Sorting: Lower Bounds and Linear Time

Last Revision: August 25, 2016

- All sorting algorithms we seen so far are based on comparing elements
 - E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort

- All sorting algorithms we seen so far are based on comparing elements
 - E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort
- Insertion sort, Selection sort and Quicksort have worst-case running times Θ(n²), while the others have worst-case running time Θ(n log n)

- All sorting algorithms we seen so far are based on comparing elements
 - E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort
- Insertion sort, Selection sort and Quicksort have worst-case running times Θ(n²), while the others have worst-case running time Θ(n log n)

Question

Can we do better?

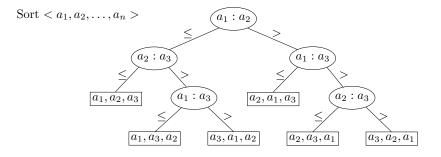
- All sorting algorithms we seen so far are based on comparing elements
 - E.g., Insertion sort, Selection sort, Mergesort, Heapsort and Quicksort
- Insertion sort, Selection sort and Quicksort have worst-case running times Θ(n²), while the others have worst-case running time Θ(n log n)

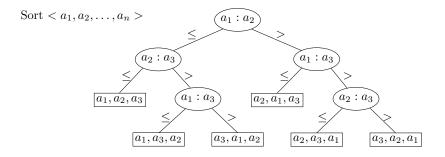
Question

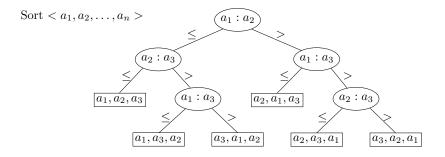
Can we do better?

Goal

We will prove that any comparison-based sorting algorithm has a worst-case running time $\Omega(n \log n)$.

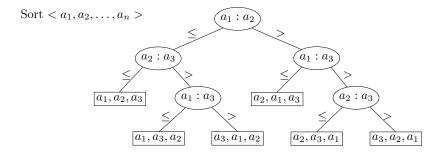




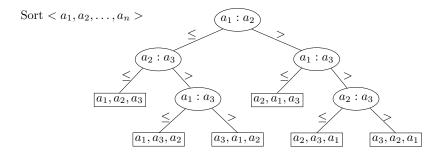


• Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$

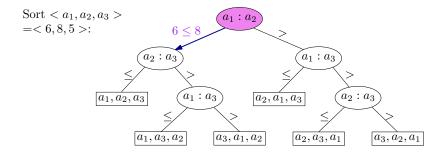
• The left subtree shows subsequent comparisons if $a_i \leq a_j$



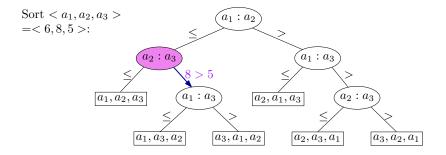
- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$



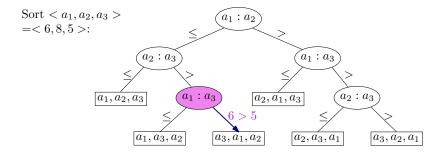
- Each internal node is labeled $a_i : a_j$ for $\{1, 2, \ldots, n\}$
 - The left subtree shows subsequent comparisons if $a_i \leq a_j$
 - The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering



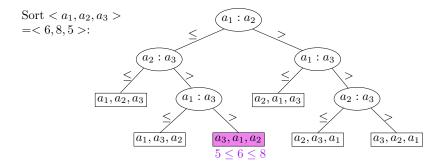
- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering



- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering



- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering



- Each internal node is labeled $a_i : a_j$ for $\{1, 2, \dots, n\}$
 - The left subtree shows subsequent comparisons if $a_i \leq a_j$
 - The right subtree shows subsequent comparisons if $a_i > a_j$
- Each leaf corresponds to an input ordering

A decision tree can model the execution of $\ensuremath{\text{any}}$ comparison-based sorting algorithm

A decision tree can model the execution of $\ensuremath{\text{any}}$ comparison-based sorting algorithm

• One tree for each input size n

A decision tree can model the execution of ${\bf any}$ comparison-based sorting algorithm

- One tree for each input size n
- Worst-case running time = height of tree

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof.

• A decision tree to sort *n* elements must have at least *n*! leaves, since each of the *n*! orderings is a possible answer.

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

- A decision tree to sort n elements must have at least n! leaves, since each of the n! orderings is a possible answer.
- A binary tree of height *h* has at most 2^{*h*} leaves

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

- A decision tree to sort *n* elements must have at least *n*! leaves, since each of the *n*! orderings is a possible answer.
- A binary tree of height *h* has at most 2^{*h*} leaves

• Thus,
$$n! \le 2^h$$

 $\Rightarrow h \ge \log n! = \Omega(n \log n)$ (Stirling's approximation)

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof.

- A decision tree to sort *n* elements must have at least *n*! leaves, since each of the *n*! orderings is a possible answer.
- A binary tree of height h has at most 2^h leaves

• Thus,
$$n! \le 2^h$$

 $\Rightarrow h \ge \log n! = \Omega(n \log n)$ (Stirling's approximation)

Corollary

Heapsort and merge sort are asymptotically optimal comparison-based sorting algorithms.

- We just proved that worst case number of comparisons used is $\Omega(n \log n)$
- Suppose that each of the *n*! input permutations is equally likely. What can be said about the average case running time?

Note: Average is taken by adding up individual running time of algorithm on each possible input and dividing total by n!.

- We just proved that worst case number of comparisons used is Ω(n log n)
- Suppose that each of the *n*! input permutations is equally likely. What can be said about the average case running time?

Note: Average is taken by adding up individual running time of algorithm on each possible input and dividing total by n!.

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

Proof.

• The *External Path Length (EPL)* of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

- The *External Path Length (EPL)* of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
- Average number of comparisons used by a sorting algorithm is EPL of its associated comparison tree divided by *n*!.

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

- The *External Path Length (EPL)* of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
- Average number of comparisons used by a sorting algorithm is EPL of its associated comparison tree divided by *n*!.
- The EPL of a binary tree with m leaves is at least $m \log_2 m + O(m)$.
- The comparison tree has m = n! leaves
 ⇒ its external path length is n! log₂ n! + O(n!)
 - \Rightarrow average number of comparisons used is $\log_2 n! + O(1)$.

Theorem

When all input permutations are equally likely, any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons on average.

- The *External Path Length (EPL)* of a tree is the sum over all leaves of the tree, of the length of the paths from the root to the leaves.
- Average number of comparisons used by a sorting algorithm is EPL of its associated comparison tree divided by *n*!.
- The EPL of a binary tree with m leaves is at least $m \log_2 m + O(m)$.
- The comparison tree has m = n! leaves
 ⇒ its external path length is n! log₂ n! + O(n!)
 - \Rightarrow average number of comparisons used is $\log_2 n! + O(1)$.
- We already saw $\log_2 n! = \Omega(n \log n)$.

Are there sorting algorithms which are not comparison-based? Can they beat the $\Omega(n \log n)$ lower bound? Are there sorting algorithms which are not comparison-based? Can they beat the $\Omega(n \log n)$ lower bound?

- Counting sort
 - Assumes items are in set $\{1, 2, \ldots, k\}$.
 - Is a *stable* sort (defined soon).

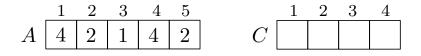
Are there sorting algorithms which are not comparison-based? Can they beat the $\Omega(n \log n)$ lower bound?

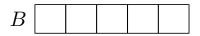
- Counting sort
 - Assumes items are in set $\{1, 2, \ldots, k\}$.
 - Is a *stable* sort (defined soon).
- Radix sort
 - Assumes items are stored in fixed size words using finite alphabet

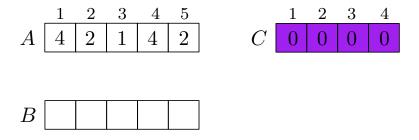
Counting Sort

Counting-sort(A, B, k)

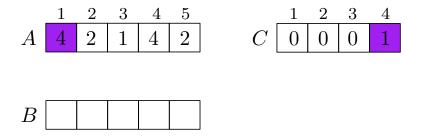
```
Input: A[1...,n], where A[j] \in \{1, 2, ..., k\}
Output: B[1 \dots n], sorted
let C[1 \dots k] be a new array;
for i \leftarrow 1 to k do
 C[i] \leftarrow 0:
end
for i \leftarrow 1 to n do
     C[A[i]] \leftarrow C[A[i]] + 1; // C[i] = |\{\text{kev} = i\}|
end
for i \leftarrow 2 to k do
    C[i] \leftarrow C[i] + C[i-1]; // C[i] = |\{\text{key} < i\}|
end
for i \leftarrow n to 1 do
    B[C[A[j]]] \leftarrow A[j];
    C[A[i]] \leftarrow C[A[i]] - 1;
end
```



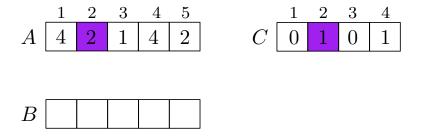




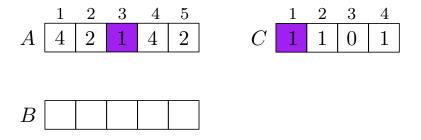
for $i \leftarrow 1$ to k do $| C[i] \leftarrow 0;$ end



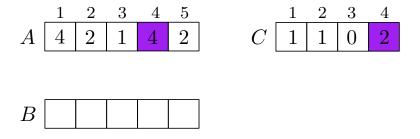
for $j \leftarrow 1$ to n do $| C[A[j]] \leftarrow C[A[j]] + 1$; // $C[i] = |\{\text{key} = i\}|$ end



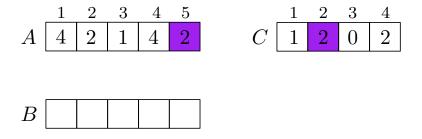
for $j \leftarrow 1$ to n do $| C[A[j]] \leftarrow C[A[j]] + 1$; // $C[i] = |\{\text{key} = i\}|$ end



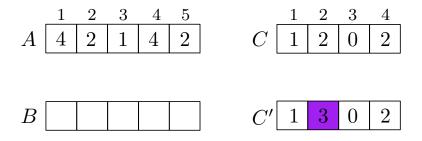
for $j \leftarrow 1$ to n do $| C[A[j]] \leftarrow C[A[j]] + 1$; // $C[i] = |\{\text{key} = i\}|$ end



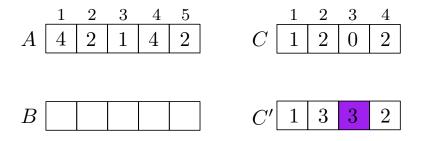
for $j \leftarrow 1$ to n do $| C[A[j]] \leftarrow C[A[j]] + 1$; // $C[i] = |\{\text{key} = i\}|$ end



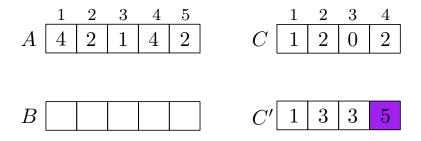
for $j \leftarrow 1$ to n do $| C[A[j]] \leftarrow C[A[j]] + 1$; // $C[i] = |\{\text{key} = i\}|$ end



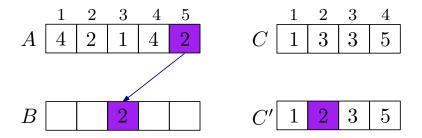
for $i \leftarrow 2$ to k do $| C[i] \leftarrow C[i] + C[i-1]; // C[i] = |\{ \text{key} \le i\}|$ end



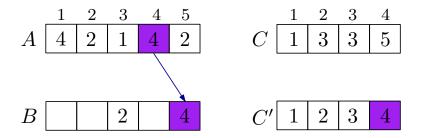
for $i \leftarrow 2$ to k do $| C[i] \leftarrow C[i] + C[i-1]; // C[i] = |\{ \text{key} \le i\}|$ end



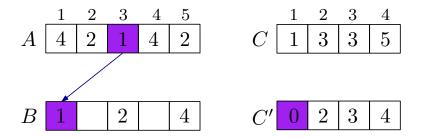
for $i \leftarrow 2$ to k do $| C[i] \leftarrow C[i] + C[i-1]; // C[i] = |\{ \text{key} \le i\}|$ end



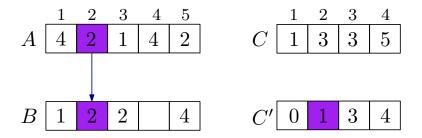
$$\begin{array}{l} \mathbf{for} \ j \leftarrow n \ \mathbf{to} \ 1 \ \mathbf{do} \\ \mid \ B[C[A[j]]] \leftarrow A[j]; \\ C[A[j]] \leftarrow C[A[j]] - 1; \\ \mathbf{end} \end{array}$$



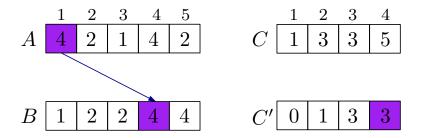
$$\begin{array}{l} \textbf{for } j \leftarrow n \ \textbf{to} \ 1 \ \textbf{do} \\ \mid & B[C[A[j]]] \leftarrow A[j]; \\ & C[A[j]] \leftarrow C[A[j]] - 1; \\ \textbf{end} \end{array}$$



$$\begin{array}{l} \textbf{for } j \leftarrow n \ \textbf{to} \ 1 \ \textbf{do} \\ \mid & B[C[A[j]]] \leftarrow A[j]; \\ \mid & C[A[j]] \leftarrow C[A[j]] - 1; \\ \textbf{end} \end{array}$$



$$\begin{array}{l} \mathbf{for} \ j \leftarrow n \ \mathbf{to} \ 1 \ \mathbf{do} \\ \mid \ B[C[A[j]]] \leftarrow A[j]; \\ C[A[j]] \leftarrow C[A[j]] - 1; \\ \mathbf{end} \end{array}$$



$$\begin{array}{l} \textbf{for } j \leftarrow n \ \textbf{to} \ 1 \ \textbf{do} \\ \mid & B[C[A[j]]] \leftarrow A[j]; \\ & C[A[j]] \leftarrow C[A[j]] - 1; \\ \textbf{end} \end{array}$$

Input: A[1...n], where $A[j] \in \{1, 2, ..., k\}$ **Output:** B[1...n], sorted let C[1...k] be a new array; **for** $i \leftarrow 1$ **to** k **do** $| C[i] \leftarrow 0$; // O(k)**end**

Input: A[1...n], where $A[j] \in \{1, 2, ..., k\}$ Output: B[1...n], sorted let C[1...k] be a new array; for $i \leftarrow 1$ to k do $| C[i] \leftarrow 0; // O(k)$ end for $j \leftarrow 1$ to n do $| C[A[j]] \leftarrow C[A[j]] + 1; // O(n)$ end

Input: A[1...,n], where $A[j] \in \{1, 2, ..., k\}$ **Output**: $B[1 \dots n]$, sorted let $C[1 \dots k]$ be a new array; for $i \leftarrow 1$ to k do $C[i] \leftarrow 0; // O(k)$ end for $i \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1; // O(n)$ end for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]; // O(k)$ end

Input: A[1...,n], where $A[j] \in \{1, 2, ..., k\}$ **Output**: $B[1 \dots n]$, sorted let $C[1 \dots k]$ be a new array; for $i \leftarrow 1$ to k do $C[i] \leftarrow 0; // O(k)$ end for $i \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1; // O(n)$ end for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]; // O(k)$ end for $i \leftarrow n$ to 1 do $B[C[A[j]]] \leftarrow A[j];$ $C[A[j]] \leftarrow C[A[j]] - 1; // O(n)$ end

```
Input: A[1...,n], where A[j] \in \{1, 2, ..., k\}
Output: B[1 \dots n], sorted
let C[1 \dots k] be a new array;
for i \leftarrow 1 to k do
    C[i] \leftarrow 0; // O(k)
end
for i \leftarrow 1 to n do
    C[A[j]] \leftarrow C[A[j]] + 1; // O(n)
end
for i \leftarrow 2 to k do
    C[i] \leftarrow C[i] + C[i-1]; // O(k)
end
for i \leftarrow n to 1 do
    B[C[A[j]]] \leftarrow A[j];
    C[A[i]] \leftarrow C[A[i]] - 1; // O(n)
end
```

Total: O(n+k)

- If k = O(n), then counting sort takes O(n) time.
 - But didn't we prove that sorting must take $\Omega(n \log n)$ time?

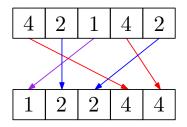
- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes $\Omega(n \log n)$ time.
- Note that counting sort is *not* a comparison-based sorting algorithm.

- But didn't we prove that sorting must take Ω(n log n) time?
- No, actually we proved that any comparison-based sorting algorithm takes Ω(n log n) time.
- Note that counting sort is *not* a comparison-based sorting algorithm.
- In fact, it makes no comparisons at all!

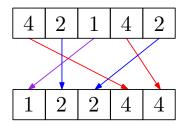
Counting sort is a stable sort

• it preserves the input order among equal elements.



Counting sort is a stable sort

• it preserves the input order among equal elements.

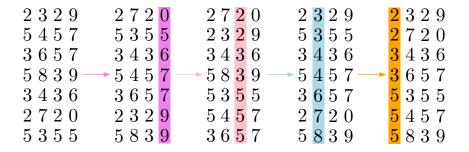


Exercise

What other sorts have this property?

• Sort on *least significant* digit first using stable sort

• Sort on *least significant* digit first using stable sort



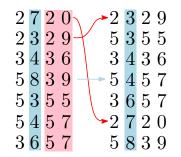
Induction on digit position

- Assume that the numbers are sorted by their low-order i - 1 digits
- Sort on digit *i*

2720	2329
2 <mark>3</mark> 2 9	$5\ 3\ 5\ 5$
3436	$3\ 4\ 3\ 6$
5 <mark>839</mark>	-5457
5 <mark>3 5 5</mark>	$3\ 6\ 5\ 7$
5457	$2\ 7\ 2\ 0$
3657	$5\ 8\ 3\ 9$

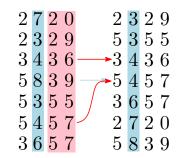
Induction on digit position

- Assume that the numbers are sorted by their low-order i - 1 digits
- Sort on digit *i*
 - Two numbers that differ on digit *i* are correctly sorted by their low-order *i* digits



Induction on digit position

- Assume that the numbers are sorted by their low-order i - 1 digits
- Sort on digit *i*
 - Two numbers that differ on digit *i* are correctly sorted by their low-order *i* digits
 - Two numbers equal on digit *i* are put in the same order as the input ⇒ correctly sorted by their low-order *i* digits



Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application: Sorting numbers in the range from 0 to $n^b - 1$, where b is a constant

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where b is a constant

• $b \log n$ bits for each number

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where b is a constant

- *b* log *n* bits for each number
- each number can be viewed as having O(b) digits of log *n* bits each

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where b is a constant

- *b* log *n* bits for each number
- each number can be viewed as having O(b) digits of log n bits each
- running time is $O(d(n+k)) = O(b(n+2^{\log n})) = O(bn)$

Given n d-digit numbers in which each digit can take on up to k possible values, radix sort correctly sorts these numbers in O(d(n+k)) time if the stable sort it uses takes O(n+k) time.

Application:

Sorting numbers in the range from 0 to $n^b - 1$, where b is a constant

- *b* log *n* bits for each number
- each number can be viewed as having O(b) digits of log n bits each
- running time is $O(d(n+k)) = O(b(n+2^{\log n})) = O(bn)$
- since b is a constant, the running time is O(n).