j].

j = j + 1

Quicksort Revision of August 25, 2016 6 / 19

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for A[j]

At the same time increase i when necessary

ip j r
x

x x

>x

jp i

x x

x

r

rp

x x

i j

x< x

p i j r

x x

(A) A[j] > x

(B) A[j] < x

1 Only increase j by 1

2 i = i + 1. A[i]↔ A[j]. j = j + 1

Quicksort Revision of August 25, 2016 6 / 19

Example: The Operation of Partition(A, p, r)

i

j

j

j

p i j

p i j

p i j

p i j, r

p i j, r

r

r

r

r

r

r

 rp, j

p, i

p, i

p, i

2 8 7 41 3 5 6

2

2

2

2

2

2

2

2

1

1

1

1

1 3

3

3

3

8

8

8

8

8

8

8

7

7

7

7

7

7

5

5

5

6

6

8 7 1 3 5 6 4

7 1 3 5 6 4

1 3 5 6 4

3 5 6 4

5 6 4

6 4

4

4

(1)

(2)

(3)

(4)

(5)

(6)

(9)

(7)

(8)

Quicksort Revision of August 25, 2016 7 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j];

end

end

exchange A[i + 1] and A[r]

; // put pivot in position

return i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j];

end

end

exchange A[i + 1] and A[r]

; // put pivot in position

return i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then

i = i + 1;
exchange A[i] and A[j];

end

end

exchange A[i + 1] and A[r]

; // put pivot in position

return i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j];

end

end

exchange A[i + 1] and A[r]

; // put pivot in position

return i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j];

end

end

exchange A[i + 1] and A[r]

; // put pivot in position

return i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j];

end

end
exchange A[i + 1] and A[r]; // put pivot in position

return i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j];

end

end
exchange A[i + 1] and A[r]; // put pivot in position

return

i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
x = A[r]; // A[r] is the pivot element

i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j];

end

end
exchange A[i + 1] and A[r]; // put pivot in position

return i + 1 // q = i + 1

end

Quicksort Revision of August 25, 2016 8 / 19

Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
x = A[r];
i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j]; // O(r − p)

end

end
exchange A[i + 1] and A[r];
return i + 1

end

Running time is O(

r − p

)

linear in the length of the array A[p..r]

Quicksort Revision of August 25, 2016 9 / 19

Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
x = A[r];
i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j]; // O(r − p)

end

end
exchange A[i + 1] and A[r];
return i + 1

end

Running time is O(

r − p

)

linear in the length of the array A[p..r]

Quicksort Revision of August 25, 2016 9 / 19

Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
x = A[r];
i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j]; // O(r − p)

end

end
exchange A[i + 1] and A[r];
return i + 1

end

Running time is O(r − p)

linear in the length of the array A[p..r]

Quicksort Revision of August 25, 2016 9 / 19

Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
x = A[r];
i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j]; // O(r − p)

end

end
exchange A[i + 1] and A[r];
return i + 1

end

Running time is O(r − p)

linear in the length of the array A[p..r]

Quicksort Revision of August 25, 2016 9 / 19

Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
x = A[r];
i = p − 1;
for j = p to r − 1 do

if A[j] ≤ x then
i = i + 1;
exchange A[i] and A[j]; // O(r − p)

end

end
exchange A[i + 1] and A[r];
return i + 1

end

Running time is O(r − p)

linear in the length of the array A[p..r]

Quicksort Revision of August 25, 2016 9 / 19

Quicksort

Quicksort(A, p, r)

begin
if p < r then

q = Partition(A, p, r);
Quicksort(A,

p, q − 1

);
Quicksort(A,

q + 1, r

);

end

end

If we could always partition the array into halves, then we
have the recurrence T (n) ≤ 2T (n/2) + O(n), hence
T (n) = O(n log n)

However, if we always get unlucky with very unbalanced
partitions, then T (n) ≤ T (n − 1) + O(n), hence
T (n) = O(n2)

Quicksort Revision of August 25, 2016 10 / 19

Quicksort

Quicksort(A, p, r)

begin
if p < r then

q = Partition(A, p, r);
Quicksort(A, p, q − 1);
Quicksort(A,

q + 1, r

);

end

end

If we could always partition the array into halves, then we
have the recurrence T (n) ≤ 2T (n/2) + O(n), hence
T (n) = O(n log n)

However, if we always get unlucky with very unbalanced
partitions, then T (n) ≤ T (n − 1) + O(n), hence
T (n) = O(n2)

Quicksort Revision of August 25, 2016 10 / 19

Quicksort

Quicksort(A, p, r)

begin
if p < r then

q = Partition(A, p, r);
Quicksort(A, p, q − 1);
Quicksort(A, q + 1, r);

end

end

If we could always partition the array into halves, then we
have the recurrence T (n) ≤ 2T (n/2) + O(n), hence
T (n) = O(n log n)

However, if we always get unlucky with very unbalanced
partitions, then T (n) ≤ T (n − 1) + O(n), hence
T (n) = O(n2)

Quicksort Revision of August 25, 2016 10 / 19

Quicksort

Quicksort(A, p, r)

begin
if p < r then

q = Partition(A, p, r);
Quicksort(A, p, q − 1);
Quicksort(A, q + 1, r);

end

end

If we could always partition the array into halves, then we
have the recurrence T (n) ≤ 2T (n/2) + O(n), hence
T (n) = O(n log n)

However, if we always get unlucky with very unbalanced
partitions, then T (n) ≤ T (n − 1) + O(n), hence
T (n) = O(n2)

Quicksort Revision of August 25, 2016 10 / 19

Outline

Outline:

Partition

Quicksort

Average Case Analysis of Quicksort

Quicksort Revision of August 25, 2016 11 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) =

T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) +

T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) +

O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)

Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(

n2

)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(n2)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(n2)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis of Quicksort

Measuring running time:

The running time is dominated by the time spent in partition.

The running time of the partition procedure can be measured
by the number of key comparisons.

Need to specify m, the size of the left partition block.

T (n): running time on array of size n.

Recurrence: T (n) = T (m) + T (n −m − 1) + O(n)
Worst Case:

T (n) = T (0) + T (n − 1) + O(n)

T (n) = O(n2)

What inputs give worst case performance?

We will analyze average case running time.

Quicksort Revision of August 25, 2016 12 / 19

Average Case Analysis

1 Worst-case doesn’t make sense: for any given input, the worst
case is very unlikely to happen

2 Use Average Case Analysis

3 Assume every possible input permutation of the n items are
equally likely.

4 n! permutations so each one has probability 1
n! of ocurring

5 If Sn is set of all permutations, σ ∈ Sn is a possible input
permutation, then average running time is

1

n!

∑
σ∈Sn

C (σ)

Quicksort Revision of August 25, 2016 13 / 19

Average Case Analysis

1 Worst-case doesn’t make sense: for any given input, the worst
case is very unlikely to happen

2 Use Average Case Analysis

3 Assume every possible input permutation of the n items are
equally likely.

4 n! permutations so each one has probability 1
n! of ocurring

5 If Sn is set of all permutations, σ ∈ Sn is a possible input
permutation, then average running time is

1

n!

∑
σ∈Sn

C (σ)

Quicksort Revision of August 25, 2016 13 / 19

Average Case Analysis

1 Worst-case doesn’t make sense: for any given input, the worst
case is very unlikely to happen

2 Use Average Case Analysis

3 Assume every possible input permutation of the n items are
equally likely.

4 n! permutations so each one has probability 1
n! of ocurring

5 If Sn is set of all permutations, σ ∈ Sn is a possible input
permutation, then average running time is

1

n!

∑
σ∈Sn

C (σ)

Quicksort Revision of August 25, 2016 13 / 19

Average Case Analysis

Let A be the set of items in A[p..r] and σ a random permutation
of A.

1 A[r] is equally likely to be any item in A.

2 After running the partition algorithm on A[p..r], the input to
the new left and right subproblems are again random
permutations (need to argue why).

Recall that if X is a random variable and E1,E2, . . . ,En are events
that partition the probability space then we can write the
expectation of X in terms of the Expectation of X conditioned on
Ei . That is

E (X) =
∑
i

E (X |Ei) Pr(Ei).

Quicksort Revision of August 25, 2016 14 / 19

Average Case Analysis

Assume that the input to is a random permutation of N items.

Let CN be the average amount of work performed on the input

C0 = C1 = 0.

Partition requires N − 1 comparisons

Each item has probability 1/N of being pivot.

If Item k is pivot, the two remaining subproblems require
Ck−1 + CN−k average time

CN = N − 1 +
1

N

∑
1≤k≤N

(Ck−1 + CN−k)

= N − 1 +
2

N

∑
1≤k≤N

Ck−1

Quicksort Revision of August 25, 2016 15 / 19

Average Case Analysis

Multiplying both sides of previous equation by N and then
rewriting the equation for N − 1 yields

NCN = N(N − 1) + 2
∑

1≤k≤N

Ck−1, (N − 1)CN−1 = (N − 1)(N − 2) + 2
∑

1≤k≤N−1

Ck−1

Subtracting the 2nd from the 1st and simplifying yields

NCN = (N + 1)CN−1 + 2N − 2

Dividing both sides by N(N + 1) gives

CN

N + 1
=

CN−1
N

+
2

N + 1
− 2

N(N + 1)
.

Quicksort Revision of August 25, 2016 16 / 19

Average Case Analysis

Telescoping the recurrence down to N = 3 and recalling that
C1 = 0 yields

CN

N + 1
=

CN−1
N

+
2

N + 1
− 2

N(N + 1)

=
CN−2
N − 1

+

(
2

N
− 2

(N − 1)N

)
+

(
2

N + 1
− 2

N(N + 1)

)
= . . .

=
C1

2
+ 2

N∑
i=3

1

i + 1
−

N∑
i=3

2

i(i + 1)

= 2HN+1 − 2H3 + O(1) = 2HN + O(1)

where HN =
∑N

i=1 1/i and we are using the fact that∑∞
i=1 1/i(i = 1) is bounded.

Quicksort Revision of August 25, 2016 17 / 19

Average Case Analysis

We just saw that
CN

N + 1
= 2HN + O(1).

HN is called the Nth Harmonic number and it is well known that

Hn = ln n + O(1).

So, we have just proven that the average number of operations
performed running Quicksort on a random permutation of N items
is

CN = 2(N + 1)HN + O(N) = 2N lnN + O(N).

Quicksort Revision of August 25, 2016 18 / 19

Odds and Ends

Quicksort is a divide and conquer algorithm.

The Quicksort code can be tuned

When N is small, call Insertion Sort rather than Quicksort (on
very small N, Insertion sort is faster.
Instead of using last item A[r] as pivot, set pivot to be median
of first, last and middle item. (Why should this help?)

qsort under UNIX was an extremely popular sorting routine for
decades. It was a finely tuned version of Quicksort

Quicksort was published by Tony Hoare in the
Communications of the ACM 4(7), 1961.

Quicksort Revision of August 25, 2016 19 / 19

