
Sorting: Lower Bounds and Linear Time
Last Revision: August 25, 2016

Sorting: Lower Bounds and Linear Time Last Revision: August 25, 20161 / 36



Lower Bound for Sorting

All sorting algorithms we seen so far are based on comparing
elements

E.g., Insertion sort, Selection sort, Mergesort, Heapsort and
Quicksort

Insertion sort, Selection sort and Quicksort have worst-case
running times Θ(n2), while the others have worst-case running
time Θ(n log n)

Question

Can we do better?

Goal

We will prove that any comparison-based sorting algorithm has a
worst-case running time Ω(n log n).
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Decision-tree Example

a1 : a2

a2 : a3 a1 : a3

a1 : a3 a2 : a3a1, a2, a3

a1, a3, a2

a2, a1, a3

a3, a1, a2 a2, a3, a1 a3, a2, a1

≤

≤

≤

≤

≤>

>

>

>

>

Sort < a1, a2, . . . , an >

Each internal node is labeled ai : aj for {1, 2, . . . , n}
The left subtree shows subsequent comparisons if ai ≤ aj
The right subtree shows subsequent comparisons if ai > aj

Each leaf corresponds to an input ordering
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Decision-tree Example

a2 : a3 a1 : a3

a1 : a3 a2 : a3a1, a2, a3

a1, a3, a2

a2, a1, a3

a3, a1, a2 a2, a3, a1 a3, a2, a1

6 ≤ 8

≤
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≤>

>

>

>

>

Sort < a1, a2, a3 >
=< 6, 8, 5 >:

a1 : a2

Each internal node is labeled ai : aj for {1, 2, . . . , n}
The left subtree shows subsequent comparisons if ai ≤ aj
The right subtree shows subsequent comparisons if ai > aj

Each leaf corresponds to an input ordering
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>

>

>

Sort < a1, a2, a3 >
=< 6, 8, 5 >:

a2 : a3

Each internal node is labeled ai : aj for {1, 2, . . . , n}
The left subtree shows subsequent comparisons if ai ≤ aj
The right subtree shows subsequent comparisons if ai > aj

Each leaf corresponds to an input ordering
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Decision-tree Example

a1 : a2

a2 : a3 a1 : a3

a1 : a3 a2 : a3a1, a2, a3

a1, a3, a2

a2, a1, a3

a2, a3, a1 a3, a2, a1
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Sort < a1, a2, a3 >
=< 6, 8, 5 >:

a3, a1, a2
5 ≤ 6 ≤ 8

Each internal node is labeled ai : aj for {1, 2, . . . , n}
The left subtree shows subsequent comparisons if ai ≤ aj
The right subtree shows subsequent comparisons if ai > aj

Each leaf corresponds to an input ordering
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Decision-tree Model

A decision tree can model the execution of any comparison-based
sorting algorithm

One tree for each input size n

Worst-case running time = height of tree
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Lower Bound for Sorting

Theorem

Any comparison-based sorting algorithm requires Ω(n log n)
comparisons in the worst case.

Proof.

A decision tree to sort n elements must have at least n!
leaves, since each of the n! orderings is a possible answer.

A binary tree of height h has at most 2h leaves

Thus, n! ≤ 2h

⇒ h ≥ log n! = Ω(n log n) (Stirling’s approximation)

Corollary

Heapsort and merge sort are asymptotically optimal
comparison-based sorting algorithms.
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Lower Bound for Average Running Time of Sorting

We just proved that worst case number of comparisons used is
Ω(n log n)

Suppose that each of the n! input permutations is equally
likely. What can be said about the average case running time?

Note: Average is taken by adding up individual running time of

algorithm on each possible input and dividing total by n!.

Theorem

When all input permutations are equally likely, any
comparison-based sorting algorithm requires Ω(n log n)
comparisons on average.
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Lower Bound for Average Running Time of Sorting

Theorem

When all input permutations are equally likely, any
comparison-based sorting algorithm requires Ω(n log n)
comparisons on average.

Proof.

The External Path Length (EPL) of a tree is the sum over all leaves
of the tree, of the length of the paths from the root to the leaves.

Average number of comparisons used by a sorting algorithm is EPL
of its associated comparison tree divided by n!.

The EPL of a binary tree with m leaves is at least m log2 m + O(m).

The comparison tree has m = n! leaves
⇒ its external path length is n! log2 n! + O(n!)
⇒ average number of comparisons used is log2 n! + O(1).

We already saw log2 n! = Ω(n log n).
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Can we do better?

Are there sorting algorithms which are not comparison-based?
Can they beat the Ω(n log n) lower bound?

Counting sort

Assumes items are in set {1, 2, . . . , k}.
Is a stable sort (defined soon).

Radix sort

Assumes items are stored in fixed size words using finite
alphabet
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Counting Sort

Counting-sort(A,B, k)

Input: A[1 . . . n], where A[j ] ∈ {1, 2, . . . , k}
Output: B[1 . . . n], sorted
let C [1 . . . k] be a new array;
for i ← 1 to k do

C [i ]← 0;
end
for j ← 1 to n do

C [A[j ]]← C [A[j ]] + 1; // C [i ] = |{key = i}|
end
for i ← 2 to k do

C [i ]← C [i ] + C [i − 1]; // C [i ] = |{key ≤ i}|
end
for j ← n to 1 do

B[C [A[j ]]]← A[j ];
C [A[j ]]← C [A[j ]]− 1;

end
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Example: Counting Sort

2 3 4 5 1 2 3 4

2 1 4
1

4 2A C

B
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Example: Counting Sort

1 2 3 4 5 1 2 3 4

4 2 1 4 2 0 0 0 0A C

B

for i← 1 to k do
C[i]← 0;

end
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Example: Counting Sort

1 2 3 4 5 1 2 3 4

4 2 1 4 1 2 0 2A C

B

2

for j ← 1 to n do
C[A[j]]← C[A[j]] + 1; // C[i] = |{key = i}|

end
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Example: Counting Sort

1 2 3 4 5 1 2 3 4

4 2 1 4 1 2 0 22

C ′

A C

B 1 3 0 2

for i← 2 to k do
C[i]← C[i] +C[i− 1]; // C[i] = |{key ≤ i}|

end
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Example: Counting Sort

1 2 3 4 5 1 2 3 4
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Example: Counting Sort

1 2 3 4 5 1 2 3 4

4 2 1 4 2

C ′

A C

B 1 2 3 5

1 3 3 5

22

for j ← n to 1 do
B[C[A[j]]]← A[j];
C[A[j]]← C[A[j]]− 1;

end
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for j ← n to 1 do
B[C[A[j]]]← A[j];
C[A[j]]← C[A[j]]− 1;

end

Sorting: Lower Bounds and Linear Time Last Revision: August 25, 201626 / 36



Example: Counting Sort

1 2 3 4 5 1 2 3 4

4 2 1 4 2

C ′

A C

B 0 1 3 4

1 3 3 5

2 41 2

for j ← n to 1 do
B[C[A[j]]]← A[j];
C[A[j]]← C[A[j]]− 1;

end

Sorting: Lower Bounds and Linear Time Last Revision: August 25, 201627 / 36



Example: Counting Sort

1 2 3 4 5 1 2 3 4

4 2 1 4 2

C ′

A C

B 0 1 3 3

1 3 3 5

2 41 2 4

for j ← n to 1 do
B[C[A[j]]]← A[j];
C[A[j]]← C[A[j]]− 1;

end
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Analysis

Input: A[1 . . . n], where A[j ] ∈ {1, 2, . . . , k}
Output: B[1 . . . n], sorted
let C [1 . . . k] be a new array;
for i ← 1 to k do

C [i ]← 0; // O(k)
end

for j ← 1 to n do
C [A[j ]]← C [A[j ]] + 1; // O(n)

end
for i ← 2 to k do

C [i ]← C [i ] + C [i − 1]; // O(k)
end
for j ← n to 1 do

B[C [A[j ]]]← A[j ];
C [A[j ]]← C [A[j ]]− 1; // O(n)

end

Total: O(n + k)
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C [A[j ]]← C [A[j ]] + 1; // O(n)
end
for i ← 2 to k do

C [i ]← C [i ] + C [i − 1]; // O(k)
end
for j ← n to 1 do

B[C [A[j ]]]← A[j ];
C [A[j ]]← C [A[j ]]− 1; // O(n)

end

Total: O(n + k)
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Running Time

If k = O(n), then counting sort takes O(n) time.

But didn’t we prove that sorting must take Ω(n log n) time?

No, actually we proved that any comparison-based sorting
algorithm takes Ω(n log n) time.

Note that counting sort is not a comparison-based sorting
algorithm.

In fact, it makes no comparisons at all!
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Stable Sorting

Counting sort is a stable sort

it preserves the input order among equal elements.

4 2 1 4 2

2 41 2 4

Exercise

What other sorts have this property?
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Radix Sort

Sort on least significant digit first using stable sort

3 2
4 5
6 5
8 3
4 3
7 2
3 5

7
3
4
4
6
3
8

0
9
6
9
5
7
7

2 9
5 5
3 6
5 7
5 7
2 0
3 9

9
7
7
9
6
0
5

0
5
6
7
7
9
9

2
5
3
5
5
2
3

7
3
4
8
3
4
6

3
3
4
4
6
7
8

2
2
3
3
5
5
5

2
5
3
5
3
2
5

2
5
3
5
3
2
5

2
2
3
5
5
5
3

2
5
3
5
3
2
5

2 9
2 0
3 6
5 7
5 5
5 7
3 9

3
7
4
6
3
4
8

2
2
3
3
5
5
5
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Radix Sort: Correctness

Induction on digit position

Assume that the numbers are
sorted by their low-order i − 1
digits

Sort on digit i

Two numbers that differ on
digit i are correctly sorted by
their low-order i digits

Two numbers equal on digit i
are put in the same order as
the input ⇒ correctly sorted
by their low-order i digits

2 9
5 5
3 6
5 7
5 7
2 0
3 9

3
3
4
4
6
7
8

2
2
3
5
5
5
3

2
5
3
5
3
2
5

0
9
6
9
5
7
7

2
2
3
3
5
5
5

7
3
4
8
3
4
6
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Radix Sort: Running Time & Application

Lemma

Given n d-digit numbers in which each digit can take on up to k
possible values, radix sort correctly sorts these numbers in
O(d(n + k)) time if the stable sort it uses takes O(n + k) time.

Application:
Sorting numbers in the range from 0 to nb − 1, where b is a
constant

b log n bits for each number

each number can be viewed as having O(b) digits of log n bits
each

running time is O(d(n + k)) = O(b(n + 2log n)) = O(bn)

since b is a constant, the running time is O(n).
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