Sorting: Lower Bounds and Linear Time

Last Revision: August 25, 2016

== THE DEPARTMENT OF

& OMPUTER " CIENCE

EFE#RMER HKUST

Sorting: Lower Bounds and Linear Time Last Revision: Aug 1/36

Lower Bound for Sorting

@ All sorting algorithms we seen so far are based on comparing
elements

e E.g., Insertion sort, Selection sort, Mergesort, Heapsort and
Quicksort

@ Insertion sort, Selection sort and Quicksort have worst-case
running times ©(n?), while the others have worst-case running
time ©(nlog n)

Can we do better? \

We will prove that any comparison-based sorting algorithm has a
worst-case running time Q(nlog n).

Sorting: Lower Bounds and Linear Time Last Revision: Aug 2 /36

Decision-tree Example

Sort < ay,asg,...,a, >

[a1,as, az] [as, a1, az] [az2,as,a1] [as, az, a1

e Each internal node is labeled a; : a; for {1,2,...,n}

o The left subtree shows subsequent comparisons if a; < a;
o The right subtree shows subsequent comparisons if a; > a;

@ Each leaf corresponds to an input ordering

Sorting: Lower Bounds and Linear Time Last Revision: Aug 3/36

Decision-tree Example

Sort < ay,as,as >

=<6,8,5>:
[a1,as, az] [as, a1, az] [az2,as,a1] [as, az, a1
e Each internal node is labeled a; : a; for {1,2,...,n}

o The left subtree shows subsequent comparisons if a; < a;
o The right subtree shows subsequent comparisons if a; > a;

@ Each leaf corresponds to an input ordering

Sorting: Lower Bounds and Linear Time Last Revision: Aug 4 /36

Decision-tree Example

Sort < ay,as,as >

=<6,8,5>:
[a1,as, az] [as, a1, az] [az2,as,a1] [as, az, a1
e Each internal node is labeled a; : a; for {1,2,...,n}

o The left subtree shows subsequent comparisons if a; < a;
o The right subtree shows subsequent comparisons if a; > a;

@ Each leaf corresponds to an input ordering

Sorting: Lower Bounds and Linear Time Last Revision: Aug 5/ 36

Decision-tree Example

Sort < ay,as,as >

=<6,8,5>:
[a1,as, az] [as, a1, az] [az2,as,a1] [as, az, a1
e Each internal node is labeled a; : a; for {1,2,...,n}

o The left subtree shows subsequent comparisons if a; < a;
o The right subtree shows subsequent comparisons if a; > a;

@ Each leaf corresponds to an input ordering

Sorting: Lower Bounds and Linear Time Last Revision: Aug 6 /36

Decision-tree Example

Sort < ay,as,as >

=<6,8,5>:
[a1,as, az] [as, a1, az] [az2,as,a1] [as, az, a1
5<6<8
e Each internal node is labeled a; : a; for {1,2,...,n}

o The left subtree shows subsequent comparisons if a; < a;
o The right subtree shows subsequent comparisons if a; > a;

@ Each leaf corresponds to an input ordering

Sorting: Lower Bounds and Linear Time Last Revision: Aug 7/ 36

Decision-tree Model

A decision tree can model the execution of any comparison-based
sorting algorithm

@ One tree for each input size n

@ Worst-case running time = height of tree

Sorting: Lower Bounds and Linear Time Last Revision: Aug 8 /36

Lower Bound for Sorting

Any comparison-based sorting algorithm requires Q(nlog n)
comparisons in the worst case.

v

@ A decision tree to sort n elements must have at least n!
leaves, since each of the n! orderings is a possible answer.

@ A binary tree of height h has at most 2" leaves
@ Thus, n! < 2f
= h > logn! = Q(nlogn) (Stirling's approximation)

Ol

Corollary

Heapsort and merge sort are asymptotically optimal
comparison-based sorting algorithms.

Sorting: Lower Bounds and Linear Time Last Revision: Aug 9 /36

Lower Bound for Average Running Time of Sorting

@ We just proved that worst case number of comparisons used is
Q(nlogn)

@ Suppose that each of the n! input permutations is equally
likely. What can be said about the average case running time?

Note: Average is taken by adding up individual running time of
algorithm on each possible input and dividing total by n!.

When all input permutations are equally likely, any
comparison-based sorting algorithm requires Q(nlog n)
comparisons on average.

Sorting: Lower Bounds and Linear Time Last Revision: Aug 10 / 36

Lower Bound for Average Running Time of Sorting

Theorem

When all input permutations are equally likely, any
comparison-based sorting algorithm requires Q(nlog n)
comparisons on average.

@ The External Path Length (EPL) of a tree is the sum over all leaves
of the tree, of the length of the paths from the root to the leaves.

@ Average number of comparisons used by a sorting algorithm is EPL
of its associated comparison tree divided by n!.

@ The EPL of a binary tree with m leaves is at least mlog, m+ O(m).

@ The comparison tree has m = n! leaves
= its external path length is n!log, n! + O(n!)
= average number of comparisons used is log, n! + O(1).

@ We already saw log, n! = Q(nlog n).

Sorting: Lower Bounds and Linear Time Last Revision: Aug 11 / 36

Can we do better?

Are there sorting algorithms which are not comparison-based?
Can they beat the Q(nlog n) lower bound?

e Counting sort

o Assumes items are in set {1,2,..., k}.
o Is a stable sort (defined soon).

@ Radix sort

e Assumes items are stored in fixed size words using finite
alphabet

Sorting: Lower Bounds and Linear Time Last Revision: Aug 12 / 36

Counting-sort(A, B, k)

Input: A[l...n], where A[j] € {1,2,...,k}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i <+ 1 to k do
| C[i] +0;
end
for j < 1 to ndo
| CIALT « CIALl] + 1 // Cli] = H{key = i}]
end
for i <+ 2 to k do
| Clil « Clil + Cli—11: /7 Clil = ey < i}]
end
for j«< ntoldo
BICIAUTI] ALl
CIAUIl + CIAUI - 1
end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 13 / 36

Example: Counting Sort

—
\]
w

1 2 3 4

4 5
Al4)12]1(4]2 C

Sorting: Lower Bounds and Linear Time Last Revision: Aug 14 / 36

Example: Counting Sort
4 5
nmonneed |

—
\]
w

for i+ 1 to k do
| C[i] + 0;
end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 15 / 36

Example: Counting Sort

1

4 5 2 3 4
AP 2]1]4]2 clololo [l

B

for j « 1 ton do
| CA[]] « CIA[+1; // Cli] = [{key = i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 16 / 36

Example: Counting Sort
1 2 3 4 5
Alal1]4]2 cloflo]1

for j « 1 ton do
| CA[]] « CIA[+1; // Cli] = [{key = i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 17 / 36

Example: Counting Sort

1 2 4 5 1 2 3 4

3
Alal2l4]2 cBl 1]o]1

for j « 1 ton do
| CA[]] « CIA[+1; // Cli] = [{key = i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 18 / 36

Example: Counting Sort

1 2 3 4 5 1

2 3 4
Alal2]1 2 cli]1]o B8

for j « 1 ton do
| CA[]] « CIA[+1; // Cli] = [{key = i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 19 / 36

Example: Counting Sort

1 2 3 4 5 1 2 3 4

Alal2]1[4 B c[1Bo]2

for j « 1 ton do
| CA[]] « CIA[+1; // Cli] = [{key = i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 20 / 36

Example: Counting Sort

1 2 3 4 5 1 2 3 4
Al4)12]1(4]2 C|1(2|0]|2

B o 1o]2

for i < 2 to k do
| Cli] + Cli]+Cli—1]; // C[i] = |[{key < i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 21 / 36

Example: Counting Sort

1 2 3

4 5 1
Al4)12]1(4]2 C

DO |
O |w
[\

B o 1]3 B 2

for i < 2 to k do
| Cli] + Cli]+Cli—1]; // C[i] = |[{key < i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 22 / 36

Example: Counting Sort

1 2 3 4 5 1 2 3 4
Al4)12]1(4]2 C|1(2(0]|2

B o133 B8

for i < 2 to k do
| Cli] + Cli]+Cli—1]; // C[i] = |[{key < i}

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 23 / 36

Example: Counting Sort

1 2 3 4 5 1
Al4)12]1]4 C

W |
W |w
ot

for j < nto1do
B[C[A[j]] < Alj];
ClA[f]] < CIAD] = 15

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 24 / 36

Example: Counting Sort

1 2 3 4 5 1
Al4]2]1 2 C

W |
W |w
ot

for j < nto1do
B[C[A[j]] < Alj];
ClA[f]] < CIAD] = 15

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 25 / 36

Example: Counting Sort

1 2 3 4 5 1 2 3 4
Alal2 [l 4]2 cl1]3]3]5
B 2] |4 o 2]3]4

for j < nto1do
B[C[A[j]] < Alj];
ClA[f]] < CIAD] = 15

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 26 / 36

Example: Counting Sort

1 2 3 4 5 1 2 3 4
AlaBl1]4]2 cl1]3]3]5
1 N2] |4 o'l ol 34

for j < nto1do
B[C[A[j]] < Alj];
ClA[f]] < CIAD] = 15

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 27 / 36

Example: Counting Sort

1 2 3 4 5 1 2 3 4
A2 1]4]2 cl1]3]3]5
Bl1]2]2 04 orlo]1]3 88

for j < nto1do
B[C[A[j]] < Alj];
ClA[f]] < CIAD] = 15

end

Sorting: Lower Bounds and Linear Time Last Revision: Aug 28 / 36

Input: A[l...n], where A[j] € {1,2,...,k}
Output: B[1...n], sorted
let C[1...k] be a new array;
for i < 1 to k do
| C[i]«0; // O(k)
end
for j < 1 to ndo
| CIAL]] + CIALN + 1, // O(n)
end
for i < 2 to k do
| C[i] « Cli]+ C[i —1]; // O(k)
end
for j < nto1ldo
BICIAL] + AL
CIA[J]] < CIAL]l —1; // O(n)

end

Total: O(n + k)

Sorting: Lower Bounds and Linear Time Last Revision: Aug 29 / 36

If k = O(n), then counting sort takes O(n) time.

@ But didn't we prove that sorting must take Q(nlog n) time?

@ No, actually we proved that any comparison-based sorting
algorithm takes Q(nlog n) time.

@ Note that counting sort is not a comparison-based sorting
algorithm.

@ In fact, it makes no comparisons at all!

Sorting: Lower Bounds and Linear Time Last Revision: Aug 30 / 36

Stable Sorting

Counting sort is a stable sort

@ it preserves the input order among equal elements.

412111412

11212414

What other sorts have this property?

Sorting: Lower Bounds and Linear Time Last Revision: Aug 31 / 36

+
-
o

(9p)]

Radix

@ Sort on least significant digit first using stable sort

n: Aug 32 /36

st Revisio

Time La;

=
&
o
o=
=
°
=
&
®
]
=
=
o
o
=
7]
H
]
-
I
=
=]
£
<]
]

Radix Sort: Correctness

Induction on digit position

@ Assume that the numbers are
sorted by their low-order j — 1

digits 2720 2329
2329 5355
e Sort on digit i 3436 3436
5839 5457
5355 3657
5457 2720
3657 5839

Sorting: Lower Bounds and Linear Time Last Revision: Aug 33 / 36

Radix Sort: Correctness

Induction on digit position

@ Assume that the numbers are
sorted by their low-order j — 1

digits 2720\ ~2329
2329 5355

e Sort on digit i 3436 3436
e Two numbers that differ on 5839 5457
digi.t i are corre.ctl}/ §orted by 5355 \3 657

their low-order i digits 5457 2790
3657 5839

Sorting: Lower Bounds and Linear Time Last Revision: Aug 34 / 36

Radix Sort: Correctness

Induction on digit position

@ Assume that the numbers are
sorted by their low-order j — 1

digits 2720 2329
2329 5355

e Sort on digit i 3436—>3436
e Two numbers that differ on 5839 5457
digi.t i are corre.ctl}/ §orted by 535 5[3 657

their low-order i digits 5457 2790

e Two numbers equal on digit / 3657 5839

are put in the same order as
the input = correctly sorted
by their low-order i digits

Sorting: Lower Bounds and Linear Time Last Revision: Aug 35 / 36

Radix Sort: Running Time & Application

Given n d-digit numbers in which each digit can take on up to k
possible values, radix sort correctly sorts these numbers in
O(d(n + k)) time if the stable sort it uses takes O(n + k) time.

Application:
Sorting numbers in the range from 0 to n® — 1, where b is a
constant
@ blog n bits for each number
@ each number can be viewed as having O(b) digits of log n bits
each
e running time is O(d(n + k)) = O(b(n + 2'°8")) = O(bn)

@ since b is a constant, the running time is O(n).

Sorting: Lower Bounds and Linear Time Last Revision: Aug 36 / 36

