
COMP 3711H – Fall 2016
Tutorial 6

1. (CLRS–16.2-4) Professor Midas drives an automobile from Newark to Reno along Inter-
state 80. His car’s gas tank, when full, holds enough gas to travel m miles, and his map
gives the distance between gas stations on his route. The professor wishes to make as few
gas stops as possible along the way. Give an efficient method by which Professor Midas
can determine at which gas stations he should stop and prove that your algorithm yields
an optimal solution.

The simple greedy algorithm is optimal. It is to drive to the furthest possible city that one
can reach with the current gas in the car and then fill up the tank and then continue.

Suppose that the cities are at locations 0 = x0 < x1 < . . . < xn.

Let GREEDY be the greedy solution which we will denote by G. We will prove optimality
of greedy by induction on n. Let O be any optimal solution and assume that Greedy is
optimal on all problems on set size < n (for the basis this is obviously true on sets of size
1 and 2). We may also assume that, whenever O adds gas, O fills the gas tank completely
(since this can not make the solution worse). We use |O| and |G| to denote the numbers
of stops each solution makes.

Now consider the input on n points. Let g1 be the first stop that Greedy makes and o1 be
the first stop that OPT makes. By the definition of Greedy, o1 ≤ g1. Write

G = g1, g2, . . . , gk

O = o1, o2, . . . , ok′

By definition, k′ ≤ k, where the gi and oi are the stops the algorithms make. Let i be the
first index for which gi 6= oi.

Now let t = maxi oi ≤ g1. From the observations above we know that t ≥ 1.

Set
O′ = g1, ot+1, ot+2, . . . , ok′ .

Since g1 ≥ ot this is a legal tour. Thus t = 1, otherwise O was not optimal. So

O′ = g1, o2, o3, . . . , ok′ .

Now note that o2, o3, . . . , ok′ must be an optimal stopping pattern for the problem xg1 , xg1+1, . . . , xn
because otherwise we could replace it in O with a smaller set of gas fills, getting a smaller
optimal solution (which is imposisble).

From the induction hypothesis we know that g2, . . . , gk is an optimal stopping pattern for
the problem xg1 , xg1+1, . . . , xn.

Thus k = k′ and greedy is optimal for our original set.

2. Consider the problem of making change for n cents using the fewest number of coins.
Assume that each coin’s value is an integer.

(a) Describe a greedy algorithm to make change consisting of quarters (25 cents) dimes
(10), nickels (5), and pennies (1). Prove that your algorithm yields an optimal
solution.

1

(b) Suppose that the available coins are in denominations that are powers of c. i.e. the
denominations are c0, c1, ..., ck for some integers c > 1 and k ≥ 1. Show that the
greedy algorithm always yields an optimal solution.

(c) Give a set of coin denominations for which the greedy algorithm does not yield an
optimal solution. Your set should include a penny so that there is a solution for
every value of n.

(a) Set cq = bn/25c,
This is the largest number of quarters that can be used to make change for n cents.

Set nq = n− 25cq.
This is the amount remaining after using cq quarters

Set cd = bnq/10c (largest number of dimes that can be used)
Set nd = nq − 10cd (amount remaining)

Set cn = bnd/5c
Set cp = np = nd − 5cn.

Solution uses cq quarters, cd dimes, cn nickles and cp pennies.

Proof of optimality: Assume Greedy solution G is not optimal.

Let O be an optimal solution using oq quarters, od dimes, on nickels and op pennies.

First note that if op ≥ 5 we can replace every 5 pennies with one nickle, reducing the
number of coins used, so we can assume op < 5.

If od ≥ 3 replace every three dimes with 1 quarter and 1 nickle without increasing
the number of coins. So, we can assume od ≤ 2.

If on ≥ 2 replace every 2 nickels with one dime, reducing the number of coins used,
so we can assume on ≤ 1.

Now suppose that 10od + 5on + op ≥ 25. The only way that this can happen is if
od = 2 and on = 1. In this case we can replace the two dimes and one nickle with
one quarter, reducing the number of coins used, contradicting optimality of O. So
this is impossible.

This means that 10od + 5on + op < 25. Since

n = 25oq + 10od + 5on + op

we have just shown that cq = bn/25c = oq.

After greedy takes off the cq = oq quarters what remains is

n′ = n− 25oq = 10od + 5on + op.

From the facts that on ≤ 1 and op ≤ 4 we see that 5on + op < 10 so Greedy chooses
cd = od dimes and then cnon nickles and then cp = op pennies, so we are done.

(b) Recall that there is a unique way to write n in base c, i.e.,

n =
∑
i

aic
i such that ∀i, 0 ≤ ai < c.

First consider the greedy solutions. Suppose it chooses gi coins of type ci. If, for some
i, gi ≥ c then the greedy solution could have chosen one more coin of denomination

2

ci+1. So, for all i, gi < c, and by the uniqueness of such a representation, for all i,
gi = ai.

Now let oi denote the number of ci coins used in an optimal solution for making
change of n cents. Note that, ∀i, oi < c; if this was not true then we could replace
the oi coins of size ci with one coin of size ci+1 and (oi− c) coins of size ci, reducing
the number of coins used, contradicting optimality of O.

This, for all i, oi < c which means that, for all i, oi = ai.

Since, for all i, gi = ai = oi, greedy IS optimal.

(c) Let 1, 4, 6 be the set of coin denominations.

Suppose we make change for n = 8 cents.

The greedy solution uses one 6 cent coin and two 1 cent coins, i.e. it uses 3 coins.

However, the optimal solution would only use two 4 cents coins.

3. Given an undirected graph G = (V,E), its complement, G, is the graph (V,E′) such that
for all u 6= v, {u, v} ∈ E′ if and only if {u, v} /∈ E. Prove that either G or G is connected.

Let Ē be the edges in G. If G is not connected thene there exists some pair u, v) that have
no path in G connecting them.

• {u, v} ∈ Ē so u, v are connected in G.

• For all other vertices w, at least one of {u,w} and {u,w} must be in Ē; otherwise
both of them are in E which would have connected u, v.

• Then every other vertex w is connected to u (and v) in G since such a w must contain
an edge to at least one of u, v and is connected to the other via the edge {u, v}.

• Then every pair w,w′ are connected in G since they are both connected to u.

4. An (undirected) graph G = (V,E) is bipartate if there exists some S ⊂ V such that, for
every edge {u, v} ∈ E, either (i) u ∈ S, v ∈ V − S or (ii) v ∈ S, u ∈ V − S.

Let G = (V,E) be a connected graph. Design an O(n+ e) algorithm that checks whether
G is bipartite. Hint: Run BFS.

Run BFS. Recall that d[v] will store the shortest distance from the root v.

Set S to be the set of all vertices with d[v] even.

G will be bipartite if and only if all edges (u, v) in the graph satisfy that the parity of d[v]
and d[u] are not the same, i.e., d[v] is odd and d[u] is even or vice versa.

If the condition is true, it is easy to see that G is, by definition bipartite. Just set S to be
the set of all even vertices.

If the graph is bipartite, let S, V − S be the bipartite split and assume without loss of
generality that w ∈ S. Then the length of every path from w to other nodes in S is even
and the length of every path to nodes in V − S is odd. In particular the lengths of the
shortest paths to nodes in S are even and to those in V − S are odd. So, the partity of
the endpoints of all edges in G must be different.

How can you modify your algorithm so that it also works for unconnected graphs?

No modification is needed because a graph is bipartite if and only if each of its connected
components is bipartite.

3

5.

v

x1 x2 xn

In the Fan Graph Fn, node v is connected to all the nodes x1, . . . , xn, x1 is also connected
to x2, xn is also connected to xn−1 and every other xi is connected to xi−1 and xi+1. The
adjacency lists are given as follows

v : x1, x2, . . . , xn

x1 : v, x2

xn : v, xn−1

∀i 6= 1, n, xi : v, xi−1, xi+1

(a) : (i) Describe the tree that is output when BFS is run on Fn starting from initial
vertex v? (ii) initial vertex x1? (iii) xn? (iv) Other xi?

v

x1 x2 xn

v

x1 x2 xn

v

x1 x2 xn

v

x1 x2 xnxi

(b) : (i) Describe the tree that is output when DFS is run on Fn starting from initial
vertex v?(ii) initial vertex x1? (iii) xn? (iv) Other xi?

v

x1 x2 xn

v

x1 x2 xn

v

x1 x2 xn

v

x1 x2 xnxi

4

