Quicksort

Revision of August 25, 2016

Outline

Reference: Chapter 7 of CLRS

Outline

Reference: Chapter 7 of CLRS
Outline:

- Partitions
- Quicksort
- Analysis of Quicksort

Partition

Given: An array of numbers
Partition: Rearrange the array $A[p . . r]$ in place into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u]<A[q]<A[v], \quad \text { for any } p \leq u \leq q-1 \text { and } q+1 \leq v \leq r
$$

$$
\mathrm{x}=\mathrm{A}\lceil\mathrm{r}\rceil
$$

Given: An array of numbers
Partition: Rearrange the array $A[p . . r]$ in place into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u]<A[q]<A[v], \quad \text { for any } p \leq u \leq q-1 \text { and } q+1 \leq v \leq r
$$

$$
\mathrm{x}=\mathrm{A}\lceil\mathrm{r}\rceil
$$

x is called the pivot. Assume $x=A[r]$; if not, swap first

Given: An array of numbers
Partition: Rearrange the array $A[p . . r]$ in place into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u]<A[q]<A[v], \quad \text { for any } p \leq u \leq q-1 \text { and } q+1 \leq v \leq r
$$

$$
\mathrm{x}=\mathrm{A}\lceil\mathrm{r}\rceil
$$

x is called the pivot. Assume $x=A[r]$; if not, swap first Quicksort works by:

Given: An array of numbers
Partition: Rearrange the array $A[p . . r]$ in place into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u]<A[q]<A[v], \quad \text { for any } p \leq u \leq q-1 \text { and } q+1 \leq v \leq r
$$

$$
\mathrm{x}=\mathrm{A}\lceil\mathrm{r}\rceil
$$

x is called the pivot. Assume $x=A[r]$; if not, swap first Quicksort works by:
(1) calling partition first

Given: An array of numbers
Partition: Rearrange the array $A[p . . r]$ in place into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u]<A[q]<A[v], \quad \text { for any } p \leq u \leq q-1 \text { and } q+1 \leq v \leq r
$$

$$
\mathrm{x}=\mathrm{A}\lceil\mathrm{r}\rceil
$$

x is called the pivot. Assume $x=A[r]$; if not, swap first Quicksort works by:
(1) calling partition first
(2) recursively sorting A [
] and $A[\quad]$

Partition

Given: An array of numbers
Partition: Rearrange the array $A[p . . r]$ in place into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u]<A[q]<A[v], \quad \text { for any } p \leq u \leq q-1 \text { and } q+1 \leq v \leq r
$$

$$
\mathrm{x}=\mathrm{A}\lceil\mathrm{r}\rceil
$$

x is called the pivot. Assume $x=A[r]$; if not, swap first Quicksort works by:
(1) calling partition first
(2) recursively sorting $A[p . . q-1]$ and $A[$]

Partition

Given: An array of numbers
Partition: Rearrange the array $A[p . . r]$ in place into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u]<A[q]<A[v], \quad \text { for any } p \leq u \leq q-1 \text { and } q+1 \leq v \leq r
$$

$$
\mathrm{x}=\mathrm{A}\lceil\mathrm{r}\rceil
$$

x is called the pivot. Assume $x=A[r]$; if not, swap first Quicksort works by:
(1) calling partition first
(2) recursively sorting $A[p . . q-1]$ and $A[q+1 . . r]$

Partitioning $A[p . r]$ with extra memory

- Copy $A[p . . r]$ to another array $B[p . . r]$

Partitioning $A[p . . r]$ with extra memory

- Copy $A[p . . r]$ to another array $B[p . . r]$
- With $p-r$ comparisons find the rank R of $x=A[r]$ in $B[p . . r]$

Partitioning $A[p . . r]$ with extra memory

- Copy $A[p . . r]$ to another array $B[p . . r]$
- With $p-r$ comparisons find the rank R of $x=A[r]$ in $B[p . . r]$
- Copy the items in $B[p . . r]$ back to $A[p . . r]$ placing
- items smaller than x into first $R-1$ locations
- x into location $p+R-1$
- items larger than x into last $r-R$ locations

Partitioning $A[p . . r]$ with extra memory

- Copy $A[p . . r]$ to another array $B[p . . r]$
- With $p-r$ comparisons find the rank R of $x=A[r]$ in $B[p . . r]$
- Copy the items in $B[p . . r]$ back to $A[p . . r]$ placing
- items smaller than x into first $R-1$ locations
- x into location $p+R-1$
- items larger than x into last $r-R$ locations
- $O(r-p)$ time but needs extra space.

Partition (A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right. i will be largest index of processed item $\leq x$.
j will be smallest index of unprocessed item.

Partition (A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right. i will be largest index of processed item $\leq x$.
j will be smallest index of unprocessed item.

(1) Initially $(i, j)=(p-1, p)$

Partition (A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right. i will be largest index of processed item $\leq x$.
j will be smallest index of unprocessed item.

(1) Initially $(i, j)=(p-1, p)$
(2) Increase j by 1 each time to find a place for $A[j]$ At the same time increase i when necessary

Partition (A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right. i will be largest index of processed item $\leq x$.
j will be smallest index of unprocessed item.

(1) Initially $(i, j)=(p-1, p)$
(2) Increase j by 1 each time to find a place for $A[j]$ At the same time increase i when necessary
(3) Stops when $j=r$

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$
At the same time increase i when necessary

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$
At the same time increase i when necessary

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(1) Only increase j by 1

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(1) Only increase j by 1
(2) $i=i+1$.

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(1) Only increase j by 1
(2) $i=i+1 . A[i] \leftrightarrow A[j]$.

One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(1) Only increase j by 1
(2) $i=i+1 . A[i] \leftrightarrow A[j] . j=j+1$

Example: The Operation of Partition (A, p, r)

p, j							
2	8	7	1	3	5	6	4
p, i j							
2	8	7	1	3	5	6	4
p, i \quad j \quad j							
2	8	7	1	3	5	6	4
p, i \quad j							
2	8	7	1	3	5	6	4
p i \quad i \quad j							
2	1	7	8	3	5	6	4
p							
2	1	3	8	7	5	6	4
2	1	3	8	7	5	6	4
							j, r
2	1	3	8	7	5	6	4
p i \quad i							
2	1	3	4	7	5	6	8

(2)

The Partition (A, p, r) Algorithm

Partition (A, p, r)
begin
$x=A[r] ; / / A[r]$ is the pivot element

The Partition (A, p, r) Algorithm

Partition (A, p, r)
begin

$$
\begin{aligned}
& x=A[r] ; / / A[r] \text { is the pivot element } \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do }
\end{aligned}
$$

The Partition (A, p, r) Algorithm

Partition (A, p, r)
begin

$$
\begin{aligned}
& x=A[r] ; / / A[r] \text { is the pivot element } \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \text { if } A[j] \leq x \text { then }
\end{aligned}
$$

Partition (A, p, r)
begin

$$
\begin{aligned}
& x=A[r] ; / / A[r] \text { is the pivot element } \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \quad \begin{array}{l}
\text { if } A[j] \leq x \text { then } \\
i=i+1 ; \\
\text { exchange } A[i] \text { and } A[j] ; \\
\text { end } \\
\text { end }
\end{array}
\end{aligned}
$$

Partition (A, p, r)
begin

```
x = A[r]; // A[r] is the pivot element
i=p-1;
for j=p to r-1 do
if }A[j]\leqx\mathrm{ then
i=i+1;
exchange A[i] and A[j];
    end
end
```

; // put pivot in position

Partition (A, p, r)
begin
$x=A[r] ; / / A[r]$ is the pivot element
$i=p-1$;
for $j=p$ to $r-1$ do
if $A[j] \leq x$ then
$i=i+1$;
exchange $A[i]$ and $A[j] ;$
end
end
exchange $A[i+1]$ and $A[r] ; / /$ put pivot in position

Partition (A, p, r)
begin
$x=A[r] ; / / A[r]$ is the pivot element
$i=p-1$;
for $j=p$ to $r-1$ do
if $A[j] \leq x$ then
$i=i+1$;
exchange $A[i]$ and $A[j] ;$
end
end
exchange $A[i+1]$ and $A[r]$; // put pivot in position return

The Partition(A, p,r) Algorithm

Partition (A, p, r)
begin

```
x = A[r]; // A[r] is the pivot element
i=p-1;
for j=p to r-1 do
if A[j]\leqx then
i=i+1;
```

exchange $A[i]$ and $A[j] ;$
end
end
exchange $A[i+1]$ and $A[r] ; / /$ put pivot in position
return $i+1 / / q=i+1$
end

Running Time of Partition (A, p, r)

Partition (A, p, r)

begin

$$
\begin{aligned}
& x=A[r] \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \qquad \begin{array}{l}
\text { if } A[j] \leq x \text { then } \\
i=i+1 ; \\
\text { exchange } A[i] \text { and } A[j] ; / / O(r-p)
\end{array}
\end{aligned}
$$

end
end
exchange $A[i+1]$ and $A[r]$;
return $i+1$
end

Running Time of Partition (A, p, r)

Partition (A, p, r)

begin

$$
\begin{aligned}
& x=A[r] \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \qquad \begin{array}{l}
\text { if } A[j] \leq x \text { then } \\
i=i+1 ; \\
\text { exchange } A[i] \text { and } A[j] ; / / O(r-p)
\end{array}
\end{aligned}
$$

end
end
exchange $A[i+1]$ and $A[r]$;
return $i+1$
end

Running time is $O(\quad)$

Running Time of Partition (A, p, r)

Partition (A, p, r)

begin

$$
\begin{aligned}
& x=A[r] \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \qquad \begin{array}{l}
\text { if } A[j] \leq x \text { then } \\
i=i+1 ; \\
\text { exchange } A[i] \text { and } A[j] ; / / O(r-p)
\end{array}
\end{aligned}
$$

end
end
exchange $A[i+1]$ and $A[r]$;
return $i+1$
end

Running time is $O(r-p)$

Running Time of Partition (A, p, r)

Partition (A, p, r)

begin

$$
\begin{aligned}
& x=A[r] \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \qquad \begin{array}{l}
\text { if } A[j] \leq x \text { then } \\
i=i+1 ; \\
\text { exchange } A[i] \text { and } A[j] ; / / O(r-p)
\end{array}
\end{aligned}
$$

end
end
exchange $A[i+1]$ and $A[r]$;
return $i+1$
end

Running time is $O(r-p)$

- linear in the length of the array $A[p . . r]$

Running Time of Partition (A, p, r)

Partition (A, p, r)

begin

$$
\begin{aligned}
& x=A[r] \\
& i=p-1 ; \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \qquad \begin{array}{l}
\text { if } A[j] \leq x \text { then } \\
i=i+1 ; \\
\text { exchange } A[i] \text { and } A[j] ; / / O(r-p)
\end{array}
\end{aligned}
$$

end
end
exchange $A[i+1]$ and $A[r]$;
return $i+1$
end

Running time is $O(r-p)$

- linear in the length of the array $A[p . . r]$

Quicksort

Quicksort (A, p, r)

begin

```
        if p<r then
```

 \(q=\operatorname{Partition}(A, p, r) ;\) Quicksort (\(A\), Quicksort(\(A\),); end
 end

Quicksort

Quicksort (A, p, r)

begin

```
        if p<r then
```

 \(q=\operatorname{Partition}(A, p, r)\);
 Quicksort(\(A, p, q-1\));
 Quicksort(\(A, \quad\));
 end
 end

Quicksort

Quicksort (A, p, r)

begin

```
        if p<r then
```

 \(q=\operatorname{Partition}(A, p, r) ;\)
 Quicksort \((A, p, q-1)\);
 Quicksort \((A, q+1, r)\);
 end
 end

Quicksort

Quicksort (A, p, r)

begin

if $p<r$ then
$q=\operatorname{Partition}(A, p, r)$; Quicksort $(A, p, q-1)$; Quicksort $(A, q+1, r)$;
end
end

- If we could always partition the array into halves, then we have the recurrence $T(n) \leq 2 T(n / 2)+O(n)$, hence $T(n)=O(n \log n)$
- However, if we always get unlucky with very unbalanced partitions, then $T(n) \leq T(n-1)+O(n)$, hence $T(n)=O\left(n^{2}\right)$

Outline

Outline:

- Partition
- Quicksort
- Average Case Analysis of Quicksort

Average Case Analysis of Quicksort

Measuring running time:

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=$

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n.
Recurrence: $T(n)=T(m)+$

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+$

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+O(n)$

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+O(n)$
Worst Case:

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+O(n)$
Worst Case:

$$
T(n)=T(0)+T(n-1)+O(n)
$$

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+O(n)$
Worst Case:

$$
\begin{aligned}
& T(n)=T(0)+T(n-1)+O(n) \\
& T(n)=O(\quad)
\end{aligned}
$$

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+O(n)$
Worst Case:

$$
\begin{aligned}
& T(n)=T(0)+T(n-1)+O(n) \\
& T(n)=O\left(n^{2}\right)
\end{aligned}
$$

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+O(n)$
Worst Case:

$$
\begin{aligned}
& T(n)=T(0)+T(n-1)+O(n) \\
& T(n)=O\left(n^{2}\right)
\end{aligned}
$$

What inputs give worst case performance?

Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.
$T(n)$: running time on array of size n .
Recurrence: $T(n)=T(m)+T(n-m-1)+O(n)$
Worst Case:

$$
\begin{aligned}
& T(n)=T(0)+T(n-1)+O(n) \\
& T(n)=O\left(n^{2}\right)
\end{aligned}
$$

What inputs give worst case performance?
We will analyze average case running time.

Average Case Analysis

(1) Worst-case doesn't make sense: for any given input, the worst case is very unlikely to happen

Average Case Analysis

(1) Worst-case doesn't make sense: for any given input, the worst case is very unlikely to happen
(2) Use Average Case Analysis

Average Case Analysis

(1) Worst-case doesn't make sense: for any given input, the worst case is very unlikely to happen
(2) Use Average Case Analysis
(3) Assume every possible input permutation of the n items are equally likely.
(9) n ! permutations so each one has probability $\frac{1}{n!}$ of ocurring
(5) If S_{n} is set of all permutations, $\sigma \in S_{n}$ is a possible input permutation, then average running time is

$$
\frac{1}{n!} \sum_{\sigma \in S_{n}} C(\sigma)
$$

Average Case Analysis

Let \mathbf{A} be the set of items in $A[p . . r]$ and σ a random permutation of \mathbf{A}.
(1) $A[r]$ is equally likely to be any item in \mathbf{A}.
(2) After running the partition algorithm on $A[p . . r]$, the input to the new left and right subproblems are again random permutations (need to argue why).

Recall that if X is a random variable and $E_{1}, E_{2}, \ldots, E_{n}$ are events that partition the probability space then we can write the expectation of X in terms of the Expectation of X conditioned on E_{i}. That is

$$
E(X)=\sum_{i} E\left(X \mid E_{i}\right) \operatorname{Pr}\left(E_{i}\right)
$$

Average Case Analysis

Assume that the input to is a random permutation of N items.

- Let C_{N} be the average amount of work performed on the input
- $C_{0}=C_{1}=0$.
- Partition requires $N-1$ comparisons
- Each item has probability $1 / N$ of being pivot.
- If Item k is pivot, the two remaining subproblems require $C_{k-1}+C_{N-k}$ average time

$$
\begin{aligned}
C_{N} & =N-1+\frac{1}{N} \sum_{1 \leq k \leq N}\left(C_{k-1}+C_{N-k}\right) \\
& =N-1+\frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1}
\end{aligned}
$$

Average Case Analysis

Multiplying both sides of previous equation by N and then rewriting the equation for $N-1$ yields

$$
N C_{N}=N(N-1)+2 \sum_{1 \leq k \leq N} C_{k-1}, \quad(N-1) C_{N-1}=(N-1)(N-2)+2 \sum_{1 \leq k \leq N-1} C_{k-1}
$$

Subtracting the 2nd from the 1st and simplifying yields

$$
N C_{N}=(N+1) C_{N-1}+2 N-2
$$

Dividing both sides by $N(N+1)$ gives

$$
\frac{C_{N}}{N+1}=\frac{C_{N-1}}{N}+\frac{2}{N+1}-\frac{2}{N(N+1)}
$$

Average Case Analysis

Telescoping the recurrence down to $N=3$ and recalling that $C_{1}=0$ yields

$$
\begin{aligned}
\frac{C_{N}}{N+1} & =\frac{C_{N-1}}{N}+\frac{2}{N+1}-\frac{2}{N(N+1)} \\
& =\frac{C_{N-2}}{N-1}+\left(\frac{2}{N}-\frac{2}{(N-1) N}\right)+\left(\frac{2}{N+1}-\frac{2}{N(N+1)}\right) \\
& =\cdots \\
& =\frac{C_{1}}{2}+2 \sum_{i=3}^{N} \frac{1}{i+1}-\sum_{i=3}^{N} \frac{2}{i(i+1)} \\
& =2 H_{N+1}-2 H_{3}+O(1)=2 H_{N}+O(1)
\end{aligned}
$$

where $H_{N}=\sum_{i=1}^{N} 1 / i$ and we are using the fact that $\sum_{i=1}^{\infty} 1 / i(i=1)$ is bounded.

Average Case Analysis

We just saw that

$$
\frac{C_{N}}{N+1}=2 H_{N}+O(1)
$$

H_{N} is called the N th Harmonic number and it is well known that

$$
H_{n}=\ln n+O(1)
$$

So, we have just proven that the average number of operations performed running Quicksort on a random permutation of N items is

$$
C_{N}=2(N+1) H_{N}+O(N)=2 N \ln N+O(N)
$$

Odds and Ends

- Quicksort is a divide and conquer algorithm.
- The Quicksort code can be tuned
- When N is small, call Insertion Sort rather than Quicksort (on very small N, Insertion sort is faster.
- Instead of using last item $A[r]$ as pivot, set pivot to be median of first, last and middle item. (Why should this help?)
- qsort under UNIX was an extremely popular sorting routine for decades. It was a finely tuned version of Quicksort
- Quicksort was published by Tony Hoare in the Communications of the ACM 4(7), 1961.

