
COMP 3711H – Fall 2016
Tutorial 4

Note. The answers given below might not be complete. Some are sketches or hints, some-
times missing details.

1. Using Black-box median algorithms (modified from CLRS)
For this problem, you assume that you are given a black-box (O(n) time algorithm for
finding the median (dn/2end) item in a size n array. This means that you can call the
algorithm and use its result but can’t peer inside of it.

(a) Show how Quicksort can be modified to run in O(n log n) worst case time.

Before every partition step in Quicksort use the O(n) black box algorithm to find
the median of the current subarray. Then use that median as the pivot. This splits
the subarray into two (almost) equal parts so the running time of the full algorithm
satisfies

T (n) = 2T (n/2) +O(n)

implying T (n) = O(n log n).

(b) Give a simple linear-time algorithm that solves the selection problem for an arbitrary
order statistic. That is, given k, your algorithm should find the k smallest item.

Just modify the randomized selection algorithm so that,at every step, instead of choos-
ing the pivot at random from the current subarray. it uses the O(n) median finding
algorithm to find the median and then uses the median as pivot. At each step, the
algorithm will reduce the size of the array in which it is searching by 1/2 so the
running time satsifies

T (n) ≤ T (n/2) +O(n)

which yields T (n) = O(n).

(c) For n distinct elements x1, x2, . . . , xn with associated positive weights w1, w2, . . . , wn

such that
∑n

i=1wi = 1, the weighted (lower) medium is the element xk satisfying∑
xi<xk

wi <
1

2
and

∑
xi>xk

wi ≤
1

2
.

If the xi are sorted, then it is easy to solve this problem in O(n) time by just summing
up the weights from left to right and walking through the sums until k is found. Show
that if the items are not sorted you can still solve the problem in linear time using
the black box median finding algorithm.

If there are 2 items we can solve the problem in O(1) time.

Otherwise, in O(n) time find the median xm of the xi. In another O(n) time calculate
WL =

∑
xi≤xm

wi. Note that WR =
∑

xi<xm
wi = 1−WL.

If WR ≤ 1/2 then we know that k ≤ m. Now add 1 −WL to xm. Note that, for
the new weights,

∑m
i=1 xi = 1 and the weighted median of x1, . . . , xm is the same

as the weighted median of the original set so recurse to find the weighted median of
x1, . . . , xm.
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If WR > 1/2 then we know that k > m. Add WL to xm and note that the weighted
median of xm, . . . , xn is the same as the weighted median of the original set so recurse
to find the weighted median of xm, . . . , xn.

Each recursion splits the problem by 1/2 so

T (n) = T (n/2) +O(n)

and T (n) = O(n).

2. Polynomial Evaluation The input to this problem is a set of n+1 coefficients a0, a1, . . . , an.
Define A(x) =

∑n
i=0 aixi

(a) Given value x, how can you evaluate A(x) using O(n) multiplications and O(n)
additions?
Can you evaluate A(x) using at most n multiplications and n additions?

Note that

n∑
i=0

aixi = a0 + x(a1 + x(a2 + x(· · · (an−2 + x(an−1 + xan) · · · ).

This will permit evaluating the polnomial using n additions and n multiplications.
This method is known as Horner’s rule.

(b) Now suppose that A(x) has at most k non-zero terms. How can you evaluate A(x)
using O(k log n) operations.
Hint. How can you evaluate xn using O(log n) operations.

In log n time precompute and store the values

x, x2, x4 = (x2)2, x8 = (x4)2, . . . , x2
j

=
(
x2

j−1
)2

where j = blog nc Note that if m < n then we can write m in binary as m =
∑j

i=0 ε12
i

where εi ∈ {0, 1} and the εi can be calculated in O(j) = O(log n) time. Thus

xm =

j∏
i=0

εix
2i

can be calculated in O(log n) time using the precomputed squares. This can then be
used to evaluate the polynomial in total time O(k log n) (including the precomputation
time).

3. Interpolating Polynomials The values A(x0), A(x1), . . . , A(xn), define a unique degree
n polynomial having those values. In class, we saw the Langragian interpolation formula
for finding the coefficients a0, a1, . . . , an of A(x). This worked by first setting

Ii(x) =
∏

0≤j≤n, j 6=i

x− xj
xi − xj

and then defining

A(x) =
∑
i

A(xi)Ii(x).
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Show how to use the formula to evaluate the coefficients of A(x) in O(n2) time.

Hint How long does it take to divide a degree n polynomial by a degree one polynomial? You can

use this procedure as a subroutine.

First calculate the values of the coefficients of P (x) =
∏

0≤j≤n x−xj. This can be done by
iterativel evaluating

Pi(x) =
∏

0≤j≤i
x−xj = (x− xi)Pi−1(x).

Since Pi−1(x) is a degree i poynomial and a degree 1 polynomial can be multiplied by a
degree i polynomial in O(i) time, finding P (x) = Pn((x) takes O(

∑
i i) = O(n2) time.

Next note that ∏
0≤j≤n, j 6=i

x− xj =
P (x)

x− xi

Division of a degree n+ 1 polynomial by a degree one polynomai can be done (basic long

division) in O(n) time so, knowing P (x), we can calculate
∏

0≤j≤n, j 6=i x − xj = P (x)
x−xi

in

O(n) time for each i. Doing this for all i then needs O(n2) time.

Note that, for each i calculating
∏

0≤j≤n, j 6=i = P (x)
xj−xi

takes O(n) time (simple multiplca-

tion) so doing this for each i takes O(n2) time.

Also, for fixed i, calculating the scalar value
∏

0≤j≤n, j 6=i xi− xj takes O(n) time. Do this

foir all i, using O(n2) time in total.

Finally, recall that

Ii(x) =
∏

0≤j≤n, j 6=i

x− xj
xi − xj

=

∏
0≤j≤n, j 6=i x− xi∏
0≤j≤n, j 6=i xj − xi

.

Since we have already created the (polynomial) numerator and (scalar) denominator of
these terms we can calculate each Ii(x) in O(n) time and all of them in O(n2) time.

We can then find the coefficients of each A(xi)Ii(x) in O(n) time or O(n2) in total.
Adding the coeeficients together to get the coefficients of the full solution would require a
further O(n2) time.

Combining all of the pieces gives an O(n2) algorithm.

4. More Median of Medians For this problem you can assume the following fact: α, β ≥ 0,
N is a non-negative integer and c,D constants (possibly negative). For n > N , if

T (n) ≤ T (αn+ c) + T (βn+ d) + Θ(n)

then

T (n) =


O(n) if α+ β < 1
O(n log n) if α+ β = 1
Ω(n log n) if α+ β > 1

.

Recall that our determinsitic selection algorithm yielded the recurrence

T (n) = T (n/5) + T (7n/10 + 6) + γn

for some constant γ. The formula above implies T (n) = O(n).
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Our algorithm (i) splits the items into sets of 5 elements, (ii) found the median of each
set and then (iii) found x, the median of those medians. It then ran partition with x as
a pivot and recursed on the appropriate subset. From the definition of x we were able
to prove that the subarrays created by partition both had at most 7n/10 + 6 elements,
leading to the recurrence relation and hence O(n) running time.

Now suppose that instead of splitting the items into sets of size 5, we split them into
sets of size 3 and then ran the algorithm the same way. Would we still get an O(n) time
algorithm?

What about if we split into sets of size 7?

If we split into groups of 3 we would have to find the median of n/3 items.

The same type of argument that we developed in class would show that after pivoting on
that median, recursion throws away at least 1

2×
2
3n−c = 1

3n−c items (c a small constant)
and could retain 2

3n+ c items.

So the recurrence would be

T (n) = T (n/3) + T (2n/3 + c) +O(n)

which gives O(n log n) and not O(n).

If we split into groups of size 7 then we would have to first find the median of n/7 items.
After using that as the pivot we would throw away 1

2×
4
7n−c

′ = 2
7n−c

′ items; the recursion
would retain at most 5

7n+ c items. So the recurrence would be

T (n) = T (n/7) + T (5n/7 + c′) +O(n)

which only gives O(n).

5. Extra Problem: Finding defective coins
You have just been hired as the quality-control engineer for a company that makes coins.
The coins must all have identical weight. You are given a set of n coins and are told
that at most one (possibly none) of the n coins is lighter than the others. Your task is to
develop an efficient test procedure to determine which of the n coins is defective or report
that none is defective. To do this test you have a scale. For each measurement you place
some of the coins on the left side of the scale and some of the coins on the right side. The
scale indicates either that (1) the left side is heavier, (2) the right side is heavier or (3)
both subsets have the same weight. It does not indicate how much heavier or lighter.

(A) Design an algorithm for solving this problem that works in log2 n+ c time, for some
constant c (try to make c as small as possible).
Hint: try a divide and conquer approach.

(B) Design an algorithm for solving this problem that works in log3 n+ c time, for some
constant c (try to make c as small as possible).

(C) The problem now changes in that the defective coin, if it exists, may be lighter or
heavier than the other coins. Modify the algorithm from part (A) or (B) to work in
this case. How fast is your algorithm?
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