
COMP 3711H – Fall 2016
Tutorial 11 – Sketch Solution

1. Open Addressing
Let table size be m = 15 (with items indexed from 0 . . . 14).
Use the hash function h(x) = (x mod 15) and linear hashing to hash the items 19, 6, 18, 34, 25, 34
in that order.
Draw the resulting table.

Solution: See external PDF

2. Universal Hashing
Recall the universal hash function family defined by

ha,b(x) =
(

(ax+ b) mod p
)

mod m

where a ∈ Z∗p , b ∈ Zp and p is a prime with p ≥ U . Let p = 17, m = 5. For all
x = 0, 1, . . . , 16 write the values for h1,0(x). Now write all the values for h2,2(x).

Solution:

x h1,0(x) 2x+ 2 mod 17 h2,2(x)

0 0 2 2

1 1 4 4

2 2 6 1

3 3 8 3

4 4 10 0

5 0 12 2

6 1 14 4

7 2 16 1

8 3 1 1

9 4 3 3

10 0 5 0

11 1 7 2

12 2 9 4

13 3 11 1

14 4 13 3

15 0 15 0

16 1 0 0

1

3. Divide and Conquer for closest pair
Let P = {p1, p2, . . . , pn} be n two-dimensional points and define

δ(P) = min
p,p′∈P :p 6=p′

d(p, p′)

to be the closest pair distance of P .
Let X be a real value and split P on the line x = X so that

PL = {p ∈ P : p.x ≤ X}, PR = {p ∈ P : p.x > X}.

Suppose you are given the closest pair distance of the two sets:

δL = δ(PL) and δR = δ(PR).

Set δ′ = min(δL, δR) and define the points contained by the δ′ strips to the left and right
of the line x = X by

SL = {p ∈ PL : X − p.x ≤ δ′}, SR = {p ∈ PR : p.x−X ≤ δ′}

(a) Prove that
δ(P) = min(δL, δR, d(SL, SR))

where d(P1, P2) = min{d(pi, p2), : p1 ∈ P1, p2 ∈ P2}.
Solution: By definition

δ(P) = min(δL, δR, d(PL, PR)).

If δ < δ′, then δ = d(PL, PR), i.e., δ = d(p, p′) where p ∈ PL and p′ ∈ PR. But, if
p 6∈ SL or p′ 6∈ SR then

δ = d(p, p′) ≥ |p′.x− p.x| ≥ δ′

leading to a contradiction.

(b) Suppose that you are given the values δL and δR and each of the sets PL and PR

sorted by y-coordinate. Show how to calculate δ(P) = min(δL, δR, d(SL, SR)) in
O(n) time.

Hint. In O(n) time first find SL and PL, each sorted by y coordinate. Then show
how, in O(|SL| + |SR|) time, you can find d(SL, SR) by using the ideas from the
gridding lemma.

Solution:

In O(n) time walk through each of PL and PR, pulling out the items in SL and SR
sorted in y increasing order. Then, in another O(n) step, merge the two lists so
that you have SL ∪ SR in increasing y order. Put these values in an array sorted
by increasing y order so that you can access an item’s predecessor and successor in
O(1) time.

Using a variant of the gridding lemma taught in class we can now see that if p ∈ SL,
p′ ∈ SR and d(p, p′) < δ then p′ must be at most 11 points above p or 11 points below
p in the sorted list. This immediately gives the algorithm: Walk through the sorted
list from smallest to largest y coordinate. If current point p is in SL, find the 11

2

points above it and the 11 points below it. this can be done in O(1) time. Throw
away the points that are in SL, leaving only the points in SR. Calculate the distance
between p and all of these O(1) points and keep the minimum value. After doing this
for all the points in SL, return the smallest distance found. This will be d(SL, SR) if
d(SL, SR) ≤ δ′).

(c) Now construct a divide and conquer algorithm for finding δ(P) that works by
(i) Finding the median by x-coordinate of P . Set this x coordinate to be X.
(ii) Split P on X into PL and PR.
(iii) Recusively find δ(PL) and δ(PR)
(iv) Use the ideas above to find δ(P) using O(n log n) extra time

Note that the recursion will terminate when P = {p} or P = {p, p′}. In those cases
δ(P) =∞ or δ(P) = d(p, p′) can be found in O(1) time.

The correctness of the algorithm follows from (a) and (b).

Show how to implement the algorithm in O(n log2 n) time.

Solution:

(i) and (ii) take O(n) time. (iii) requires 2T (n/2).

(iv) requires sorting PL and PR and then performing the O(n) algorithm from the
previous part.

Sorting PL and PR requires O(n log n) time so the running time recurrence is

T (n) ≤ 2T (n/2) +O(n log n) +O(n) = 2T (n/2) +On(log n)

which gives T (n) = O(n log2 n).

(d) Can you improve this to O(n log n) time?

Solution:

Let CP (P) be the result of the algorithm run on point set P. We modify the algorithm
so that, instead of just returning CP (P), it also returns P sorted by y coordinate;
That is, after finding the closest pair distance δ in (iv), it then uses O(n) time to
merge PL and PR (which had been recusively returned in sorted order) so that P is
now sorted (by y coordinate) as well. The algorithm works by

(i) Finding the median by x-coordinate of P . Set this x coordinate to be X.
(ii) Split P on X into PL and PR.
(iii) Recusively find δ(PL) and δ(PR).

Recursion also returns PL and PR is sorted y-order
(iv) Use the ideas above to find δ(P) using O(n) extra time
(v) Merge PL and PR to get P in sorted y order.

the running time recurrence is now

T (n) ≤ 2T (n/2) +O(n) = 2T (n/2) +On(log n) = O(n log n).

3

