
Union Find

Version of October 11, 2016

Version of October 11, 2016 Union Find 1 / 14



Disjoint Set Union-Find

A disjoint set Union-Find data structure supports three operations
on collections of disjoint sets over some universe U. For any
x , y ∈ U:

1 Create-Set(x)

Create a set containing a single item x .

2 Find-Set(x)

Find the set that contains x

3 Union(x , y)

Merge the set containing x , and another set containing y to a
single set.
After this operation, we have Find-Set(x) = Find-Set(y).

Version of October 11, 2016 Union Find 2 / 14



Disjoint Set Union-Find

A disjoint set Union-Find data structure supports three operations
on collections of disjoint sets over some universe U. For any
x , y ∈ U:

1 Create-Set(x)

Create a set containing a single item x .

2 Find-Set(x)

Find the set that contains x

3 Union(x , y)

Merge the set containing x , and another set containing y to a
single set.
After this operation, we have Find-Set(x) = Find-Set(y).

Version of October 11, 2016 Union Find 2 / 14



Disjoint Set Union-Find

A disjoint set Union-Find data structure supports three operations
on collections of disjoint sets over some universe U. For any
x , y ∈ U:

1 Create-Set(x)

Create a set containing a single item x .

2 Find-Set(x)

Find the set that contains x

3 Union(x , y)

Merge the set containing x , and another set containing y to a
single set.
After this operation, we have Find-Set(x) = Find-Set(y).

Version of October 11, 2016 Union Find 2 / 14



Disjoint Set Union-Find

A disjoint set Union-Find data structure supports three operations
on collections of disjoint sets over some universe U. For any
x , y ∈ U:

1 Create-Set(x)

Create a set containing a single item x .

2 Find-Set(x)

Find the set that contains x

3 Union(x , y)

Merge the set containing x , and another set containing y to a
single set.

After this operation, we have Find-Set(x) = Find-Set(y).

Version of October 11, 2016 Union Find 2 / 14



Disjoint Set Union-Find

A disjoint set Union-Find data structure supports three operations
on collections of disjoint sets over some universe U. For any
x , y ∈ U:

1 Create-Set(x)

Create a set containing a single item x .

2 Find-Set(x)

Find the set that contains x

3 Union(x , y)

Merge the set containing x , and another set containing y to a
single set.
After this operation, we have Find-Set(x) = Find-Set(y).

Version of October 11, 2016 Union Find 2 / 14



Outline

The Disjoint Set Union-Find data structure

The basic implementation
An improvement

Version of October 11, 2016 Union Find 3 / 14



Up-Tree Implementation

a b c

d

e

f

g

h

k

j

Every item is in a tree.

(Do not confuse these with the
subtrees formed by Kruskal’s algorithm.)
The root of the tree is the representative item of all items in
that tree

i.e., the root of the tree represents the whole items.
use the root’s ID as the unique ID of the set.

In this up-tree implementation, every node (except the root)
has a pointer pointing to its parent.

The root element has a pointer pointing to itself.

Version of October 11, 2016 Union Find 4 / 14



Up-Tree Implementation

a b c

d

e

f

g

h

k

j

Every item is in a tree. (Do not confuse these with the
subtrees formed by Kruskal’s algorithm.)

The root of the tree is the representative item of all items in
that tree

i.e., the root of the tree represents the whole items.
use the root’s ID as the unique ID of the set.

In this up-tree implementation, every node (except the root)
has a pointer pointing to its parent.

The root element has a pointer pointing to itself.

Version of October 11, 2016 Union Find 4 / 14



Up-Tree Implementation

a b c

d

e

f

g

h

k

j

Every item is in a tree. (Do not confuse these with the
subtrees formed by Kruskal’s algorithm.)
The root of the tree is the representative item of all items in
that tree

i.e., the root of the tree represents the whole items.
use the root’s ID as the unique ID of the set.

In this up-tree implementation, every node (except the root)
has a pointer pointing to its parent.

The root element has a pointer pointing to itself.

Version of October 11, 2016 Union Find 4 / 14



Up-Tree Implementation

a b c

d

e

f

g

h

k

j

Every item is in a tree. (Do not confuse these with the
subtrees formed by Kruskal’s algorithm.)
The root of the tree is the representative item of all items in
that tree

i.e., the root of the tree represents the whole items.

use the root’s ID as the unique ID of the set.

In this up-tree implementation, every node (except the root)
has a pointer pointing to its parent.

The root element has a pointer pointing to itself.

Version of October 11, 2016 Union Find 4 / 14



Up-Tree Implementation

a b c

d

e

f

g

h

k

j

Every item is in a tree. (Do not confuse these with the
subtrees formed by Kruskal’s algorithm.)
The root of the tree is the representative item of all items in
that tree

i.e., the root of the tree represents the whole items.
use the root’s ID as the unique ID of the set.

In this up-tree implementation, every node (except the root)
has a pointer pointing to its parent.

The root element has a pointer pointing to itself.

Version of October 11, 2016 Union Find 4 / 14



Up-Tree Implementation

a b c

d

e

f

g

h

k

j

Every item is in a tree. (Do not confuse these with the
subtrees formed by Kruskal’s algorithm.)
The root of the tree is the representative item of all items in
that tree

i.e., the root of the tree represents the whole items.
use the root’s ID as the unique ID of the set.

In this up-tree implementation, every node (except the root)
has a pointer pointing to its parent.

The root element has a pointer pointing to itself.

Version of October 11, 2016 Union Find 4 / 14



Up-Tree Implementation

a b c

d

e

f

g

h

k

j

Every item is in a tree. (Do not confuse these with the
subtrees formed by Kruskal’s algorithm.)
The root of the tree is the representative item of all items in
that tree

i.e., the root of the tree represents the whole items.
use the root’s ID as the unique ID of the set.

In this up-tree implementation, every node (except the root)
has a pointer pointing to its parent.

The root element has a pointer pointing to itself.

Version of October 11, 2016 Union Find 4 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x):

easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x):

also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until

we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return

the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do

x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return

x

Version of October 11, 2016 Union Find 5 / 14



Create-Set(x) and Find-Set(x)

Create-Set(x): easy

x.parent=x;

Find-Set(x): also easy

simply trace the parent point until we hit the root, then
return the root element.

while x 6= x.parent do
x = x.parent;

end
return x

Version of October 11, 2016 Union Find 5 / 14



Union(x , y)

Naive solution:

put the parent pointer of the representation of x pointing to
the representation of y .

a b c

d

e

f

g

h

k

j
+

k

j

a b c

d

e

f

g

h

Question

Is this a good idea?

Version of October 11, 2016 Union Find 6 / 14



Union(x , y)

Naive solution:

put the parent pointer of the representation of x pointing to
the representation of y .

a b c

d

e

f

g

h

k

j
+

k

j

a b c

d

e

f

g

h

Question

Is this a good idea?

Version of October 11, 2016 Union Find 6 / 14



Union(x , y)

Naive solution:

put the parent pointer of the representation of x pointing to
the representation of y .

a b c

d

e

f

g

h

k

j
+

k

j

a b c

d

e

f

g

h

Question

Is this a good idea?

Version of October 11, 2016 Union Find 6 / 14



Problem

a

b

z

.
.

a +
a

+b
b

c

c

a

b

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

Simple trick (Union by height):

when we union two trees together, we always make the root of
the taller tree the parent of shorter tree.

Version of October 11, 2016 Union Find 7 / 14



Problem

a

b

z

.
.

a +
a

+b
b

c

c

a

b

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

Simple trick (Union by height):

when we union two trees together, we always make the root of
the taller tree the parent of shorter tree.

Version of October 11, 2016 Union Find 7 / 14



Problem

a

b

z

.
.

a +
a

+b
b

c

c

a

b

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

Simple trick (Union by height):

when we union two trees together, we always make the root of
the taller tree the parent of shorter tree.

Version of October 11, 2016 Union Find 7 / 14



Problem

a

b

z

.
.

a +
a

+b
b

c

c

a

b

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

Simple trick (Union by height):

when we union two trees together, we always make the root of
the taller tree the parent of shorter tree.

Version of October 11, 2016 Union Find 7 / 14



Problem

a

b

z

.
.

a +
a

+b
b

c

c

a

b

May become a linked-list at the end! Hence it is not efficient.

Question

Can we do better?

Simple trick (Union by height):

when we union two trees together, we always make the root of
the taller tree the parent of shorter tree.

Version of October 11, 2016 Union Find 7 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second.

And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is

increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);

if a.height ≤ b.height then
if a.height == b.height then

b.height++;
end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then

b.height++;
end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end

a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else

b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Up-Tree Implementation : Union by Height

The root of every tree also holds the height of the tree.

In case two trees have the same height, we choose the root of
the first tree point to the root of the second. And the tree
height is increased by 1.

Union(x, y)

a=Find-Set(x);
b=Find-Set(y);
if a.height ≤ b.height then

if a.height == b.height then
b.height++;

end
a.parent=b;

else
b.parent=a;

end

Version of October 11, 2016 Union Find 8 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have

1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).

Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) =

2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y),

is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For the root x of any tree, let size(x) denote the number of nodes
and h(x) be the height of the tree. Then size(x) ≥ 2h(x).

Proof.

(By induction)

1 At beginning, h(x) = 0, and size(x) = 1. We have 1 ≥ 20 = 1.

2 Suppose the assumption is true for any x and y before Union(x , y).
Let the size and height of the resulting tree be size(x ′), and h(x ′).

h(x) < h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) ≥ 2h(y) = 2h(x′).

h(x) = h(y), we have

size(x ′) = size(x) + size(y) ≥ 2h(x) + 2h(y) = 2h(y)+1 = 2h(x′).

h(x) > h(y), is similar to the first case

Version of October 11, 2016 Union Find 9 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1),

and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree.

From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h

≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Lemma

For n items, the running time of

Create-Set is O(1),

Find-Set is O(log n), and

Union is O(log n)

respectively.

Proof.

Obviously, Create-Set(x) is O(1), and the running time of
Union(x , y) depends on Find-Set(x).

Since the running time of Find-Set(x) depends on the height
of the tree. From previous lemma, for any tree, we have

n ≥ 2h ⇒ h ≤ log n

⇒ h = O(log n)

Hence we have Find-Set(x) = O(log n).

Version of October 11, 2016 Union Find 10 / 14



Outline

The Disjoint Set Union-Find data structure

The basic implementation
An improvement

Version of October 11, 2016 Union Find 11 / 14



Up-Tree Implementation: Path Compression

We can make the running time even faster if we add another
trick.

In Find-Set(x), we trace the path from x to the root.

Let r be the root of the tree, and the path from x to r is
xa1a2 . . . ak r .

As a by-product, we also make all the parent pointers of
x , a1, a2, . . . ak pointing to r directly.

Shortens the time of some future calls to Find-Set.
Does not increase height.

x

Find−Set(x)
x

r

r

This idea is called path compression.

Version of October 11, 2016 Union Find 12 / 14



Up-Tree Implementation: Path Compression

We can make the running time even faster if we add another
trick.

In Find-Set(x), we trace the path from x to the root.

Let r be the root of the tree, and the path from x to r is
xa1a2 . . . ak r .

As a by-product, we also make all the parent pointers of
x , a1, a2, . . . ak pointing to r directly.

Shortens the time of some future calls to Find-Set.
Does not increase height.

x

Find−Set(x)
x

r

r

This idea is called path compression.

Version of October 11, 2016 Union Find 12 / 14



Up-Tree Implementation: Path Compression

We can make the running time even faster if we add another
trick.

In Find-Set(x), we trace the path from x to the root.

Let r be the root of the tree,

and the path from x to r is
xa1a2 . . . ak r .

As a by-product, we also make all the parent pointers of
x , a1, a2, . . . ak pointing to r directly.

Shortens the time of some future calls to Find-Set.
Does not increase height.

x

Find−Set(x)
x

r

r

This idea is called path compression.

Version of October 11, 2016 Union Find 12 / 14



Up-Tree Implementation: Path Compression

We can make the running time even faster if we add another
trick.

In Find-Set(x), we trace the path from x to the root.

Let r be the root of the tree, and the path from x to r is
xa1a2 . . . ak r .

As a by-product, we also make all the parent pointers of
x , a1, a2, . . . ak pointing to r directly.

Shortens the time of some future calls to Find-Set.
Does not increase height.

x

Find−Set(x)
x

r

r

This idea is called path compression.

Version of October 11, 2016 Union Find 12 / 14



Up-Tree Implementation: Path Compression

We can make the running time even faster if we add another
trick.

In Find-Set(x), we trace the path from x to the root.

Let r be the root of the tree, and the path from x to r is
xa1a2 . . . ak r .

As a by-product, we also make all the parent pointers of
x , a1, a2, . . . ak pointing to r directly.

Shortens the time of some future calls to Find-Set.
Does not increase height.

x

Find−Set(x)
x

r

r

This idea is called path compression.

Version of October 11, 2016 Union Find 12 / 14



Up-Tree Implementation: Path Compression

We can make the running time even faster if we add another
trick.

In Find-Set(x), we trace the path from x to the root.

Let r be the root of the tree, and the path from x to r is
xa1a2 . . . ak r .

As a by-product, we also make all the parent pointers of
x , a1, a2, . . . ak pointing to r directly.

Shortens the time of some future calls to Find-Set.
Does not increase height.

x

Find−Set(x)
x

r

r

This idea is called path compression.

Version of October 11, 2016 Union Find 12 / 14



Up-Tree Implementation: Path Compression

We can make the running time even faster if we add another
trick.

In Find-Set(x), we trace the path from x to the root.

Let r be the root of the tree, and the path from x to r is
xa1a2 . . . ak r .

As a by-product, we also make all the parent pointers of
x , a1, a2, . . . ak pointing to r directly.

Shortens the time of some future calls to Find-Set.
Does not increase height.

x

Find−Set(x)
x

r

r

This idea is called path compression.

Version of October 11, 2016 Union Find 12 / 14



Path Compression...

Question

Does path compression improves the running time of union-find?

lg(i) n: defined recursively for nonnegative integers i as

lg(i) n =


n if i = 0

lg(lg(i−1) n) if i > 0 and lg(i−1) n > 0,

undefined if i > 0 and lg(i−1) n ≤ 0, or lg(i−1) n is undefined.

The iterated logarithm is defined as

lg∗ n = min {i ≥ 0 : lg(i) n ≤ 1}

a very slow growing function.

e.g.,
lg∗ 2 = 1, lg∗ 4 = 2, lg∗ 16 = 3, lg∗ 65536 = 4, lg∗ 265536 = 5.

Version of October 11, 2016 Union Find 13 / 14



Path Compression...

Question

Does path compression improves the running time of union-find?

lg(i) n: defined recursively for nonnegative integers i as

lg(i) n =


n if i = 0

lg(lg(i−1) n) if i > 0 and lg(i−1) n > 0,

undefined if i > 0 and lg(i−1) n ≤ 0, or lg(i−1) n is undefined.

The iterated logarithm is defined as

lg∗ n = min {i ≥ 0 : lg(i) n ≤ 1}

a very slow growing function.

e.g.,
lg∗ 2 = 1, lg∗ 4 = 2, lg∗ 16 = 3, lg∗ 65536 = 4, lg∗ 265536 = 5.

Version of October 11, 2016 Union Find 13 / 14



Path Compression...

Question

Does path compression improves the running time of union-find?

lg(i) n: defined recursively for nonnegative integers i as

lg(i) n =


n if i = 0

lg(lg(i−1) n) if i > 0 and lg(i−1) n > 0,

undefined if i > 0 and lg(i−1) n ≤ 0, or lg(i−1) n is undefined.

The iterated logarithm is defined as

lg∗ n = min {i ≥ 0 : lg(i) n ≤ 1}

a very slow growing function.

e.g.,
lg∗ 2 = 1, lg∗ 4 = 2, lg∗ 16 = 3, lg∗ 65536 = 4, lg∗ 265536 = 5.

Version of October 11, 2016 Union Find 13 / 14



Path Compression...

Question

Does path compression improves the running time of union-find?

lg(i) n: defined recursively for nonnegative integers i as

lg(i) n =


n if i = 0

lg(lg(i−1) n) if i > 0 and lg(i−1) n > 0,

undefined if i > 0 and lg(i−1) n ≤ 0, or lg(i−1) n is undefined.

The iterated logarithm is defined as

lg∗ n = min {i ≥ 0 : lg(i) n ≤ 1}

a very slow growing function.

e.g.,
lg∗ 2 = 1, lg∗ 4 = 2, lg∗ 16 = 3, lg∗ 65536 = 4, lg∗ 265536 = 5.

Version of October 11, 2016 Union Find 13 / 14



Path Compression...

Question

Does path compression improves the running time of union-find?

lg(i) n: defined recursively for nonnegative integers i as

lg(i) n =


n if i = 0

lg(lg(i−1) n) if i > 0 and lg(i−1) n > 0,

undefined if i > 0 and lg(i−1) n ≤ 0, or lg(i−1) n is undefined.

The iterated logarithm is defined as

lg∗ n = min {i ≥ 0 : lg(i) n ≤ 1}

a very slow growing function.

e.g.,
lg∗ 2 = 1, lg∗ 4 = 2, lg∗ 16 = 3, lg∗ 65536 = 4, lg∗ 265536 = 5.

Version of October 11, 2016 Union Find 13 / 14



Path Compression...

Question

Does path compression improves the running time of union-find?

lg(i) n: defined recursively for nonnegative integers i as

lg(i) n =


n if i = 0

lg(lg(i−1) n) if i > 0 and lg(i−1) n > 0,

undefined if i > 0 and lg(i−1) n ≤ 0, or lg(i−1) n is undefined.

The iterated logarithm is defined as

lg∗ n = min {i ≥ 0 : lg(i) n ≤ 1}

a very slow growing function.

e.g.,
lg∗ 2 = 1, lg∗ 4 = 2, lg∗ 16 = 3, lg∗ 65536 = 4, lg∗ 265536 = 5.

Version of October 11, 2016 Union Find 13 / 14



Path Compression...

Question

Does path compression improves the running time of union-find?

lg(i) n: defined recursively for nonnegative integers i as

lg(i) n =


n if i = 0

lg(lg(i−1) n) if i > 0 and lg(i−1) n > 0,

undefined if i > 0 and lg(i−1) n ≤ 0, or lg(i−1) n is undefined.

The iterated logarithm is defined as

lg∗ n = min {i ≥ 0 : lg(i) n ≤ 1}

a very slow growing function.

e.g.,
lg∗ 2 = 1, lg∗ 4 = 2, lg∗ 16 = 3, lg∗ 65536 = 4, lg∗ 265536 = 5.

Version of October 11, 2016 Union Find 13 / 14



Path Compression...

The following theorem is stated without proof.

Theorem

A sequence of m Create-Set, Find-Set and Union operations,

n of
which are Create-Set operations, can be performed on a
disjointed-set forest with union by height and path compression in
worst-case time O(m lg∗ n).

Question

What is the running time of Kruskal’s algorithm if we employ this
implementation of disjoint set Union-Find?

Version of October 11, 2016 Union Find 14 / 14



Path Compression...

The following theorem is stated without proof.

Theorem

A sequence of m Create-Set, Find-Set and Union operations, n of
which are Create-Set operations,

can be performed on a
disjointed-set forest with union by height and path compression in
worst-case time O(m lg∗ n).

Question

What is the running time of Kruskal’s algorithm if we employ this
implementation of disjoint set Union-Find?

Version of October 11, 2016 Union Find 14 / 14



Path Compression...

The following theorem is stated without proof.

Theorem

A sequence of m Create-Set, Find-Set and Union operations, n of
which are Create-Set operations, can be performed on a
disjointed-set forest with union by height and path compression in
worst-case time O(m lg∗ n).

Question

What is the running time of Kruskal’s algorithm if we employ this
implementation of disjoint set Union-Find?

Version of October 11, 2016 Union Find 14 / 14



Path Compression...

The following theorem is stated without proof.

Theorem

A sequence of m Create-Set, Find-Set and Union operations, n of
which are Create-Set operations, can be performed on a
disjointed-set forest with union by height and path compression in
worst-case time O(m lg∗ n).

Question

What is the running time of Kruskal’s algorithm if we employ this
implementation of disjoint set Union-Find?

Version of October 11, 2016 Union Find 14 / 14


