Saving Space in the LCS Algorithm

COMP 3711H - HKUST Version of 9/11/2016 M. J. Golin

Problem is to calcuate value of $d_{n,m}$ defined by

$$d_{i,j} = \max(d_{i-1,j}, d_{i,j-1}, d_{i,j} + \delta_{i,j})$$

where

$$\delta_{i,j} = \begin{cases} 1 & \text{if } x[i] = y[j] \\ 0 & \text{if } x[i] \neq y[j]. \end{cases}$$

whic is same as finding max-cost path from $v_{0,0}$ to $v_{n.m}$ in grid graph with left and down edges having cost 0 and diagonal down edges from $v_{i,j}$ having cost $\delta_{i,j}$.

- 1. BP(i, j, i, j')
- 2. if j' = j then
- 3. return BP(i, j, i', j) by writing the vertical path in O(i' i + 1) time
- 4. if i' = i then
- 5. return BP(i, j, i, j') by writing the horizontal path in O(j' j + 1) time
- 6. else if i' = i + 1
- 7. return $BP(i,j,i,j^\prime)$ by running the DAG algorithm in $O(j^\prime-j+1)$ time
- 8. else
- 9. Run Mid(i,j,i+1,j') to find (u,v) with $u=\lfloor \frac{i+i'}{2} \rfloor$
- 10. return BP(i, j, u, v) BP(u, v, i', j')

Mid(i,j,i',j') returns a vertex (u,v) on some max cost path between $v_{i,j}$ and $v_{i',j'}$ with $u=\lfloor\frac{i+i'}{2}\rfloor$.

- 1. BP(i, j, i, j')
- 2. if j' = j then
- 3. return BP(i, j, i', j) by writing the verticle path in O(i' i + 1) time
- 4. if i'=i then
- 5. return BP(i, j, i, j') by writing the horizontal path in O(j' j + 1) time
- 6. else if i' = i + 1
- 7. return $BP(i,j,i,j^\prime)$ by running the DAG algorithm in $O(j^\prime-j+1)$ time
- 8. else
- 9. Run Mid(i,j,i+1,j') to find (u,v) with $u=\lfloor \frac{i+i'}{2} \rfloor$
- 10. return BP(i, j, u, v) $BP(\overline{u}, v, i', j')$

If Mid(i,j,i',j') uses Perim(Box(i,j,i',j')) space then BP(i,j,i,j') also uses Perim(Box(i,j,i',j')) space.

If Mid(i,j,i',j') uses Area(Box(i,j,i',j')) time then BP(i,j,i,j') also uses Area(Box(i,j,i',j')) time

Mid(i,j,i',j') returns a vertex (u,t) on some max cost path between $v_{i,j}$ and $v_{i',j'}$ with $u = \lfloor \frac{i+i'}{2} \rfloor$.

Let G' be the induced subgraph of G containing all of the

$$\{v_{s,t} \mid i \le s \le v', j \le t \le j'\}$$

Let G_1 be induced subgraph of G' containing all $v_{s,t}$ with $s \leq u$. Let $d_{s,t}^1$ be the cost of a max cost path from $v_{i,j}$ to $v_{s,t}$ in G_1 . Using the same approach used for the LCS algorithm we can walk down row by row calculating $d_{s,*}^1$ (i.e., the entire s row's values) from $d_{s-1,*}^1$. This uses O(Area(Box(i,j,i',j')) time and O(Perim(Box(i,j,i',j'))) space.

When finished, we have stored (only) all of the values $d_{u,st}^1$

Mid(i,j,i',j') returns a vertex (u,t) on some max cost path between $v_{i,j}$ and $v_{i',j'}$ with $u=\lfloor \frac{i+i'}{2} \rfloor$.

Let G' be the induced subgraph of G containing all of the

$$\{v_{s,t} \mid i \le s \le v', \ j \le t \le j'\}$$

Let G'_2 be induced subgraph of G' containing all $v_{s,t}$ with $s \leq u$ and all edges reversed.

Let $d_{s,t}^2$ be the cost of a max cost path from $v_{n,m}$ to $v_{s,t}$ in G_2' . Using the same approach used for the LCS algorithm we can walk up row by row calculating $d_{s,*}^2$ (i.e., the entire s row's

values) from $d^1_{s+1,*}$. This uses O(Area(Box(i,j,i',j'))) time and O(Perim(Box(i,j,i',j'))) space.

When finished, we have stored (only) all of the values $d_{u,st}^2$

For every $j \leq t \leq j'$, $d_{u,t}^1 + d_{u,t}^2$ is the cost of max cost path from $v_{i,j}$ to $v_{i',j'}$ passing through $v_{u,t}$. Since a max cost path from $v_{i,j}$ to $v_{i',j'}$ must pass through at least one node $v_{u,t}$ the value

$$\max_{t} \left(d_{u,t}^1 + d_{u,t}^2 \right)$$

is the cost of a max-cost path from from $v_{i,j}$ to $v_{i',j'}$. If t' is the index t at which the maximum occurs then all our procedure needs to do is return the node (u, t').

This last step only used O(j'-j+1) time and O(j'-j+1) space so the entire procedure for Mid(i,j,i',j') only used O(Area(Box(i,j,i',j'))) time and O(Perim(Box(i,j,i',j'))) space and we are done.