COMP 3711H - Fall 2016
Tutorial 11 - Sketch Solution

1. Open Addressing

Let table size be $m=15$ (with items indexed from $0 \ldots 14$).
Use the hash function $h(x)=(x \bmod 15)$ and linear hashing to hash the items 19, 6, 18, 34, 25, 34 in that order.
Draw the resulting table.
Solution: See external PDF

2. Universal Hashing

Recall the universal hash function family defined by

$$
h_{a, b}(x)=((a x+b) \bmod p) \bmod m
$$

where $a \in Z_{p}^{*}, b \in Z_{p}$ and p is a prime with $p \geq U$. Let $p=17, m=5$. For all $x=0,1, \ldots, 16$ write the values for $h_{1,0}(x)$. Now write all the values for $h_{2,2}(x)$.

Solution:

x	$h_{1,0}(x)$	$2 x+2 \bmod 17$	$h_{2,2}(x)$
0	0	2	2
1	1	4	4
2	2	6	1
3	3	8	3
4	4	10	0
5	0	12	2
6	1	14	4
7	2	16	1
8	3	1	1
9	4	3	3
10	0	5	0
11	1	7	2
12	2	9	4
13	3	11	1
14	4	13	3
15	0	15	0
16	1	0	0

3. Divide and Conquer for closest pair

Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be n two-dimensional points and define

$$
\delta(P)=\min _{p, p^{\prime} \in P: p \neq p^{\prime}} d\left(p, p^{\prime}\right)
$$

to be the closest pair distance of P.
Let X be a real value and split P on the line $x=X$ so that

$$
P_{L}=\{p \in P: p \cdot x \leq X\}, \quad P_{R}=\{p \in P: p \cdot x>X\}
$$

Suppose you are given the closest pair distance of the two sets:

$$
\delta_{L}=\delta\left(P_{L}\right) \quad \text { and } \quad \delta_{R}=\delta\left(P_{R}\right)
$$

Set $\delta^{\prime}=\min \left(\delta_{L}, \delta_{R}\right)$ and define the points contained by the δ^{\prime} strips to the left and right of the line $x=X$ by

$$
S_{L}=\left\{p \in P_{L}: X-p . x \leq \delta^{\prime}\right\}, \quad S_{R}=\left\{p \in P_{R}: p . x-X \leq \delta^{\prime}\right\}
$$

(a) Prove that

$$
\delta(P)=\min \left(\delta_{L}, \delta_{R}, d\left(S_{L}, S_{R}\right)\right)
$$

where $d\left(P_{1}, P_{2}\right)=\min \left\{d\left(p_{i}, p_{2}\right),: p_{1} \in P_{1}, p_{2} \in P_{2}\right\}$.
Solution: By definition

$$
\delta(P)=\min \left(\delta_{L}, \delta_{R}, d\left(P_{L}, P_{R}\right)\right)
$$

If $\delta<\delta^{\prime}$, then $\delta=d\left(P_{L}, P_{R}\right)$, i.e., $\delta=d\left(p, p^{\prime}\right)$ where $p \in P_{L}$ and $p^{\prime} \in P_{R}$. But, if $p \notin S_{L}$ or $p^{\prime} \notin S_{R}$ then

$$
\delta=d\left(p, p^{\prime}\right) \geq\left|p^{\prime} \cdot x-p \cdot x\right| \geq \delta^{\prime}
$$

leading to a contradiction.
(b) Suppose that you are given the values δ_{L} and δ_{R} and each of the sets P_{L} and P_{R} sorted by y-coordinate. Show how to calculate $\delta(P)=\min \left(\delta_{L}, \delta_{R}, d\left(S_{L}, S_{R}\right)\right)$ in $O(n)$ time.

Hint. In $O(n)$ time first find S_{L} and P_{L}, each sorted by y coordinate. Then show how, in $O\left(\left|S_{L}\right|+\left|S_{R}\right|\right)$ time, you can find $d\left(S_{L}, S_{R}\right)$ by using the ideas from the gridding lemma.
Solution:
In $O(n)$ time walk through each of P_{L} and P_{R}, pulling out the items in S_{L} and S_{R} sorted in y increasing order. Then, in another $O(n)$ step, merge the two lists so that you have $S_{L} \cup S_{R}$ in increasing y order. Put these values in an array sorted by increasing y order so that you can access an item's predecessor and successor in $O(1)$ time.

Using a variant of the gridding lemma taught in class we can now see that if $p \in S_{L}$, $p^{\prime} \in S_{R}$ and $d\left(p, p^{\prime}\right)<\delta$ then p^{\prime} must be at most 11 points above p or 11 points below p in the sorted list. This immediately gives the algorithm: Walk through the sorted list from smallest to largest y coordinate. If current point p is in S_{L}, find the 11
points above it and the 11 points below it. this can be done in $O(1)$ time. Throw away the points that are in S_{L}, leaving only the points in S_{R}. Calculate the distance between p and all of these $O(1)$ points and keep the minimum value. After doing this for all the points in S_{L}, return the smallest distance found. This will be $d\left(S_{L}, S_{R}\right)$ if $\left.d\left(S_{L}, S_{R}\right) \leq \delta^{\prime}\right)$.
(c) Now construct a divide and conquer algorithm for finding $\delta(P)$ that works by
(i) Finding the median by x-coordinate of P. Set this x coordinate to be X.
(ii) Split P on X into P_{L} and P_{R}.
(iii) Recusively find $\delta\left(P_{L}\right)$ and $\delta\left(P_{R}\right)$
(iv) Use the ideas above to find $\delta(P)$ using $O(n \log n)$ extra time

Note that the recursion will terminate when $P=\{p\}$ or $P=\left\{p, p^{\prime}\right\}$. In those cases $\delta(P)=\infty$ or $\delta(P)=d\left(p, p^{\prime}\right)$ can be found in $O(1)$ time.
The correctness of the algorithm follows from (a) and (b).
Show how to implement the algorithm in $O\left(n \log ^{2} n\right)$ time.
Solution:
(i) and (ii) take $O(n)$ time. (iii) requires $2 T(n / 2)$.
(iv) requires sorting P_{L} and P_{R} and then performing the $O(n)$ algorithm from the previous part.
Sorting P_{L} and P_{R} requires $O(n \log n)$ time so the running time recurrence is

$$
T(n) \leq 2 T(n / 2)+O(n \log n)+O(n)=2 T(n / 2)+O n(\log n)
$$

which gives $T(n)=O\left(n \log ^{2} n\right)$.
(d) Can you improve this to $O(n \log n)$ time?

Solution:
Let $C P(P)$ be the result of the algorithm run on point set P. We modify the algorithm so that, instead of just returning $C P(P)$, it also returns P sorted by y coordinate; That is, after finding the closest pair distance δ in (iv), it then uses $O(n)$ time to merge P_{L} and P_{R} (which had been recusively returned in sorted order) so that P is now sorted (by y coordinate) as well. The algorithm works by
(i) Finding the median by x-coordinate of P. Set this x coordinate to be X.
(ii) Split P on X into P_{L} and P_{R}.
(iii) Recusively find $\delta\left(P_{L}\right)$ and $\delta\left(P_{R}\right)$.

Recursion also returns P_{L} and P_{R} is sorted y-order
(iv) Use the ideas above to find $\delta(P)$ using $O(n)$ extra time
(v) Merge P_{L} and P_{R} to get P in sorted y order.
the running time recurrence is now

$$
T(n) \leq 2 T(n / 2)+O(n)=2 T(n / 2)+O n(\log n)=O(n \log n) .
$$

