$\begin{array}{l} {\rm COMP} \ 3711 {\rm H}-{\rm Fall} \ 2016 \\ {\rm Tutorial} \ 11-{\rm Sketch} \ {\rm Solution} \end{array}$

1. Open Addressing

Let table size be m = 15 (with items indexed from $0 \dots 14$).

Use the hash function $h(x) = (x \mod 15)$ and linear hashing to hash the items 19, 6, 18, 34, 25, 34 in that order.

Draw the resulting table.

Solution: See external PDF

2. Universal Hashing

Recall the universal hash function family defined by

$$h_{a,b}(x) = \left((ax+b) \mod p\right) \mod m$$

where $a \in Z_p^*$, $b \in Z_p$ and p is a prime with $p \ge U$. Let p = 17, m = 5. For all x = 0, 1, ..., 16 write the values for $h_{1,0}(x)$. Now write all the values for $h_{2,2}(x)$. Solution:

x	$h_{1,0}(x)$	$2x + 2 \mod 17$	$h_{2,2}(x)$
0	0	2	2
1	1	4	4
2	2	6	1
3	3	8	3
4	4	10	0
5	0	12	2
6	1	14	4
7	2	16	1
8	3	1	1
9	4	3	3
10	0	5	0
11	1	7	2
12	2	9	4
13	3	11	1
14	4	13	3
15	0	15	0
16	1	0	0

3. Divide and Conquer for closest pair

Let $P = \{p_1, p_2, \dots, p_n\}$ be n two-dimensional points and define

$$\delta(P) = \min_{p, p' \in P: p \neq p'} d(p, p')$$

to be the closest pair distance of P.

Let X be a real value and split P on the line x = X so that

$$P_L = \{ p \in P : p.x \le X \}, \quad P_R = \{ p \in P : p.x > X \}.$$

Suppose you are given the closest pair distance of the two sets:

$$\delta_L = \delta(P_L)$$
 and $\delta_R = \delta(P_R)$.

Set $\delta' = \min(\delta_L, \delta_R)$ and define the points contained by the δ' strips to the left and right of the line x = X by

$$S_L = \{ p \in P_L : X - p.x \le \delta' \}, \quad S_R = \{ p \in P_R : p.x - X \le \delta' \}$$

(a) Prove that

$$\delta(P) = \min(\delta_L, \delta_R, d(S_L, S_R))$$

where $d(P_1, P_2) = \min\{d(p_i, p_2), : p_1 \in P_1, p_2 \in P_2\}.$ Solution: By definition

$$\delta(P) = \min(\delta_L, \delta_R, d(P_L, P_R)).$$

If $\delta < \delta'$, then $\delta = d(P_L, P_R)$, i.e., $\delta = d(p, p')$ where $p \in P_L$ and $p' \in P_R$. But, if $p \notin S_L$ or $p' \notin S_R$ then

$$\delta = d(p, p') \ge |p'.x - p.x| \ge \delta'$$

leading to a contradiction.

(b) Suppose that you are given the values δ_L and δ_R and each of the sets P_L and P_R sorted by y-coordinate. Show how to calculate $\delta(P) = \min(\delta_L, \delta_R, d(S_L, S_R))$ in O(n) time.

Hint. In O(n) time first find S_L and P_L , each sorted by y coordinate. Then show how, in $O(|S_L| + |S_R|)$ time, you can find $d(S_L, S_R)$ by using the ideas from the gridding lemma.

Solution:

In O(n) time walk through each of P_L and P_R , pulling out the items in S_L and S_R sorted in y increasing order. Then, in another O(n) step, merge the two lists so that you have $S_L \cup S_R$ in increasing y order. Put these values in an array sorted by increasing y order so that you can access an item's predecessor and successor in O(1) time.

Using a variant of the gridding lemma taught in class we can now see that if $p \in S_L$, $p' \in S_R$ and $d(p, p') < \delta$ then p' must be at most 11 points above p or 11 points below p in the sorted list. This immediately gives the algorithm: Walk through the sorted list from smallest to largest y coordinate. If current point p is in S_L , find the 11 points above it and the 11 points below it. this can be done in O(1) time. Throw away the points that are in S_L , leaving only the points in S_R . Calculate the distance between p and all of these O(1) points and keep the minimum value. After doing this for all the points in S_L , return the smallest distance found. This will be $d(S_L, S_R)$ if $d(S_L, S_R) \leq \delta'$.

- (c) Now construct a divide and conquer algorithm for finding $\delta(P)$ that works by
 - (i) Finding the median by x-coordinate of P. Set this x coordinate to be X.
 - (ii) Split P on X into P_L and P_R .
 - (iii) Recusively find $\delta(P_L)$ and $\delta(P_R)$
 - (iv) Use the ideas above to find $\delta(P)$ using $O(n\log n)$ extra time

Note that the recursion will terminate when $P = \{p\}$ or $P = \{p, p'\}$. In those cases $\delta(P) = \infty$ or $\delta(P) = d(p, p')$ can be found in O(1) time. The correctness of the algorithm follows from (a) and (b).

Show how to implement the algorithm in $O(n \log^2 n)$ time.

Solution:

(i) and (ii) take O(n) time. (iii) requires 2T(n/2).

(iv) requires sorting P_L and P_R and then performing the O(n) algorithm from the previous part.

Sorting P_L and P_R requires $O(n \log n)$ time so the running time recurrence is

 $T(n) \le 2T(n/2) + O(n\log n) + O(n) = 2T(n/2) + On(\log n)$

which gives $T(n) = O(n \log^2 n)$.

(d) Can you improve this to $O(n \log n)$ time?

Solution:

Let CP(P) be the result of the algorithm run on point set P. We modify the algorithm so that, instead of just returning CP(P), it also returns P sorted by y coordinate; That is, after finding the closest pair distance δ in (iv), it then uses O(n) time to merge P_L and P_R (which had been recusively returned in sorted order) so that P is now sorted (by y coordinate) as well. The algorithm works by

(i) Finding the median by x-coordinate of P. Set this x coordinate to be X.

- (ii) Split P on X into P_L and P_R .
- (iii) Recusively find $\delta(P_L)$ and $\delta(P_R)$.

Recursion also returns P_L and P_R is sorted y-order

- (iv) Use the ideas above to find $\delta(P)$ using O(n) extra time
- (v) Merge P_L and P_R to get P in sorted y order.

the running time recurrence is now

$$T(n) \le 2T(n/2) + O(n) = 2T(n/2) + On(\log n) = O(n\log n).$$