Maximum Flow

Revision of November 7, 2016

Outline

- Introduction
- Definitions

■ Multi-Source Multi-Sink
■ The Ford-Fulkerson Method
■ Residual Networks

- Augmenting Paths

■ The Max-Flow Min-Cut Theorem
■ The Edmonds-Karp algorithm
■ Max Bipartite Matching
■ Odds and Ends

Maximum Flow

Main Reference: Sections 26.1-26.3 in CLRS.
■ Input: a directed graph $G=(V, E)$: (flow network)
■ Source (producer) s and destination t.
■ Internal Nodes are warehouses

- Edge costs are capacities

Maximum amount that can be shipped over edge

- No storage at internal nodes

All goods shipped into warehouse must leave warehouse
■ Objective:
Ship Maximum amount (flow) from s to t.

A Flow Network and its capacities

A flow: value 11

A max-flow: value $=23$

A flow network is a graph $G=(V, E)$.
Source $s \in V$, , sink $t \in V$.
Every edge $(u, v) \in E$ has capacity, $c(u, v) \geq 0$. Assume that for every $v \in V$, there is a path from s to v and from v to t.

Flow Definition: II

A FLOW is a function $f: V \times V \rightarrow R$ satisfying:

- Capacity Constraint:
$\forall u, v, \in V, \quad f(u, v) \leq c(u, v)$.
■ Skew Symmetry:
$\forall u, v, \in V, \quad f(u, v)=-f(v, u)$.
■ Flow Conservation:
$\forall u \in V-\{s, t\}, \quad \sum_{v \in V} f(u, v)=0$.
The VALUE of flow f is $|f|=\sum_{v \in V} f(s, v)$.

MAXIMUM-FLOW PROBLEM:

Given G, c, s, t, find f that maximizes $|f|$.

Multi-Source Multi-Sink Problem

Max-Flow problem has only one source s, and one sink t. Suppose there are multiple sources $s_{1}, s_{2}, \ldots, s_{k}$ and multiple sinks $t_{1}, t_{2}, \ldots, t_{\ell}$.

Definition of a flow remains the same except that Flow Conservation property now becomes

$$
\forall u \in V-\left\{s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{\ell}\right\}, \quad \sum_{v \in V} f(u, v)=0
$$

and our goal is to maximize

$$
|f|=\sum_{i=1}^{n} \sum_{v \in V} f\left(s_{i}, v\right) .
$$

This problem can be reduced to the original one by introducing a supersource s_{0}, a supersink t_{0} and edges $\cup_{i}\left(s_{0}, s_{i}\right)$ and $\cup_{j}\left(t_{j}, t_{0}\right)$, all of which have capacity ∞.

A multi-source multi-sink problem and its equivalent singlesource single-sink version.

Manipulating Flows

Let $X, Y \subseteq V$. We define

$$
f(X, Y)=\sum_{x \in X} \sum_{y \in Y} f(x, y) .
$$

The flow-conservation constraint then just says

$$
\forall u \in V-\{s, t\}, \quad f(u, V)=0 .
$$

Lemma: (Proof in Homework)

$\forall X \subseteq V, \quad f(X, X)=0$.
$\forall X, Y \subseteq V, \quad f(X, Y)=-f(Y, X)$.
$\forall X, Y, Z \subseteq V$ with $X \cap Y=\emptyset$

$$
\begin{gathered}
f(X \cup Y, Z)=f(X, Z)+f(Y, Z) \quad \text { and } \\
f(Z, X \cup Y)=f(Z, X)+f(Z, Y)
\end{gathered}
$$

Flow f was defined as amount that leaves source s.
We now see that this is the same as amount that enters sink t.

$$
\begin{aligned}
|f| & =f(s, V) \\
& =f(V, V)-f(V-s, V) \\
& =-f(V-s, V) \\
& =f(V, V-s) \\
& =f(V, t)+f(V, V-s-t) \\
& =f(V, t)
\end{aligned}
$$

All optimization problems must deal with the question: How to prove that solution is optimal (maximal/minimal)?

A common technique (for max problems) is to find a good upper-bound on the cost of an optimal solution and then show that our solution satisfies that bound.

A CUT S, T of G is a partition of the vertices

$$
V=S \cup T, \quad S \cap T=\emptyset, \quad s \in S, \quad \text { and } t \in T .
$$

The flow across the cut is $f(S, T)$.
The capacity of a cut is $C(S, T)=\sum_{x \in S, y \in T} c(x, y)$.
Note that for any cut, $f(S, T) \leq C(S, T)$.

$\operatorname{Cut}(S, T): S=\left\{s, v_{1}, v_{2}\right\}, T=\left\{v_{3}, v_{4}, t\right\}$.
The flow value is $|f|=19$ and $C(S, T)=26$.
Note that, in this example, $|f|<C(S, T)$.

Lemma:

If S, T is any cut, f any flow, then

$$
|f| \leq C(S, T)
$$

Proof:

$$
\begin{aligned}
|f| & =f(s, V) \\
& =f(s, V)+f(S-s, V) \\
& =f(S, V) \\
& =f(S, V)-f(S, S) \\
& =f(S, V-S) \\
& =f(S, T) \\
& \leq C(S, T)
\end{aligned}
$$

We now develop the Ford-Fulkerson method for finding max-flows. When FF terminates it provides a flow f and a cut S, T such that $|f|=C(S, T)$, so f is maximal.

The Ford-Fulkerson Method

\square Is iterative.

- Starts with flow $f=0,(\forall u, v, f(u, v)=0)$
- At each step
- Constructs a residual network G_{f} of f indicating how much capacity "remains" to be used .
- Finds an augmenting path s - t path p in G_{f} along which flow can be pushed.
- pushes f^{\prime} units of flow along p.

Creates new flow $f=f+f^{\prime}$.
■ Stops when there is no s - t path in current G_{f}.
■ $S=$ set of nodes reachable from s in $G_{f} \& T=V-S$.

- At end of algorithm:

$$
|f|=C(S, T) \Rightarrow f \text { is optimal }
$$

Residual networks

Given flow f, the residual network G_{f} consists of the edges along which we can (still) push more flow. The amount that can (still) be pushed across (u, v) is called the residual capacity $c_{f}(u, v)$.

$$
c_{f}(u, v)=c(u, v)-f(u, v) .
$$

If there is flow from u to v then $f(u, v)>0$ and $c_{f}(u, v)$ is the remaining capacity on (u, v).

Residual Capacity: $c_{f}(u, v)=c(u, v)-f(u, v)$.

If there is flow from u to v then $f(u, v)>0$ and $c_{f}(u, v)$ is the remaining capacity on (u, v).
If there is flow from v to u then $f(u, v)<0$, and $c_{f}(u, v)=c(u, v)+f(v, u)$ is the capacity of (u, v) plus amount of existing flow that can be pushed backwards from u to v.

The Residual Network G_{f} is $G_{f}=\left(V, E_{f}\right)$ where

$$
E_{f}=\left\{(u, v) \in V \times V: c_{f}(u, v)>0\right\}
$$

A Flow

Its residual network

Lemma:

Let f be a flow in $G=(V, E)$ and G_{f} its residual network. Let f^{\prime} be a flow in G_{f}.

Define $f+f^{\prime}$ as $\left(f+f^{\prime}\right)(u, v)=f(u, v)+f^{\prime}(u, v)$.
Then $f+f^{\prime}$ is a flow in G with value $\left|f+f^{\prime}\right|=|f|+\left|f^{\prime}\right|$.

Augmenting path p is a simple s - t path in G_{f}. The residual capacity of a.p. p is

$$
c_{f}(p)=\min \left\{c_{f}(u, v):(u, v) \text { on } p\right\}
$$

Let p be an augmenting path in G_{f} and define

$$
f_{p}(u, v)= \begin{cases}c_{f}(p) & \text { if }(u, v) \text { is on } p \\ -c_{f}(p) & \text { if }(v, u) \text { is on } p \\ 0 & \text { otherwise }\end{cases}
$$

Lemma: If f is a flow and p an a.p.in G_{f} then: f_{p} is a flow in G_{f} with $\left|f_{p}\right|=c_{f}(p)>0$. $f^{\prime}=f+f_{p}$ is a flow in G with $\left|f^{\prime}\right|=|f|+\left|f_{p}\right|>|f|$.

An initial flow f.
Its residual network G_{f} and an augmenting path f^{\prime} in G_{f}.
The flow $f+f^{\prime}$ and its residual network.

Optimality

Theorem: (Max-Flow Min-Cut Theorem)
Let f be a flow.
Then the following three conditions are equivalent:
11 is a maximum flow in G.
$\boxed{G_{f}}$ contains no augmenting paths
$3|f|=C(S, T)$ for some (S, T) cut.

Proof:

■ (1) $\Rightarrow(2)$: If G_{f} contained an augmenting path p then $\left|f+f_{p}\right|>|f|$ so f could not be maximal.

■ (2) $\Rightarrow(3)$: Let $S=\left\{u \in V: \exists\right.$ path from s to v in $\left.G_{f}\right\}$. $T=V-S$. Then
$f(S, T)=f(S, V)-f(S, S)=f(S, V)=f(s, V)+f(S-s, V)=|f|$.
Now note that $\forall u \in S, v \in T, f(u, v)=c(u, v)$ since otherwise $c_{f}(u, v)>0$ and $v \in S$.
Thus $C(S, T)=f(S, T)=|f|$.
■ $(3) \Rightarrow(1)$: We previously saw that every flow f^{\prime} must satisfy $\left|f^{\prime}\right| \leq C(S, T)$ so if $|f|=C(S, T), f$ must be optimal.

Theorem Proof

The Ford-Fulkerson Method

$■$ Starts with flow $f \equiv 0,(\forall u, v, f(u, v)=0)$
■ Construct residual network G_{f}. If G_{f} contains no augmenting path, stop (f is optimal by MFMC theorem).
Otherwise.
1 Find an augmenting path ($s-t$ path) p in G_{f}
2 Let f_{p} be the flow in G_{f} that pushes $c_{f}(p)$ units of flow along p.

3 Let $f=f+f_{p}$ be new flow in G.

FF Example: Steps 1 \& 2

FF Example: Steps 2 \& 3

FF Example: Steps 3 \& 4

FF Example: Steps 4 \& 5 (End)

Running Time \& Finiteness

The FF method is not a completely defined algorithm since it doesn't specify how to choose the augmenting paths.

In fact, if the capacities are irrational, it is possible that a "bad" way of choosing the a.p. will lead to a non-terminating algorithm that will never stop (it will keep on adding cheaper and cheaper augmenting paths).

If the capacities are all integers
\Rightarrow then each c_{p} will be an integer ≥ 1
\Rightarrow the algorithm must terminate after $\left|f^{*}\right|$ steps, where f^{*} is a max-flow.

Maintaining the graphs G and G_{f} and the flow f using adjacency lists, while using DFS or BFS to find a s-t path, the algorithm can then be implemented to run in $O\left(\left|f^{*}\right||E|\right)$ time.

Note: This can be normalized to work if the capacities are rational.

Running Time

■ Starts with flow $f \equiv 0, \quad O(|E|)$

- Construct residual network $G_{f} . \quad O(|E|)$ If G_{f} contains no augmenting path, stop (f is optimal by MFMC theorem). Otherwise. Can be repeated $O\left(\left|f^{*}\right|\right)$ times.

1 Find an augmenting $s-t$ path p in $G_{f} \quad O(|E|)$
2 Let f_{p} be the flow in G_{f} that pushes $c_{f}(p)$ units of flow along p.

3 Let $f=f+f_{p}$ be new flow in $G . \quad O(|E|)$

A pathological example in which each augmenting path only increases flow value by 1 unit.

The Edmonds-Karp Algorithm

Always choose an augmenting path of minimum-length in G_{f} (where each edge has unit length). This can be done in $\mathrm{O}(\mathbb{E})$ time using BFS.

Theorem: The EK alg performs at most $\mathrm{O}(\mathrm{VE})$ path-augmentations, so the E.K. alg runs in $\mathrm{O}\left(\mathrm{VE}^{2}\right)$ time.

Let $\delta_{f}(u, v)$ denote shortest-path distance from u to v in G_{f}.
The proof of the Theorem is a consequence of the following two lemmas:

Lemma: $\forall v \in V-\{s, t\}, \delta_{f}(s, v)$ does not decrease after a flow augmentation.

Lemma:

Edge (u, v) is critical on a.p. p if $c_{f}(u, v)=c_{f}(p)$.
Suppose when running the E.K. algorithm that (u, v) is critical for a.p. p in G_{f}, and is later critical again for another a.p. p^{\prime} in $G_{f^{\prime}}$. Then

$$
\delta_{f^{\prime}}(s, u) \geq \delta_{f}(s, u)+2
$$

Augmenting paths are simple and do not contain s, t internally, so $\delta_{f}(s, v)$ is always $\leq|V|-2$ (as long as v is reachable). Combining the two lemmas therefore shows that no specific edge can become critical more than $(|V|-2) / 2=O(|V|)$ times. Some edge is critical in each step, so there can be at most $O(|V||E|)$ steps.

Application: Max Bipartite Matching

A graph $G=(V, E)$ is bipartite if there exists partition $V=$ $L \cup R$ with $L \cap R=\emptyset$ and $E \subseteq L \times R$.

A Matching is a subset $M \subseteq E$ such that $\forall v \in V$ at most one edge in M is incident upon v.

The size of a matching is $|M|$, the number of edges in M.
A Maximum Matching is matching M such that every other matching M^{\prime} satisfies $\left|M^{\prime}\right| \leq M$.

Problem: Given bipartite graph G, find a maximum matching.

A bipartite graph with 2 matchings

Our approach will be to write the Max Bipartite Matching problem as a Max-Flow problem.

Our flow network will be $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\{s, t\}$ and
$E^{\prime}=\{(s, u): u \in L\} \cup\{(u, v): u \in L, v \in R$ and $(u, v) \in E\}$ $\cup\{(v, t): t \in R\}$

We also assign
$\forall(u, v) \in E^{\prime}, c(u, v)=1$.

Lemma: If f is an integer valued flow in G^{\prime} then there is a matching M of G with $|f|=|M|$.
Similarly, if M is a matching of G then there is an integer valued flow f with $|f|=|M|$.

This almost tells us that Max-Flow solves our problem. The difficulty is that it's possible that the max-flow might not have integer value (it is possible that $|f|$ might be an integer but some $f(u, v)$ might not be integers).

A bipartite graph and its associated flow network. A matching and associated flow are illustrated

L

L
R

Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a flow network in which c is integral. Then the max-flow f found by the F.F. method has the property that
$\forall u, v, f(u, v)$ is integer valued.

The proof is by induction on the steps in the FF method.
At each step the current flow f is integer so the residual capacities are all integer.
This implies that the a.p. found has $c_{f}(p)$ integral, so the new flow $f+f^{\prime}$ created is also integral.

The theorem guarantees that if G^{\prime} is the flow network corresponding to a bipartite matching problem then max flow value $|f|$ is the value of a maximum matching.

The flow found by the FF algorithm can be modified to yield the max matching.

The FF algorithm run on this special graph will take $\mathrm{O}(\mathrm{VE})$ time (why?).

Odds and Ends

- A faster implementation of the FF method uses the idea of blocking flows developed by Dinic. This approach finds many augmenting paths at once.

■ A totally different approach to the Max-Flow algorithm is the push-relabel method (see CLRS for details). This can run in $O\left(|V|^{3}\right)$ time as compared to the $O\left(|V||E|^{2}\right)$ of FF.

- General Culture: The max-flow problem can be written as a linear program. The FF method is essentially a special case of the primal-dual algorithm for solving combinatorial Linear Programs.

