# Maximum Flow

#### Revision of November 7, 2016

### Introduction

- Definitions
- Multi-Source Multi-Sink
- The Ford-Fulkerson Method
  - Residual Networks
  - Augmenting Paths
  - The Max-Flow Min-Cut Theorem
  - The Edmonds-Karp algorithm
- Max Bipartite Matching
- Odds and Ends

#### **Maximum Flow**

Main Reference: Sections 26.1-26.3 in CLRS.

- Input: a directed graph G = (V, E): (flow network)
- Source (producer) *s* and destination *t*.
- Internal Nodes are warehouses
- Edge costs are *capacities* Maximum amount that can be shipped over edge
- No storage at internal nodes

All goods shipped into warehouse must leave warehouse

## Objective:

Ship Maximum amount (flow) from s to t.



A Flow Network and its capacities



A flow: value 11



A max-flow: value = 23

A flow network is a graph G = (V, E). Source  $s \in V$ , , sink  $t \in V$ .

Every edge  $(u, v) \in E$  has capacity,  $c(u, v) \ge 0$ . Assume that for every  $v \in V$ , there is a path from *s* to *v* and from *v* to *t*.

# Flow Definition: II

A **FLOW** is a function  $f : V \times V \rightarrow R$  satisfying:

- Capacity Constraint:  $\forall u, v, \in V, \quad f(u, v) \leq c(u, v).$
- Skew Symmetry:  $\forall u, v, \in V, \quad f(u, v) = -f(v, u).$
- Flow Conservation:  $\forall u \in V - \{s, t\}, \quad \sum_{v \in V} f(u, v) = 0.$

The **VALUE** of flow f is  $|f| = \sum_{v \in V} f(s, v)$ .

**MAXIMUM-FLOW PROBLEM:** Given G, c, s, t, find f that maximizes |f|.

#### Multi-Source Multi-Sink Problem

Max-Flow problem has only one source s, and one sink t. Suppose there are

multiple sources  $s_1, s_2, \ldots, s_k$  and multiple sinks  $t_1, t_2, \ldots, t_{\ell}$ .

Definition of a flow remains the same except that Flow Conservation property now becomes  $\forall u \in V - \{s_1, s_2, \dots, s_k, t_1, t_2, \dots, t_\ell\}, \quad \sum_{v \in V} f(u, v) = 0$ 

and our goal is to maximize

$$|f| = \sum_{i=1} \sum_{v \in V} f(s_i, v).$$

This problem can be reduced to the original one by introducing a *supersource*  $s_0$ , a *supersink*  $t_0$  and edges  $\cup_i(s_0, s_i)$  and  $\cup_j(t_j, t_0)$ , all of which have capacity  $\infty$ .

A multi-source multi-sink problem and its equivalent singlesource single-sink version.



**Manipulating Flows** 

Let  $X, Y \subseteq V$ . We define

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y).$$

The *flow-conservation* constraint then just says

$$\forall u \in V - \{s, t\}, \quad f(u, V) = 0.$$

#### Lemma: (Proof in Homework)

$$\forall X \subseteq V, \quad f(X,X) = 0.$$

$$\forall X, Y \subseteq V, \quad f(X, Y) = -f(Y, X).$$

 $\forall X, Y, Z \subseteq V \text{ with } X \cap Y = \emptyset$   $f(X \cup Y, Z) = f(X, Z) + f(Y, Z) \text{ and }$  $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$  Flow *f* was defined as amount that leaves source *s*.We now see that this is the same as amount that enters sink *t*.

$$\begin{aligned} |f| &= f(s, V) \\ &= f(V, V) - f(V - s, V) \\ &= -f(V - s, V) \\ &= f(V, V - s) \\ &= f(V, t) + f(V, V - s - t) \\ &= f(V, t) \end{aligned}$$

definition

previous page previous page previous page previous page flow conservation All optimization problems must deal with the question: How to prove that solution *is* optimal (maximal/minimal)?

A common technique (for max problems) is to find a good upper-bound on the cost of an optimal solution and then show that our solution satisfies that bound.

A CUT *S*, *T* of *G* is a partition of the vertices  $V = S \cup T$ ,  $S \cap T = \emptyset$ ,  $s \in S$ , and  $t \in T$ .

The flow across the cut is f(S, T).

The capacity of a cut is  $C(S, T) = \sum_{x \in S, y \in T} c(x, y)$ . Note that for *any* cut,  $f(S, T) \leq C(S, T)$ .



Cut (S, T):  $S = \{s, v_1, v_2\}, T = \{v_3, v_4, t\}$ . The flow value is |f| = 19 and C(S, T) = 26. Note that, in this example, |f| < C(S, T).

### Lemma:

#### If S, T is any cut, f any flow, then $|f| \le C(S, T)$ . Proof:

$$\begin{aligned} |f| &= f(s, V) \\ &= f(s, V) + f(S - s, V) \\ &= f(S, V) \\ &= f(S, V) - f(S, S) \\ &= f(S, V - S) \\ &= f(S, T) \\ &\leq C(S, T) \end{aligned}$$

We now develop the Ford-Fulkerson method for finding max-flows. When FF terminates it provides a flow f and a cut S, T such that |f| = C(S, T), so f is maximal.

### The Ford-Fulkerson Method

- Is iterative.
- Starts with flow f = 0,  $(\forall u, v, f(u, v) = 0)$
- At each step
  - Constructs a residual network  $G_f$  of f indicating how much capacity "remains" to be used .
  - Finds an augmenting path s-t path p in  $G_f$  along which flow can be pushed.
  - pushes f' units of flow along p. Creates new flow f = f + f'.
- Stops when there is no s-t path in current  $G_f$ .
- $S = \text{set of nodes reachable from } s \text{ in } G_f \& T = V S.$
- At end of algorithm:

$$|f| = C(S,T) \Rightarrow f \text{ is optimal}$$

### **Residual networks**

Given flow *f*, the residual network  $G_f$  consists of the edges along which we can (still) push more flow. The amount that can (still) be pushed across (u, v) is called the *residual capacity*  $c_f(u, v)$ .

$$c_f(u,v) = c(u,v) - f(u,v).$$

If there is flow from *u* to *v* then f(u, v) > 0 and  $c_f(u, v)$  is the remaining capacity on (u, v).

Residual Capacity:  $c_f(u, v) = c(u, v) - f(u, v)$ .

- If there is flow from *u* to *v* then f(u, v) > 0and  $c_f(u, v)$  is the remaining capacity on (u, v).
- If there is flow from v to u then f(u, v) < 0, and  $c_f(u, v) = c(u, v) + f(v, u)$  is the capacity of (u, v)plus amount of existing flow that can be pushed **backwards** from u to v.

The *Residual Network*  $G_f$  is  $G_f = (V, E_f)$  where

$$E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$





Its residual network

Let *f* be a flow in G = (V, E) and  $G_f$  its residual network.Let f' be a flow in  $G_f$ .

Define f + f' as (f + f')(u, v) = f(u, v) + f'(u, v).

Then f + f' is a flow in *G* with value |f + f'| = |f| + |f'|.

Augmenting path p is a simple s-t path in  $G_f$ . The residual capacity of a.p. p is  $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ on } p\}.$  Let p be an augmenting path in  $G_f$  and define

$$f_p(u,v) = \begin{cases} c_f(p) & \text{if } (u,v) \text{ is on } p \\ -c_f(p) & \text{if } (v,u) \text{ is on } p \\ 0 & \text{otherwise} \end{cases}$$

**Lemma:** If *f* is a flow and *p* an a.p.in *G<sub>f</sub>* then:  $f_p$  is a flow in *G<sub>f</sub>* with  $|f_p| = c_f(p) > 0$ .

 $f' = f + f_p$  is a flow in *G* with  $|f'| = |f| + |f_p| > |f|$ .



An initial flow f. Its residual network  $G_f$  and an augmenting path f' in  $G_f$ . The flow f + f' and its residual network.

### Optimality

**Theorem:** (Max-Flow Min-Cut Theorem) Let f be a flow. Then the following three conditions are equivalent:

1 f is a maximum flow in G.

- **2**  $G_f$  contains no augmenting paths
- 3 |f| = C(S,T) for some (S,T) cut.

#### Proof:

- (1) ⇒ (2): If  $G_f$  contained an augmenting path p then  $|f + f_p| > |f|$  so f could not be maximal.
- (2)  $\Rightarrow$  (3): Let  $S = \{u \in V : \exists \text{ path from } s \text{ to } v \text{ in } G_f\}$ . T = V - S. Then

f(S,T) = f(S,V) - f(S,S) = f(S,V) = f(s,V) + f(S-s,V) = |f|.

Now note that  $\forall u \in S, v \in T$ , f(u, v) = c(u, v) since otherwise  $c_f(u, v) > 0$  and  $v \in S$ . Thus C(S, T) = f(S, T) = |f|.

■ (3)  $\Rightarrow$  (1): We previously saw that every flow f' must satisfy  $|f'| \le C(S, T)$  so if |f| = C(S, T), f must be optimal.

### The Ford-Fulkerson Method

Starts with flow  $f \equiv 0$ ,  $(\forall u, v, f(u, v) = 0)$ 

- Construct residual network G<sub>f</sub>.
  If G<sub>f</sub> contains no augmenting path, stop (*f* is optimal by MFMC theorem).
  Otherwise.
  - **1** Find an augmenting path (s t path) p in  $G_f$
  - **2** Let  $f_p$  be the flow in  $G_f$  that pushes  $c_f(p)$  units of flow along p.

3 Let 
$$f = f + f_p$$
 be new flow in  $G$ .

# FF Example: Steps 1 & 2



# FF Example: Steps 2 & 3





# FF Example: Steps 3 & 4





# FF Example: Steps 4 & 5 (End)





### **Running Time & Finiteness**

The FF method is not a completely defined algorithm since it doesn't specify how to *choose* the augmenting paths.

In fact, if the capacities are irrational, it is possible that a "bad" way of choosing the a.p. will lead to a non-terminating algorithm that will never stop (it will keep on adding cheaper and cheaper augmenting paths).

If the capacities are all integers

- $\Rightarrow$  then each  $c_p$  will be an integer  $\geq 1$
- $\Rightarrow$  the algorithm must terminate after  $|f^*|$  steps, where  $f^*$  is a max-flow.

Maintaining the graphs *G* and *G*<sub>*f*</sub> and the flow *f* using adjacency lists, while using DFS or BFS to find a *s*-*t* path, the algorithm can then be implemented to run in  $O(|f^*||E|)$  time.

Note: This can be normalized to work if the capacities are rational.

# **Running Time**

- Starts with flow  $f \equiv 0$ , O(|E|)
- Construct residual network  $G_f$ . O(|E|)If  $G_f$  contains no augmenting path, stop (*f* is optimal by MFMC theorem). Otherwise. Can be repeated  $O(|f^*|)$  times.
  - **1** Find an augmenting s t path p in  $G_f = O(|E|)$
  - **2** Let  $f_p$  be the flow in  $G_f$  that pushes  $c_f(p)$  units of flow along p.
  - 3 Let  $f = f + f_p$  be new flow in G. O(|E|)

A pathological example in which each augmenting path only increases flow value by 1 unit.





### The Edmonds-Karp Algorithm

Always choose an augmenting path of minimum-length in  $G_f$  (where each edge has unit length). This can be done in O(E) time using BFS.

**Theorem:** The EK alg performs at most O(VE) path-augmentations, so the E.K. alg runs in  $O(VE^2)$  time.

Let  $\delta_f(u, v)$  denote shortest-path distance from *u* to *v* in  $G_f$ .

The proof of the Theorem is a consequence of the following two lemmas: **Lemma:**  $\forall v \in V - \{s, t\}, \delta_f(s, v)$  does not decrease after a flow augmentation.

#### Lemma:

Edge (u, v) is *critical* on a.p. p if  $c_f(u, v) = c_f(p)$ . Suppose when running the E.K. algorithm that (u, v) is critical for a.p. p in  $G_f$ , and is later critical again for another a.p. p' in  $G_{f'}$ . Then

 $\delta_{f'}(s,u) \ge \delta_f(s,u) + 2.$ 

Augmenting paths are simple and do not contain *s*,*t* internally, so  $\delta_f(s, v)$  is always  $\leq |V| - 2$  (as long as *v* is reachable). Combining the two lemmas therefore shows that no specific edge can become critical more than (|V| - 2)/2 = O(|V|) times. *Some* edge is critical in each step, so there can be at most O(|V||E|) steps.

#### **Application: Max Bipartite Matching**

A graph G = (V, E) is *bipartite* if there exists partition  $V = L \cup R$  with  $L \cap R = \emptyset$  and  $E \subseteq L \times R$ .

A *Matching* is a subset  $M \subseteq E$  such that  $\forall v \in V$  at most one edge in M is incident upon v.

The *size* of a matching is |M|, the number of edges in M.

A *Maximum Matching* is matching *M* such that every other matching *M'* satisfies  $|M'| \le M$ .

**Problem:** Given bipartite graph *G*, find a maximum matching.

#### A bipartite graph with 2 matchings



Our approach will be to write the Max Bipartite Matching problem as a Max-Flow problem.

Our *flow network* will be G' = (V', E') where  $V' = V \cup \{s, t\}$  and  $E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R \text{ and } (u, v) \in E\}$  $\cup \{(v, t) : t \in R\}$ 

We also assign  $\forall (u, v) \in E', c(u, v) = 1.$ 

**Lemma:** If *f* is an integer valued flow in *G'* then there is a matching *M* of *G* with |f| = |M|. Similarly, if *M* is a matching of *G* then there is an integer valued flow *f* with |f| = |M|.

This *almost* tells us that Max-Flow solves our problem. The difficulty is that it's possible that the max-flow might not have integer value (it is possible that |f| might be an integer but some f(u, v) might not be integers).

#### A bipartite graph and its associated flow network. A matching and associated flow are illustrated



Let G' = (V', E') be a flow network in which c is integral. Then the max-flow f found by the F.F. method has the property that

 $\forall u, v, f(u, v)$  is integer valued.

The proof is by induction on the steps in the FF method.

At each step the current flow f is integer so the residual capacities are all integer.

This implies that the a.p. found has  $c_f(p)$  integral, so the new flow f + f' created is also integral.

The theorem guarantees that if G' is the flow network corresponding to a bipartite matching problem then max flow value |f| is the value of a maximum matching.

The flow found by the FF algorithm can be modified to yield the max matching.

The FF algorithm run on this special graph will take O(VE) time (why?).

### Odds and Ends

- A faster implementation of the FF method uses the idea of *blocking flows* developed by Dinic. This approach finds many augmenting paths at once.
- A totally different approach to the Max-Flow algorithm is the *push-relabel* method (see CLRS for details). This can run in O(|V|<sup>3</sup>) time as compared to the O(|V||E|<sup>2</sup>) of FF.
- General Culture: The max-flow problem can be written as a *linear program*. The FF method is essentially a special case of the *primal-dual* algorithm for solving combinatorial Linear Programs.