Sorting: Lower Bounds and Linear Time

Last Revision: August 25, 2016

Lower Bound for Sorting

- All sorting algorithms we seen so far are based on comparing elements
- E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort
- Insertion sort, Selection sort and Quicksort have worst-case running times $\Theta\left(n^{2}\right)$, while the others have worst-case running time $\Theta(n \log n)$

Question

Can we do better?

Goal

We will prove that any comparison-based sorting algorithm has a worst-case running time $\Omega(n \log n)$.

Decision-tree Example

- Each internal node is labeled $a_{i}: a_{j}$ for $\{1,2, \ldots, n\}$
- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$
- Each leaf corresponds to an input ordering

Decision-tree Example

- Each internal node is labeled $a_{i}: a_{j}$ for $\{1,2, \ldots, n\}$
- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$
- Each leaf corresponds to an input ordering

Decision-tree Example

- Each internal node is labeled $a_{i}: a_{j}$ for $\{1,2, \ldots, n\}$
- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$
- Each leaf corresponds to an input ordering

Decision-tree Example

- Each internal node is labeled $a_{i}: a_{j}$ for $\{1,2, \ldots, n\}$
- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$
- Each leaf corresponds to an input ordering

Decision-tree Example

- Each internal node is labeled $a_{i}: a_{j}$ for $\{1,2, \ldots, n\}$
- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$
- Each leaf corresponds to an input ordering

Decision-tree Model

A decision tree can model the execution of any comparison-based sorting algorithm

- One tree for each input size n
- Worst-case running time $=$ height of tree

Lower Bound for Sorting

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof.

- A decision tree to sort n elements must have at least n ! leaves, since each of the n ! orderings is a possible answer.
- A binary tree of height h has at most 2^{h} leaves
- Thus, $n!\leq 2^{h}$ $\Rightarrow h \geq \log n!=\Omega(n \log n) \quad$ (Stirling's approximation)

Corollary

Heapsort and merge sort are asymptotically optimal comparison-based sorting algorithms.

Lower Bound for Average Running Time of Sorting

- We just proved that worst case number of comparisons used is $\Omega(n \log n)$
- Suppose that each of the n ! input permutations is equally likely. What can be said about the average case running time?

Note: Average is taken by adding up individual running time of algorithm on each possible input and dividing total by $n!$.

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Lower Bound for Average Running Time of Sorting

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Proof.

- The External Path Length (EPL) of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
- Average number of comparisons used by a sorting algorithm is EPL of its associated comparison tree divided by $n!$.
- The EPL of a binary tree with m leaves is at least $m \log _{2} m+O(m)$.
- The comparison tree has $m=n$! leaves
\Rightarrow its external path length is $n!\log _{2} n!+O(n!)$
\Rightarrow average number of comparisons used is $\log _{2} n!+O(1)$.
- We already saw $\log _{2} n!=\Omega(n \log n)$.

Can we do better?

Are there sorting algorithms which are not comparison-based?
Can they beat the $\Omega(n \log n)$ lower bound?

- Counting sort
- Assumes items are in set $\{1,2, \ldots, k\}$.
- Is a stable sort (defined soon).
- Radix sort
- Assumes items are stored in fixed size words using finite alphabet

Counting Sort

Counting-sort (A, B, k)

```
Input: }A[1\ldotsn],\mathrm{ where }A[j]\in{1,2,\ldots,k
```

Output: $B[1 \ldots n]$, sorted
let $C[1 \ldots k]$ be a new array;
for $i \leftarrow 1$ to k do
$C[i] \leftarrow 0$;
end
for $j \leftarrow 1$ to n do
$C[A[j]] \leftarrow C[A[j]]+1 ; / / \quad C[i]=|\{\mathrm{key}=i\}|$
end
for $i \leftarrow 2$ to k do
$|C[i] \leftarrow C[i]+C[i-1] ; / / C[i]=|\{$ key $\leq i\} \mid$
end
for $j \leftarrow n$ to 1 do
$B[C[A[j]]] \leftarrow A[j] ;$
$C[A[j]] \leftarrow C[A[j]]-1 ;$
end

Example: Counting Sort

Example: Counting Sort

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0 ;$
end

Example: Counting Sort

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 ; / / C[i]=\mid\{$ key $=i\} \mid$ end

Example: Counting Sort

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 ; / / C[i]=\mid\{$ key $=i\} \mid$ end

Example: Counting Sort

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 ; / / C[i]=\mid\{$ key $=i\} \mid$ end

Example: Counting Sort

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 ; / / \quad C[i]=|\{\mathrm{key}=i\}|$ end

Example: Counting Sort

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 ; / / C[i]=\mid\{$ key $=i\} \mid$ end

Example: Counting Sort

for $i \leftarrow 2$ to k do

$$
C[i] \leftarrow C[i]+C[i-1] ; / / C[i]=\mid\{\text { key } \leq i\} \mid
$$

end

Example: Counting Sort

for $i \leftarrow 2$ to k do

$$
\left.\right|_{\text {end }} C[i] \leftarrow C[i]+C[i-1] ; / / C[i]=\mid\{\text { key } \leq i\} \mid
$$

Example: Counting Sort

for $i \leftarrow 2$ to k do

$$
|\quad C[i] \leftarrow C[i]+C[i-1] ; / / C[i]=|\{\text { key } \leq i\} \mid
$$

Example: Counting Sort

for $j \leftarrow n$ to 1 do $B[C[A[j]]] \leftarrow A[j] ;$ $C[A[j]] \leftarrow C[A[j]]-1 ;$
end

Example: Counting Sort

for $j \leftarrow n$ to 1 do $B[C[A[j]]] \leftarrow A[j] ;$ $C[A[j]] \leftarrow C[A[j]]-1 ;$
end

Example: Counting Sort

for $j \leftarrow n$ to 1 do $B[C[A[j]]] \leftarrow A[j] ;$ $C[A[j]] \leftarrow C[A[j]]-1 ;$
end

Example: Counting Sort

for $j \leftarrow n$ to 1 do $B[C[A[j]]] \leftarrow A[j] ;$ $C[A[j]] \leftarrow C[A[j]]-1 ;$
end

Example: Counting Sort

for $j \leftarrow n$ to 1 do $B[C[A[j]]] \leftarrow A[j] ;$ $C[A[j]] \leftarrow C[A[j]]-1 ;$
end

Analysis

```
Input: \(A[1 \ldots n]\), where \(A[j] \in\{1,2, \ldots, k\}\)
Output: \(B[1 \ldots n]\), sorted
let \(C[1 \ldots k]\) be a new array;
for \(i \leftarrow 1\) to \(k\) do
    \(C[i] \leftarrow 0 ; / / O(k)\)
end
for \(j \leftarrow 1\) to \(n\) do
    \(C[A[j]] \leftarrow C[A[j]]+1 ; / / O(n)\)
end
for \(i \leftarrow 2\) to \(k\) do
    \(C[i] \leftarrow C[i]+C[i-1] ; / / O(k)\)
end
for \(j \leftarrow n\) to 1 do
    \(B[C[A[j]]] \leftarrow A[j] ;\)
    \(C[A[j]] \leftarrow C[A[j]]-1 ; / / O(n)\)
end
```

Total: $O(n+k)$

Running Time

If $k=O(n)$, then counting sort takes $O(n)$ time.

- But didn't we prove that sorting must take $\Omega(n \log n)$ time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.
- Note that counting sort is not a comparison-based sorting algorithm.
- In fact, it makes no comparisons at all!

Stable Sorting

Counting sort is a stable sort

- it preserves the input order among equal elements.

Exercise

What other sorts have this property?

- Sort on least significant digit first using stable sort

2329	2720	2720	2329	2329
5457	5355	2329	5355	2720
3657	3436	3436	3436	3436
5839	5457	5839	5457	3657
3436	3657	5355	3657	5355
2720	2329	5457	2720	5457
5355	5839	3657	5839	5839

Radix Sort: Correctness

Induction on digit position

- Assume that the numbers are sorted by their low-order i-1 digits
- Sort on digit i

2720	2329
2329	5355
3436	3436
5839	5457
5355	3657
5457	2720
3657	5839

Radix Sort: Correctness

Induction on digit position

- Assume that the numbers are sorted by their low-order i-1 digits
- Sort on digit i
- Two numbers that differ on digit i are correctly sorted by their low-order i digits
$\left.\begin{array}{llll}2 & 7 & 2 & 0 \\ 2 & 3 & 2 & 9 \\ 3 & 4 & 3 & 6 \\ 5 & 8 & 3 & 9 \\ 5 & 3 & 5 & 5 \\ 5 & 4 & 5 & 7 \\ 3 & 6 & 5 & 7\end{array} \quad \begin{array}{r}2 \\ 5\end{array} \quad \begin{array}{rll}3 & 2 & 9 \\ 3 & 4 & 5\end{array}\right)$

Induction on digit position

- Assume that the numbers are sorted by their low-order i-1 digits
- Sort on digit i
- Two numbers that differ on digit i are correctly sorted by their low-order i digits

- Two numbers equal on digit i are put in the same order as the input \Rightarrow correctly sorted by their low-order i digits

Radix Sort: Running Time \& Application

Lemma

Given $n d$-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in $O(d(n+k))$ time if the stable sort it uses takes $O(n+k)$ time.

Application:
Sorting numbers in the range from 0 to $n^{b}-1$, where b is a constant

- $b \log n$ bits for each number
- each number can be viewed as having $O(b)$ digits of $\log n$ bits each
- running time is $O(d(n+k))=O\left(b\left(n+2^{\log n}\right)\right)=O(b n)$
- since b is a constant, the running time is $O(n)$.

