COMP 3711H – Fall 2016 Tutorial 8

- 1. Let G = (V, E) be a connected undirected graph in which all edges have weight either 1 or 2. Give an O(|V| + |E|) algorithm to compute a minimum spanning tree of G. Justify the running time of your algorithm. (*Note:* You may either present a new algorithm or just show how to modify an algorithm taught in class.)
- 2. Give an $O(n^2)$ time dynamic programming algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers (i.e, each successive number in the subsequence is greater than or equal to its predecessor). For example, if the input sequence is $\langle 5, 24, 8, 17, 12, 45 \rangle$, the output should be either $\langle 5, 8, 12, 45 \rangle$ or $\langle 5, 8, 17, 45 \rangle$.
 - Hint: Let d[i] be the length of the longest increasing subsequence whose last item is item i.
- 3. The subset sum problem is: Given a set of n positive integers, $S = \{x_1, x_2, \ldots, x_n\}$ and an integer W determine whether there is a subset $S' \subseteq S$, such that the sum of the elements in S' is equal to W. For example, if $S = \{4, 2, 8, 9\}$ and W = 11, then the answer is "yes" because there is a subset $S' = \{2, 9\}$ whose elements sum to 11. Give a dynamic programming solution to the subset sum problem that runs in O(nW) time. Justify the correctness and running time of your algorithm.
- 4. Give an O(nW) dynamic programming algorithm for the 0-1 knapsack problem where n is the number of items and W is the max weight that can fit into the knapsack. Recall that the input is i items with given weights w_1, w_2, \ldots, w_n and associated values v_1, v_2, \ldots, v_n and the objective is to choose a set of items with weight $\leq W$ with maximum value.
 - Now suppose that you are given two knapsacks with the same max weight. Give an $O(nW^2)$ dynamic programming algorithm for finding the maximum value of items that can be carried by the two knapsacks.
- 5. Suppose you want to make change for n (HK) dollars using the fewest number of coins. Assume that each coin's value is an integer.
 - Give an O(nk)-time dynamic programming algorithm that makes change for any set of k different coin denominations, assuming the set always contains a 1-dollar coin (so a solution always exists).
 - Let the coin denominations be $d_1, d_2, ..., d_k$.