1. Open Addressing

Let table size be $m=15$ (with items indexed from $0 \ldots 14$).
Use the hash function $h(x)=(x \bmod 15)$ and linear hashing to hash the items 19, 6, 18, 34, 25, 34 in that order.
Draw the resulting table.
2. Universal Hashing

Recall the universal hash function family defined by

$$
h_{a, b}(x)=((a x+b) \bmod p) \bmod m
$$

where $a \in Z_{p}^{*}, b \in Z_{p}$ and p is a prime with $p \geq U$. Let $p=17, m=5$. For all $x=0,1, \ldots, 16$ write the values for $h_{1,0}(x)$. Now write all the values for $h_{2,2}(x)$.

3. Divide and Conquer for closest pair

Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be n two-dimensional points and define

$$
\delta(P)=\min _{p, p^{\prime} \in P: p \neq p^{\prime}} d\left(p, p^{\prime}\right)
$$

to be the closest pair distance of P.
Let X be a real value and split P on the line $x=X$ so that

$$
P_{L}=\{p \in P: p . x \leq X\}, \quad P_{R}=\{p \in P: p . x>X\}
$$

Suppose you are given the closest pair distance of the two sets:

$$
\delta_{L}=\delta\left(P_{L}\right) \quad \text { and } \quad \delta_{R}=\delta\left(P_{R}\right)
$$

Set $\delta^{\prime}=\min \left(\delta_{L}, \delta_{R}\right)$ and define the points contained by the δ^{\prime} strips to the left and right of the line $x=X$ by

$$
S_{L}=\left\{p \in P_{L}: X-p . x \leq \delta^{\prime}\right\}, \quad S_{R}=\left\{p \in P_{R}: p . x-X \leq \delta^{\prime}\right\}
$$

(a) Prove that

$$
\delta(P)=\min \left(\delta_{L}, \delta_{R}, d\left(S_{L}, S_{R}\right)\right)
$$

where $d\left(P_{1}, P_{2}\right)=\min \left\{d\left(p_{i}, p_{2}\right),: p_{1} \in P_{1}, p_{2} \in P_{2}\right\}$.
(b) Suppose that you are given the values δ_{L} and δ_{R} and each of the sets P_{L} and P_{R} sorted by y-coordinate. Show how to calculate $\delta(P)=\min \left(\delta_{L}, \delta_{R}, d\left(S_{L}, S_{R}\right)\right)$ in $O(n)$ time.

Hint. In $O(n)$ time first find S_{L} and P_{L}, each sorted by y coordinate. Then show how, in $O\left(\left|S_{L}\right|+\left|S_{R}\right|\right)$ time, you can find $d\left(S_{L}, S_{R}\right)$ by using the ideas from the gridding lemma.
(c) Now construct a divide and conquer algorithm for finding $\delta(P)$ that works by
(i) Finding the median by x-coordinate of P. Set this x coordinate to be X.
(ii) Split P on X into P_{L} and P_{R}.
(iii) Recusively find $\delta\left(P_{L}\right)$ and $\delta\left(P_{R}\right)$
(iv) Use the ideas above to find $\delta(P)$ using $O(n \log n)$ extra time

Note that the recursion will terminate when $P=\{p\}$ or $P=\left\{p, p^{\prime}\right\}$. In those cases $\delta(P)=\infty$ or $\delta(P)=d\left(p, p^{\prime}\right)$ can be found in $O(1)$ time.
The correctness of the algorithm follows from (a) and (b).
Show how to implement the algorithm in $O\left(n \log ^{2} n\right)$ time.
(d) Can you improve this to $O(n \log n)$ time?

