
COMP 3711H – Fall 2016
Tutorial 8

Solution Sketch

1. Let G = (V,E) be a connected undirected graph in which all edges have weight either 1
or 2. Give an O(|V |+ |E|) algorithm to compute a minimum spanning tree of G. Justify
the running time of your algorithm. (Note: You may either present a new algorithm or
just show how to modify an algorithm taught in class.)

Solution

You could run a Prim’s algorithm, just implementing your Priority Queue differently.
Every priority queue operation except for the initialization (which will take O(V ) time)
will now take O(1) time so the algorithm will run in O(E + V ) time.

To do this, note that since every value in the priority queue is either ∞, 0 or 1 you can
implement the priority queue by maintaining 3 doubly linked lists. List 0 contains all
items with key value ∞, List 1, those with key values 1 and List 2 those with key values
2.

When you start put everyone is in List 0 because they all have key value ∞. You can
create this priority-queue in O(V ) time.

To implement Extract-Min: If List 1 contains a value, just pull off the first one. Other-
wise, if List 2 is not empty, pull the first value off of List 2. Otherwise, pull the first item
off List 0. Extract Min takes O(1) time.

To implement Decrease Key: (a) take the item out of its current list which can be done
in O(1) time (because the list is doubly linked). (b) Insert the item into the front of the
appropriate new list. This can be done in O(1) time because there are only two such
possible lists.

2. Give an O(n2) time dynamic programming algorithm to find the longest monotonically
increasing subsequence of a sequence of n numbers (i.e, each successive number in the
subsequence is greater than or equal to its predecessor). For example, if the input sequence
is 〈5, 24, 8, 17, 12, 45〉, the output should be either 〈5, 8, 12, 45〉 or 〈5, 8, 17, 45〉.
Hint: Let d[i] be the length of the longest increasing subsequnce whose last item is item i.

Solution: Algorithm: We first give an algorithm which finds the length of the longest
increasing subsequence; later, we will modify it to report a subsequence with this length.

Let Xi =< x1, . . . , xi > denote the prefix of X consisting of the first i items. Define c[i]
to be the length of the longest increasing subsequence that ends with xi. It is clear that
the length of the longest increasing subsequence in X is given by max1≤i≤n c[i].

The longest increasing subsequence that ends with xi has the form < Z, xi > where Z is
the longest increasing subsequence that ends with xr for some r < i and xr ≤ xi. Thus,
we have the following recurrence relation:

c[i] =


1 if i = 1
1 if xr > xi for 1 ≤ r < i
max1≤r<i

xr≤xi

c[r] + 1 if i > 1

The basis follows from the fact the longest increasing subsequence in a sequence consisting
of one number is the number itself. The recurrence relation says that if all the numbers
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to the left of i are greater than xi then the length of the longest increasing subsequence
ending in xi is 1. Otherwise, the length of the longest increasing subsequence ending in
xi is 1 more than the length of the longest increasing subsequence ending at a number xr
to the left of xi such that xr is no greater than the xi.

We store the c[i]’s in an array whose entries are computed in order of increasing i. After
computing the c array we run through all the entries to find the maximum value. This is
the length of the longest increasing subsequence in X.

In order to report the optimal subsequence we need to store for each i, not only c[i] but
also the value of r which achieves the maximum in the recurrence relation. Denote this
by r[i]. Then we can trace the solution as follows. Let c[k] = max1≤i≤n c[i]. Then xk is
the last number in the optimal subsequence. The second to last number is xr[k], the third
to last number is xr[r[k]] and so on until we have found the all the numbers of the optimal
subsequence.

Running Time: Since it takes O(i) time to compute the i-th entry of the c array, the total
time to compute the c array is O(

∑
i) = O(n2). It takes O(n) time to find the maximum

in the c array. Finally, the time to trace the solution is O(n). Thus, the running time is
dominated by the time it takes to compute the c array, which is O(n2).

3. The subset sum problem is: Given a set of n positive integers, S = {x1, x2, . . . , xn} and an
integer W determine whether there is a subset S′ ⊆ S, such that the sum of the elements
in S′ is equal to W . For example, if S = {4, 2, 8, 9} and W = 11, then the answer is
“yes” because there is a subset S′ = {2, 9} whose elements sum to 11. Give a dynamic
programming solution to the subset sum problem that runs in O(nW ) time. Justify the
correctness and running time of your algorithm.

Solution

The solution is to construct a boolean array A[i, j], 0 ≤ i ≤ n and 0 ≤ j ≤ W , defined
as follows: A[i, j] = true if there is a subset of {x1, x2, . . . , xi} that sums to j, else
A[i, j] = false. We start with some observations.

Basis: A[i, 0] = true, 0 ≤ i ≤ n, because given 0 or more items, you can always form
the sum 0 by picking no item. Also, A[0, j] = false, 1 ≤ j ≤ W , because if there are no
items to pick from, then we cannot form any sum > 0.

Last weight too large: A[i, j] = A[i − 1, j] if i > 0 and xi > j. The solution cannot
contain xi if xi exceeds j, the sum to be formed. Therefore the sum j can be formed using a
subset of {x1, x2, . . . , xi} if and only if it can be formed using a subset of {x1, x2, . . . , xi−1}.
Last weight not too large: A[i, j] = (A[i − 1, j − xi] OR A[i − 1, j]), if i > 0 and
j ≥ xi. This follows from the following observations. If sum j can be formed using a
subset of {x1, x2, . . . , xi−1}, then either this subset includes item xi or it does not. If
it includes item xi then it should be possible to form the sum j − xi using a subset of
{x1, x2, . . . , xi−1}; otherwise if it does not include item xi then it should be possible to
form the sum j using a subset of {x1, x2, . . . , xi−1}.
Combining these observations we have the following recurrence relation:

A[i, j] =


true if 0 ≤ i ≤ n and j = 0
false if i = 0 and 1 ≤ j ≤W
A[i− 1, j] if i > 0 and xi > j
A[i− 1, j − xi] OR A[i− 1, j]) if i > 0 and j ≥ xi
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The algorithm takes as inputs the sum to be formed W , the number of items n, and the
sequence x = x1, x2, . . . , xn. It stores the A[i, j] values in a table A[0 . . . n, 0 . . .W ] whose
values are computed in order of increasing i (note that for any given i it does not matter in
which order we compute the A[i, j]’s). Following this order ensures that the table entries
used to compute A[i, j] have all been computed before the algorithm evaluates A[i, j]. At
the end of the computation, A[n,W ] is true, if there is a subset that sums to W , otherwise
it is false.

Dynamic-SubsetSum(x, n,W )
A[0, 0] = true
for j = 1 to W do

A[0, j] = false
for i = 1 to n do

A[i, 0] = true
for j = 1 to W do

if xi > j then
A[i, j] = A[i− 1, j]

else A[i, j] = A[i− 1, j − xi] OR A[i− 1, j]

Running Time: Since the table has O(nW ) entries and it takes constant time to compute
any one entry, the total time to build the table is O(nW ). The total running time is
O(nW ).
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4. Give an O(nW ) dynamic programming algorithm for the 0-1 knapsack problem where n is
the number of items and W is the max weight that can fit into the knapsack. Recall that
the input is i items with given weights w1, w2, . . . , wn and associated values v1, v2, . . . , vn
and the objective is to choose a set of items with weight ≤W with maximum value.

Now suppose that you are given two knapsacks with the same max weight. Give an
O(nW 2) dynamic programming algorithm for finding the maximum value of items that
can be carried by the two knapsacks.

Solution: The implicit assumption in this problem is that W and the wi are all integers.
This was not needed for the fractional knapsack case (and its greedy solution) but is
required for the 0-1 knapsack problems.

We first solve the one knapsack case.

The algorithm is based on defining a table

V (i, w), 0 ≤ i ≤ n, 0 ≤ w ≤W

in which V (i, w) is the maximum value of objects from the set of the first i objects that
can be placed in a knapsack that has maximum weight w. The optimal solution to the
problem is V (n,W ).

The algorithm is based on the following recurrence relation:

V (i, w) = max
(
V (i− 1, w), V (i− 1, w − wi) + vi

)
The initial conditions are ∀i, V (i, w) = −∞ if w < 0 and ∀w ≥ 0, V (0, w) = 0. Note that
a value of −∞ is essentially being used as a flag for something being impossible.

The basic idea behind the equation is that there are two possible cases for the optimal
knapsack of size w using the first i items. Either the i’th item is not included or the i’th
item is included.

If the i’th item is not included, then the optimal solution is the optimal solution using the
first i− 1 items, which has value V (i− 1, w).

If the i’th item is included, then it adds value vi. After including it, the knapsack still
has weight capacity of w − wi and this needs to optimally filled by the first i − 1 items.
The best way of doing this has value V (i−1, w−wi). Adding the two pieces together gives
V (i− 1, w−wi) + vi. Note that if wi > w the i’th item can’t fit into the knapsack so this
option is not possible. This is flagged in the recurrence by the fact that V (i− 1, w−wi) =
−∞. An alternative option is to write the recurrence as

V (i, w) =

{
max

(
V (i− 1, w), V (i− 1, w − wi) + vi

)
if wi ≤ w

V (i− 1, w) if wi > w

Given the recurrence we can fill in the recurrence table by, for each fixed i = 1, 2, . . . , n (in
increasing order), calculating V (i, w) from the recurrence for every w = 1, 2, 3 . . . ,W. In
this order, when it’s time for V (i, w) to be calculated, both of V (i−1, w) and V (i−1, w−wi)
are already known.

There are O(nW ) table entries and each requires only O(1) time to evaluate so the entire
algorithm uses only O(nW ) time.
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The above calculates the best Value. To find the set of items that achieves that value
you will need to keep an auxiliary matrix Included(i, w) which is set to be false or true,
depending upon whether the max occurs at V (i − 1, w) or V (i − 1, w − wi) + vi. Using
our standard approach we can reconstruct the optimal set from this matrix by working
backwards from Included(n,W ).

We now discuss the case of two knapsacks. The algorithm for this case is a simple gen-
eralization of the previous one and is based on defining a table

V (i, w1, w2), 0 ≤ i ≤ n, 0 ≤ w1 ≤W, 0 ≤ w2 ≤W

in which V (i, w1, w2) is the maximum value of objects from the set of the first i objects
that can be placed in two knapsacks, the first one having weight capacity w1, and the
second having weight capacity w2. The optimal solution to the problem is V (n,W,W ).

The algorithm is based on the following recurrence relation:

V (i, w1, w2) = max
(
V (i− 1, w1, w2), V (i− 1, w1 − wi, w

2) + vi, V (i− 1, w1, w2 − wi) + vi,
)

(with initial conditions ∀i, V (i, w1, w2) = −∞ if w1 < 0 or w2 < 0 and ∀w1, w2 ≥ 0,
V (0, w1, w2) = 0.

The basic idea behind the equation is is that the three terms on the right hand side cor-
respond to the three cases in which the optimal solution for V (i, w1, w2) (i) does not use
item i at all, (ii) puts item i in the first knapsack and (iii) puts item i in the second
knapsack. We do not go into more details because this is very similar to the derivation in
the previous case.

Notice that, if all of the items on the right hand side were already known, then the left
hand side could be calculated in O(1) time. It’s not hard to find an ordering that satisfies
this (which?) so the algorithm runs in O(nW 2).

As before, this algorithm only finds the best value. To find the actual items in the two
knapsacks you will need to keep an auxiliary matrix that associates with each entry in the
V (...) matrix how the optimal value for that entry was achieved.

5. Suppose you want to make change for n (HK) dollars using the fewest number of coins.
Assume that each coin’s value is an integer.

Give an O(nk)-time dynamic programming algorithm that makes change for any set of
k different coin denominations, assuming the set always contains a 1-dollar coin (so a
solution always exists).

Let the coin denominations be d1, d2, ..., dk.

Solution:

This problem has the optimal substructure property. If we knew that an optimal solution
for j dollars used a coin of denomination di, it would have to be true that, in that solution,
the change for the remaining j − di dollars would have to be an optimal (minimum) set
of coins for that subproblem, i.e., c[j] = 1 + c[j − di] As base cases, we have that c[j] = 0
for all j ≤ 0.
To develop a recursive formulation, we have to check all denominations, giving

c[j] =

{
0 if j ≤ 0,
1 + min1≤i≤k{c[j − di]} if j > 1.
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We can compute the c[j] values in order of increasing j by using a table. The following
procedure does so, producing a table c[1..n]

Note: The code avoids explicitly examining c[j] for j ≤ 0 by checking j ≥ di before looking up

c[j − di].

The procedure also produces a table denom[1..n], where denom[j] is the denomination of
a coin used in an optimal solution to the problem of making change for j dollars.

COMPUTE-CHANGE(n, d, k)

for j ← 1 to n
c[j]←∞
for i← 1 to k

if j ≥ di and 1 + c[j − di] < c[j]
c[j]← 1 + c[j − di]
denom[j]← di

return c and denom

This procedure obviously runs in O(nk) time

We use the following procedure to output the coins used in the optimal solution computed
by COMPUTE-CHANGE:

GIVE-CHANGE(j, denom)

if j > 0
give one coin of denomination denom[j]
GIVE-CHANGE(j − denom[j], denom)

The initial call is GIVE-CHANGE(n, denom). Since the value of the first parameter
decreases in each recursive call, this procedure runs in O(n) time.
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