
Saving Space in the LCS Algorithm

COMP 3711H - HKUST
Version of 9/11/2016
M. J. Golin



Problem is to calcuate value of
dn,m defined by

di,j = max (di−1,j , di,j−1, di,j + δi,j)

where

δi,j =

{
1 if x[i] = y[j]
0 if x[i] 6= y[j].

whic is same as finding
max-cost path from v0,0 to
vn.m in grid graph with left and
down edges having cost 0 and
diagonal down edges from vi,j
having cost δi,j .



1. BP (i, j, i, j′)
2. if j′ = j then
3. return BP (i, j, i′, j) by writing the

vertical path in O(i′ − i+ 1) time
4. if i′ = i then
5. return BP (i, j, i, j′) by writing the

horizontal path in O(j′ − j + 1) time
6. else if i′ = i+ 1
7. return BP (i, j, i, j′) by running

the DAG algorithm in O(j′ − j + 1)
time

8. else
9. Run Mid(i, j, i+ 1, j′)

to find (u, v) with u = b i+i′

2 c
10. return BP (i, j, u, v) BP (u, v, i′, j′)

Mid(i, j, i′, j′) returns
a vertex (u, v) on some
max cost path between
vi,j and vi′,j′ with

u = b i+i′

2 c.



1. BP (i, j, i, j′)
2. if j′ = j then
3. return BP (i, j, i′, j) by writing the

verticle path in O(i′ − i+ 1) time
4. if i′ = i then
5. return BP (i, j, i, j′) by writing the

horizontal path in O(j′ − j + 1) time
6. else if i′ = i+ 1
7. return BP (i, j, i, j′) by running

the DAG algorithm in O(j′ − j + 1)
time

8. else
9. Run Mid(i, j, i+ 1, j′)

to find (u, v) with u = b i+i′

2 c
10. return BP (i, j, u, v) BP (u, v, i′, j′)

If Mid(i, j, i′, j′) uses
Perim(Box(i, j, i′, j′)
space then
BP (i, j, i, j′) also uses
Perim(Box(i, j, i′, j′)
space.

If Mid(i, j, i′, j′) uses
Area(Box(i, j, i′, j′)
time then
BP (i, j, i, j′) also uses
Area(Box(i, j, i′, j′)
time



Mid(i, j, i′, j′) returns a vertex (u, t) on some max cost

path between vi,j and vi′,j′ with u = b i+i′

2 c.

Let G′ be the induced subgraph of G containing all of the

{vs,t | i ≤ s ≤ v′, j ≤ t ≤ j′}

Let G1 be induced subgraph of G′ containing all vs,t with s ≤ u.

Let d1s,t be the cost of a max cost path from vi,j to vs,t in G1.

Using the same approach used for the LCS algorithm we can
walk down row by row calculating d1s,∗ (i.e., the entire s row’s
values) from d1s−1,∗. This uses O(Area(Box(i, j, i′, j′)) time
and O(Perim(Box(i, j, i′, j′)) space.

When finished, we have stored (only) all of the values d1u,∗



Mid(i, j, i′, j′) returns a vertex (u, t) on some max cost

path between vi,j and vi′,j′ with u = b i+i′

2 c.

Let G′ be the induced subgraph of G containing all of the

{vs,t | i ≤ s ≤ v′, j ≤ t ≤ j′}

Let G′2 be induced subgraph of G′ containing all vs,t with s ≤ u
and all edges reversed.

Let d2s,t be the cost of a max cost path from vn,m to vs,t in G′2.

Using the same approach used for the LCS algorithm we can
walk up row by row calculating d2s,∗ (i.e., the entire s row’s
values) from d1s+1,∗. This uses O(Area(Box(i, j, i′, j′)) time
and O(Perim(Box(i, j, i′, j′)) space.

When finished, we have stored (only) all of the values d2u,∗



For every j ≤ t ≤ j′, d1u,t + d2u,t is the cost of max cost path
from vi,j to vi′,j′ passing through vu,t. Since a max cost
path from vi,j to vi′,j′ must pass through at least one node
vu,t the value

max
t

(
d1u,t + d2u,t

)
is the cost of a max-cost path from from vi,j to vi′,j′ . If t′

is the index t at which the maximum occurs then all our
procedure needs to do is return the node (u, t′).

This last step only used O (j′ − j + 1) time and
O (j′ − j + 1) space so the entire procedure for
Mid(i, j, i′, j′) only used O(Area(Box(i, j, i′, j′)) time
and O(Perim(Box(i, j, i′, j′)) space and we are done.


