
COMP 3711H – Fall 2016
Tutorial 3 - Solution Sketch

Note. The answers given below might not be complete. Some are sketches or hints, some-
times missing details. Also answers to somne of thee simplest questions might not be given.

1. Heapify
In class, we learned how to maintain a min-heap implicitly in an array.
Given that A[i . . . (j−1)] represents an implicit min-heap, we saw how, in O(log j) time to
add A[j] to the min-heap. This led to an O(n log n) algorithm for constructing a min-heap
from array A[1, . . . , n].

For this problem show how to construct a min-heap from an array A[1 . . . n] in O(n) time.

It might help to visualize the min-heap as a binary tree and not an array.

For simplification, you may assume that n = 2k + 1 for some n, i.e., the tree is complete.

Hint: Consider heapifying the nodes in the order from bottom to top.

“Heapify” the nodes row by row, moving from h = 1 to h = k (h being the height of
the node, with leaves having h = 0 and root having h = k). By “heapify’ a node” we
mean make the tree rooted at the node have the min-heap property. Note that at the time
we process a node, its two subtrees have already been heapified. Thus, we can heapify by
bubbling the node down as many levels as appropriate (as shown in class when performing
Extract-Min).

The cost of heapifying a node at height h is O(h) and there are 2k−h nodes at height h.
Thus, the total cost of heapifying all nodes is

O

(
k∑

h=1

h2k−h

)
= O

(
2k

k∑
h=1

d2−d

)
= O(2k) = O(n).

2. Randomized Binary Search Trees

• Consider a Binary search tree T on n keys.

The depth, d(v), of v in T is the length of the path from the root of T to v. Note
that the depth of the root is 0. The Path Length of T , PL(T), is the sum of the
depths of all of the nodes of T ; PL(T) =

∑
v∈T d(v).

Note that 1
nPL(T) is the average depth of a node in the tree. This is also the average

time to search for a randomly chosen node in the tree.

• Suppose that every key Ki in a set of n keys has real weight wi associated with it,
with the weights being unique.

• There is a unique binary search tree that can be built on the n keys that also satisfies
min-heap order by the weights (Why?).

• Suppose n weights w1, w2, . . . , wn are chosen independently at random from the unit
interval [0, 1] and then sorted. The resulting order is a random permutation of the
n items.

1

A Treap or Randomized Binary Search Tree on n keys Ki is constructed by choosing n
weights wi independently at random from the unit interval [0, 1] and associating wi with
Ki. The Treap is the unique BST built on the n keys that also satisfies min-heap order
on the weights.

(a) If T is the Treap built, prove that the average value of PL(T) is O(n log n)
Hint: consider quicksort

Choosing the random weights fixes a random permutation. Note the following fact.

Let π = π1, π2, . . . , πn be a random permutation on n items. Let π1 be the items with
value less than π1 writen in the same order as in π and let π2 be the items with value
greater than π1 writen in the same order as in π. Then π1 is a random permutation
on its items (i.e., each one of its |π1|! orderings is equally likely to occur) and π2 is
a random permutation on its items.

The process described essentially builds the tree from a permutation π as follows:

• Choose the first item in the permutation as the root of the tree.

• If π1 is not empty, recursively build the tree off of π1 and make it the left subtree
of π1.

• If π2 is not empty, recursively build the tree off of π2 and make it the right
subtree of π1.

Let Cn be the average value of PLT (T) where T is built from a random π on n items.

From the construction described above, if π1 is the kth key, then the left subtree is a
random Treap on k−1 items so it has average path length Ck−1 and the right subtree
is a random Treap on the n−k items to the right so it has average path length Cn−k.
Since every item in the final tree is one level deeper than it is in the left or right
subtree we find that the average path length, CONDITIONED ON THE ROOT being
the kth key is

n− 1 + Ck−1 + Cn−k.

Since every one of the n keys is equally likely to be the root

Cn =
1

n

n∑
i=1

(n− 1 + Ck−1 + Cn−k) = n− 1 +
n∑

i=1

(Ck−1 + Cn−k)

with initial condition c0 = 0. This is EXACTLY the quicksort recurrence, so cn =
O(n log n).

(b) Describe how to build T in time O(n log n+ PL(T))

After picking the random weights sort the keys by their weights, from largest to
smallest. Then insert the keys into the tree in that largest to smallest weight order.
Notice that this exactly builds the associated Treap (this can be proven by induction)
and the cost of inserting a node is exactly its depth. Thus, the cost of building the
tree is O(n log n) for the sort plus PLT (T), which is what we wanted to prove.

3. AVL Trees

2

(a) Construct an AVL tree by inserting the items 134625 in that order.
Next construct another AVL tree on those items by inserting in the order 123456.
Do they have the same height?

You can construct these trees using the web site pointed to by the class lecture note
page).

(b) Let T be a tree on n keys that satsifies the AVL balance condition. Is there always
an insertion order for the keys that builds T?
If yes, what is it?

Yes there is. Order the keys by their depth in the tree, higest to lowest, breaking ties
arbitrarily. Build a tree by inserting the nodes into the tree in that order. The claim
is that at every step, after doing the insertion, the AVL condition is satisfied on the
tree built so far so no rebalancings are done. Thus, this is like inserting nodes into
a STATIC (not AVL) tree in increasing depth order. Such an insertion order will
build the original tree.

The tricky part of this proof is to show that, if the original tree is an AVL tree then,
after every insertion, no rebalancings need to be done. We will see this through the
following intermediate lemma.

Lemma 1: Let T be an AVL tree with height h. Remove any subset of nodes at depth
h. What remains is also an AVL tree.

Proof: The proof is by induction on h. The statement is true by observation for
h = 0, 1, 2. Now suppose the statement is true for all AVL trees of height < h.

Let T be an AVL tree of height h with root r and T ′ the same tree with a given subset
of depth h nodes removed. For u a node in T (and T ′) set Tu to be the subtree in
T rooted at u, (T ′u the subtree in T ′,) h(u) the height of Tu (and h′(u) the height of
T ′u).

Let x be the left child of r and y the right child. By definition, Tx, Ty are AVL trees
with heights < h.

Removing a subset of nodes of depth h from Tx, Ty removes a set of (none, some or
all) nodes from depth h(x) in Tx and from depth h(y) in Ty. Thus, by induction, T ′x
and T ′y are AVL trees which means that all of their nodes satisfy the AVL balance
condition. So, in order to prove the Lemma it only remains to show that node r
satisifies the AVL balance condition in T ′.

From the AVL condition, one of the following three statements must hold: (i) h(x) =
h(y) = h− 1 or (ii) h(y) = h(x)− 1 = h− 2 or (ii) h(x) = h(y) = h− 2.

(i) after removing nodes at depth h, h′(x) and h′(y) are either h or h−1 so |h′(x)−
h′(y)| ≤ 1 and r satsifies the AVL condition.

(ii) In (ii) no nodes at depth h are in Ty so h′(y) = h(y) = h − 2. On the other
hand, h(x) = h− 1. The nodes at depth h in the original tree are at depth h− 1
in h′(x). After removing (none, some or all) of those nodes to get T ′, we are left
with h′(x) = h− 1 OR h′(x) = h− 2. In both of those cases |h′(x)− h′(y)| ≤ 1
and r satisfies the AVL condition.

(iii) Symmetric to (ii)

The Lemma is therefore proven.

To apply the lemma return to the ordering of the keys that we defined at the top
of this solution. Let x be any key. In the original AVL tree, chop off all of the

3

levels below where x appears, from bottom to top. Applying the lemma iteratively
tells us that what remains is an AVL tree. Now remove x and all items after x in
the ordering that are still in the tree (they must be on the same level as x). Again
the Lemma tells us that what remains will be an AVL tree. Now insert x into the
tree using the standard BST insertion algorithm. Because all of its ancestors are in
their proper location in the original AVL tree, x is inserted into the same place as it
was in the original AVL tree. The Lemma tells us that this tree is also an AVL tree
with x and all of the items before it in the ordering in their proper places.

Inserting every key into the treee using the defined ordering therefore reconstructs
the original tree.

(c) What are the minimum and maximum heights for an AVL tree with 88 nodes labelled
1, 2, 3 . . . , 88?

The minimum height for ANY binary tree with n nodes is h = blog2 nc which is the
height of a complete tree with n nodes (all levels full except for possibly the bottom
one). Such a tree is an AVL tree as well, so this is the minimum for AVL trees too.
In our case h = blog2 88c = 6.

In class we learned that the minimum number of nodes in an AVL tree of height 8 is
88 so an AVL tree of height 8 with 88 nodes exists. The minimum number of nodes
in an AVL tree of height 9 is 88 + 54 + 1 > 88 and larger heights require even more
nodes. So, the max height is 8.

4

