
COMP 3711H – Fall 2016
Tutorial 5 – Sketch Solutions

Note. The answers given below might not be complete. Some are sketches or hints, some-
times missing details.

1. Huffman Coding
From the book Problems on Algorithms, by Ian Parberry, Prentice-Hall, 1995.

Build a Huffman Tree on the frequencies {1, 3, 5, 7, 9, 11, 13}.
For this problem, follow the rule that if two items are combined in a merge, the smaller
one goes to the left subtree (in case of ties within a merge you can arbitrarily decide which
goes on the left).
Are there any ties in the Huffman Construction process, i.e., are there times when the
merge procedure can choose between different choices of items?
How many different Huffman Trees can be built on this frequency set?

There is one possible tie. There is a time when the smallest items are 7, 9 and there are
two possible 9s to choose from.

That is the only time when the algorithm can make an arbitary choice, so only two
different Huffman codes can be built off of this frequency set.

2. A Huffman Coding Variant

(a) Recall that in each step of Huffman’s algorithm, we merge two trees with the lowest
frequencies. Show that the frequencies of the two trees merged in the ith step are at
least as large as the frequencies of the trees merged in any previous step.

We will show that the frequencies merged at the (i+ 1)st step are at least as large as
the frequencies merged at the i’th step. The proof will folllow.

Let a ≤ b ≤ c ≤ d be the values of the four smallest frequencies in the priority queue
immediately before the start of the ith step. The ith step merges a, b and creates a
new frequency z = a + b that is inserted into the priority queue.

In the (i + 1)st step, only two possibilities can occur

i. z ≥ d : In this case the two frequencies merged are values c, d and the statement
is trivially correct.

ii. z < d : In this case, the two values merged are c, z and the statement is still
correct.

(b) Suppose that you are given the n input characters, already sorted according to their
frequencies. Show how you can now construct the Huffman code in O(n) time. (Hint:
You need to make clever use of the property given in part (a). Instead of using a
priority queue, you will find it advantageous to use a simpler data structure.)

From part (a) we know that the new frequencies created by the Huffman algorithm
are created in non-decreasing order.

The algorithm is as follows:

• Create two queues (not priority queues). Recall that a queue is a linked list that
permits checking and/or removing its “head” item in O(1) time and adding an
item to its “tail“ in O(1) time.

1

• Add the original items in sorted order to the 1st queue in O(n) time. Note that
removing items from the head of this queue, one at a time, will remove them in
sorted order.
In the algorithm, we will only remove items from this queue but never add new
ones.

• Every time a new frequency is created, add it to the tail of the 2nd queue in O(1)
time. Note that, from (a), we know that the items will be added in nonincreasing
order to the queue (so they will be sorted in THAT queue).

• At every step of the Huffman algorithm the current set of frequencies is stored in
the 2 queues. The items are sorted in each queue. Find the item with smallest
frequency by comparing the items at the heads of the two queues. Note that
this can be done in O(1) time because the head of each queue always hold the
smallest item in that queue. Remove that smallest item from its corresponding
queue. Now repeat the O(1) operation to find the smallest remaining frequency
in the two queues and remove it.

• add the newly created frequency to the tail of the 2nd queue.

This takes the two smallest items off at every step and adds the new item so it is
exactly implementing the Huffman algorithm. It uses O(1) time per step instead of
O(n) so it is an O(n) algorithm in total.

3. (CLRS–16.2-5) A unit-length closed interval on the real line is an interval [x, 1 + x].
Describe an O(n) algorithm that, given input set X = {x1, x2, . . . , xn}, determines the
smallest set of unit-length closed intervals that contains all of the given points. Argue
that your algorithm is correct. You should assume that x1 < x2 < · · · < xn.

Keep the points in an array. Walk through the array as follows.

(a) Set x = x1.

(b) Walk through the points in increasing order until finding the first j such that xj >
x + 1. (if no such point then stop)

(c) Output [x, 1 + x]

(d) If there was no such j in (b) then stop. Otherwise, set x = xj .

(e) Go to Step (b)

Note that each point is seen only once so this is an O(n) algorithm.

Let Greedy(i, k) be the algorithm run on the Array [i..j]. Note that it can be rewritten as

(a) Output [xi, 1 + xi]

(b) Find min j such that xj > xi + 1.

(c) If such a j does not exist, stop, else return Greedy(j, k).

We will prove correctness by induction on the number of points |X|.
If |X| = 1 the algorithm is obviously correct. Otherwise, suppose |X| = n and we know
that the algorithm is correct for all problems with size < n.

Let O[i, j] to be the minimum number of intervals needed to cover {xi, . . . , xj} and G[i, j]
the number of intervals Greedy uses to cover them.

2

We assume that [x1, 1 +x1] does not cover all of X because, if it did, Greedy would return
that one interval solution which is optimal.

Let j be the smallest index such that xj > 1 + x1. Note that Greedy returns [x, 1 +
x] concatenated with the greedy solution for {xj , . . . , xn} and, by induction, its Greedy
solution for {xj , . . . , xn} is optimal. So, it uses 1 + O(j, n) intervals.

Now, suppose that there is a solution OPT different than the Greedy one. Let [x, 1 +x] be
the interval with the leftmost starting point in OPT. Note that x ≤ x1 because otherwise
x1 would not be covered by any interval in OPT. Let k be the minimum index such that
xk > 1+x. After removing [x, 1+x] the remaining intervals in OPT must form an optimal
solution for {xk, . . . , xn} (otherwise we could build a solution using fewer intervals). So
the total number of intervals used by OPT is 1 + O(k, n).

The main observation is that because x ≤ x1, j ≥ k. Thus the optimal solution for
{xk, . . . , xn} is A solution for {xj , . . . , xn} so it has at least as many intervals as the
optimal solution for {xj , . . . , xn}, i.e., O(k, n) ≥ O(j, n).

Combining the pieces yields

G(1, n) = 1 + G(j, n)

= 1 + O(j, n)

≤ 1 + O(k, n)

= O(1, n)

which means that Greedy must be optimal for X.

4. Huffman Coding and Mergesort
Recall that Mergesort can be represented as a tree,

with each internal node corresponding to a merge of two lists.
The weight of a leaf is 1,

with the weight of an internal node being the sum of the weights of its two children,
or equivalently, the number of leaves in its subtrees.

The cost of a single Merge is the number of items being merged,
so the cost of Mergesort is the sum of the weights of the tree’s internal nodes.

(a) Prove that the cost of Mergesort can be rewritten as the weighted external path
length of its associated tree, when all leaves have weight 1

This is not specific to mergesort. We wil prove that it is always true that if we define
the weight of an internal node to be the number of leaves in its subtrees then the
sum of the weights of the internal nodes is the weighted external path length of its
associated tree, when all leaves have weight 1.

In what follows, let T be a tree, h(t) its height, L(t) the number of leaves in the
tree, W (T) the sum of the weights of the internal nodes in the tree and EPL(T) the
weighted external path length of the tree when all leaves have weight 1. We want to
prove that W (T) = EPL(T) for all trees T.

This statement is proven by induction on the height h of the tree. It is obviously true
when h = 1 (and the tree has one or two leaves).

3

Suppose that it is true for all trees of height < h. Let T be a tree with h(T) = h and
x be the root of T .

If x has only one child let T1 be the subtree falling off of x. Then by definition
W (T) = L(T) + W (T1). On the other hand, every node in T is exactly one level
deeeper than it was in T1 so EPL(T) = EPL(T1)+L(T1). Since h(T1) = h(T)−1 =
h− 1 < h the proof follows by the induction hypothesis and noting

W (T) = W (T1) + L(T) = EPL(T1) + L(T1) = EPL(T).

If x has two children then let T1 and T2 be the left and right tree falling off of x. Since
h(T1), h(T2) < h(T) = h the induction hypothesis tells us that W (T1) = EPL(T1)
and W (T2) = EPL(T2).

By definition W (T) = W (T1) +W (T2) +L(T). On the other hand, every node in T1

and T2 is exactly one level deeper in T than it was in T1 or T2. So

EPL(T) = EPL(T1) + L(T1) + EPL(T2) + L(T2) = EPL(T1) + EPL(T2) + L(T)

and the proof again follows from the induction hypothesis and noting

W (T) = W (T1) + W (T2) + L(T) = EPL(T1) + EPL(T2) + L(T) = EPL(T).

(b) Prove that the recursive Mergesort studied in class has height h = dlog2 ne, with
x = 2h − n leaves on level h− 1 and n− x leaves on level h.

The proof will be by induction on i. We will prove, for every i the statement is true
for all n ≤ 2i.

It is obviously true for all n ≤ 21 = 2. Now suppose that it is true for all n ≤ 2i−1.

Let 2i < n ≤ 2i+1. We need to show that it is true for all such n.

There are two cases, n odd and n even.

(a) n even: Then n = 2n′ with n′ ≤ 2i. The algorithm splits the n items into two
sets, each of size n′, building a tree on each of them. By the induction hypothesis,
each of those trees has height h′ = dlog2 n

′e, with x′ = 2h
′ − n′ leaves on level h′ − 1

and n′ − x′ leaves on level h′.

Note that, by definition the height of the final tree is

h′ + 1 = dlog2 n
′e+ 1 = dlog2 2n′e = dlog2 ne

proving the first part of the statement.

Note that the leaves of the final tree are exactly the leaves of the subtree but pushed
one level deeper. this means that the subtree has

2x′ = 2(2h
′ − n) = 2h

′+1 − 2n′ = 2h − n

leaves on level h′ − 1 + 1 = h− 1 and n− x leaves on level h′ + 1 = h.

(a) n odd: The proof is similar but needs a little bit of extra work when n = 2i−1 + 1.

(c) Show that an optimal Huffman tree for n items, all with the same frequency 1, will
have the property that the tree will have height h = dlog2 ne, with x = 2h−n leaves
on level h− 1 and n− x leaves on level h.

First note that the Huffman tree T must (by definition) have minimal weighted ex-
ternal path length among all trees with n nodes (with all leaves having weight 1).

4

Note that this immediately implies that all leaves must be on the bottom two levels of
the Huffman tree. Suppose not and the tree has height h. Let (i) x be a leaf on level
d ≤ h− 2, (ii) u be a leaf on level h and (iii) p be u’s parent on level h− 1.

Let v be the sibling of v (which must exist because the tree is full). Now make p be
a leaf (associated with the character that used to be associated with x. This removes
u, v.

Further, make x be an internal node with two children, associated with the characters
that used to be associated with u, v. We have now created a new prefix-free coding tree
for the same set of characters which has SMALLER weighted external path length,
contradicting the optimality of T .

We now know that T is full (i.e., every internal node has two children; this fact was
proven in class) and has all of its children at depths h and h − 1. There are two
cases

(a) ALL of the leaves are on one level, i.e., h. This means that all of the 2h−1 nodes
on level h − 1 are internal nodes. Since each of them must have two children and
both of those children must be leaves there are 2 · 2h leaves (all on level h in the tree)
so n = 2h and the statement is trivially correct.

(b) Leaves exist on BOTH level h and h− 1. Note that, by the fullness, T has 2h−2

internal nodes at depth h − 2 and thus 2h−1 nodes on level h − 1. Suppose it has
y > 0 leaves on level h − 1. Note that because there are also leaves on level h, we
must have 0 < y < 2h−1 and all of the non-leaf nodes on level h−1 have two children
on level h. This implies that there are 2h−1 − y internal nodes on level h − 1 and
2(2h−1 − y) = 2h − 2y leaves on level h. This means n = 2h − 2y + y = 2h − y so
2h−1 < n < 2h and h = dlog2 ne. Furthermore, the number of leaves on level h− 1 is
y = 2h− n and the number in level h is n− y proving the 2nd part of the statement.

(d) Use the above facts to prove that recursive mergesort is optimal, i.e., that there is
no other merge pattern for merging n items that has lower total cost.

(d) follows directly from (a), (b) and (c).

The Huffman algorithm constructs a tree with minimum weighted external path length.
If all characters have weight 1, (c) immediately implies that this tree has cost

(h− 1)(2h − n) + h(2n− 2h)

where h = dlog2 ne. By the proof of optimality of Huffman codes, we know that this
is the mimimum weighted external path length such a tree could have.

From (a) we know that the cost of a Mergesort is equal to the weighted external path
length of its tree. From the previous paragraph we know that this can not be less than

(h− 1)(2h − n) + h(2n− 2h)

From (b) we know that the tree for recursive mergesort has exact cost

(h− 1)(2h − n) + h(2n− 2h)

which therefore implies it must be optimal.

5

