
COMP 3711H – Fall 2016
Tutorial 9 - with Solution Sketches

1. Run the Floyd-Warshall algorithm on the weighted, directed graph shown in the figure.
Show the matrix D(k) that results for each iteration of the outer loop.
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Solution:

D(0) =



0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 ∞ ∞
∞ 2 0 ∞ ∞ −8
−4 ∞ ∞ 0 3 ∞
∞ 7 ∞ ∞ 0 ∞
∞ 5 10 ∞ ∞ 0



D(1) =



0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 0 ∞
∞ 2 0 ∞ ∞ −8
−4 ∞ ∞ 0 −5 ∞
∞ 7 ∞ ∞ 0 ∞
∞ 5 10 ∞ ∞ 0



D(3) = D(2) =



0 ∞ ∞ ∞ −1 ∞
1 0 ∞ 2 0 ∞
3 2 0 4 2 −8
−4 ∞ ∞ 0 −5 ∞
8 7 ∞ 9 0 ∞
6 5 10 7 5 0



D(4) =



0 ∞ ∞ ∞ −1 ∞
−2 0 ∞ 2 −3 ∞
0 2 0 4 −1 −8
−4 ∞ ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0



D(5) =



0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
0 2 0 4 −1 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0


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D(6) =



0 6 ∞ 8 −1 ∞
−2 0 ∞ 2 −3 ∞
−5 −3 0 −1 −6 −8
−4 2 ∞ 0 −5 ∞
5 7 ∞ 9 0 ∞
3 5 10 7 2 0


2 Let G = (V,E) be Directed Acyclic Graph and s a vertex from which it’s possible to

get to all vertices. Show how to build a shortest (i.e., min-cost) path tree routed at s in
O(|V |+ |E|) time.

Solution:

This is similar to the algorithm for finding a max-cost path for DAGs that we saw in class.

Let n = |V | and m = |E|.
First topologically sort the vertices in O(n+m) time (with s as the first vertex in the order)
and relable them as v1, v2, . . . , vn where vi is the i’th vertex in the topological order. That
is, if (vi, vj) ∈ E then i < j

Next construct the in-adjacency lists. That is, for each vertex vi we construct the list of
all vertices that point to vi. This construction can also be done in O(n+m) time.

Let di be the cost of a shortest path from s to vi. Then d1 = 0 and, for i > 1,

di = min
(vj ,vi)∈E

(dj + wj,i)

= min
j:(j<i) and (vj ,vi)∈E

(dj + wj,i)

where wj,i is the cost of the edge (vj , vi). We saw the first equality when we first studied
shortest paths. The 2nd equality follows from the properties of the topological order.

The algorithm is then to run through i = 2, 3, . . . , n.
For each i run through Vi’s in-adjacency list to calculate

min
j:(j<i)(and)(vj ,vi)∈E

(dj + wj,i)

This algorithm takes O(n+m) time.

3. (CLRS) Give an algorithm that takes as input a directed graph with positive edge weights,
and returns the cost of the shortest cycle in the graph (if the graph is acyclic, it should say
so). Your algorithm should take time at most O(n3), where n is the number of vertices
in the graph.

Solution:

In O(n3) time run the Floyd-Warshall algorithm to find all the values di,j, the costs of
the min cost path from vi to vj. The answer to the problem is

A = min
i,j

(di,j + dj,i)

Let OPT be the real cost of a minimum cost cycle. We need to show that A = OPT.

2



First note that every term di,j +dj,i is the cost of some cycle (start at i, follow the path of
length di,j to j and then follow the path of length dj,i back to i.). Since A is the minimum
of some set of cycle costs, OPT ≤ A.

Now suppose that we know some min-cost cycle C. Let i′, j′ be any two points on the
cycle. Let d′i′,j′ and d′j′,i′ be the costs on that cycle for the paths from i′ to j′ and from j′

to i′. By definition
d′i′,j′ ≥ di′,j′ and d′i′,j′ ≥ di′,j′

Thus
OPT = cost(C) = d′i′,j′ + d′j′,i′ ≥ di,j + dj,i ≥ A

Thus, A = OPT .

The running time is O(n3) for the Floyd-Warshall algorithm and O(n2) for the rest, so
the full running time is O(n3).

4. Assume that all edges have positive weight. Design an algorithm that will, for every pair
of vertices, count the number of shortest paths between that pair.

Solution: If zero weight cycles existed then the number of shortest paths could be infinite.
The reason for requiring all edges to have positive weight was to guarantee that no zero-
weight cycles exist. This will guarantee that all shortest paths are simple and that there
will thus be a finite number of shortest paths.

The short version of the solution is just to modify Floyd-Warshall slightly. Recall that

Floyd-Warshall maintains a variable d
(k)
i,j which is the length of the shortest path from i

to j such that all intermediate vertices on the path (if any) are in the set {1, 2, ..., k}. Add

another variable N
(k)
i,j which will be the number of shortest paths from i to j such that all

intermediate vertices on the path (if any) are in the set {1, 2, ..., k}.
Note that when running the code it checks if pred[i, j] = k . This occurs if

d
(k)
i,j = d

(k−1)
i,k + d

(k−1)
k,j .

If this is the case then set

N
(k)
i,j = N

(k−1)
i,k ·N (k−1)

k,j

because any shortest (i, k) path concatenanted with any shortest (k, j) path will give a
shortest (i, j) path. If this does not occur for any k, then set

N
(k)
i,j = N

(k−1)
i,j .

This gives a O(n3) algorithm. The space can be reduced from O(n3) down to O(n2) in the
same way as in the regular Floyd-Warshall algorithm.

5. KFCC is considering opening a series of restaurants along the Highway. The n available
locations are along a straight line; the distances of these locations from the start of the
Highway are, in miles and in increasing order: m1,m2, . . . ,mn. The constraints are as
follows:

1. At each location, KFCC may open at most one restaurant.
The expected profit from opening a restaurant at location i is pi, where pi > 0 and
i = 1, 2, . . . , n.
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2. Any two restaurants should be at least k miles apart,
where k is a given positive integer.

Give a dynamic programming algorithm that determines the locations to open restaurants
which maximizes the total expected profit and analyze the running time of your algorithm.

Solution:

We define T [i] to be the total profit from the best valid configuration using only locations
from within 1, 2, . . . , i.

We also store R[i] which is 1 if there is a restaurant at location i and 0 otherwise.

Case 1: Base case If i = 0, then there is no location available to choose from to open
a restaurant. So T [0] = 0.

Case 2: General case If i > 0, then we have two options.

1. Do not open a restaurant at location i

If no restaurant opened at location i, then the optimal value will be optimal profit
from valid configuration using only location 1, 2, . . . , i− 1. This is just T [i− 1].

2. Open a restaurant at location i. Opening a restaurant at location i, gives expected
profit pi. After building at location i, the nearest location to the left where a restaurant
can be built is ci, where

ci = max{j ≤ i : mj ≤ mi − k}.

To obtain a maximum profit, we need to obtain the maximum profits from the re-
maining locations 1, 2, . . . , ci. This is just pi + T [ci].

Since these are the only two possibilities, we derive the following rule for constructing
table T :

T [i] =

{
0, if i = 0

max{T [i− 1], pi + T [ci]}, if i > 0

If T [i] = T [i− 1], then R[i] = 0; and R[i] = 1 otherwise.

Note: This immediately gives a O(n2) algorithm if we use brute force to find every ci in
O(n) time. A little more thought shows that we could find ci = max{j : mj ≤ mi − k} in
O(log n) time using binary search. This would give us a O(n log n) algorithm. The extra
twist in this algorithm is that we will see soon that it’s possible to calculate all of the ci
in O(n) time, which will allow a O(n) algorithm.
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Note that for some values of i and ci may not exist in which case, we set ci = 0.

Algorithm to find optimal profit and locations to open restaurants.
Assumes ci are known

Find-Optimal-Profit-And-Pos(m1, . . . ,mn, p1, . . . , pn, c1, . . . , cn,)

1: T [0] = 0
2: for i = 1 to n do
3: Not-Open-At-i = T [i− 1]; Open-At-i = pi + T [ci]
4: if Not-Open-At-i > Open-At-i then
5: T [i] =Not-Open-At-i; R[i] =0
6: else
7: T [i] =Open-At-i; R[i] =1
8: end if
9: end for

10: return T [n] and R;

Algorithm to compute ci = max{j : mj ≤ mi − k} for every i
uses fact that 0 = c1 ≤ c2 ≤ · · · ≤ cn < n.
Starts looking for ci at j = ci−1; increments j until finds correct value of ci.

Note that algorithm runs in O(n) time because line 5 can only be implemented O(n) times!

Compute-ci(m1, . . . ,mn, k)

1: c1 = 0;
2: for i = 2 to n do
3: j = ci−1

4: while (mj+1 ≤ mi − k) do
5: j = j + 1
6: end while
7: ci = j
8: end for
9: return c1, . . . , cn

Algorithm to report optimal locations to open restaurants

Report-Optimal-Locations(R, c1, . . . , cn,)

1: j = n; S = ∅
2: while j ≥ 1 do
3: if R[j] = 1 then
4: Insert mj into S; j = cj
5: else
6: j = j − 1
7: end if
8: end while
9: return S;

5



– Compute-ci takes O(n) time to compute ci for every i.

– Find Optimal-Profit-And-Pos takes O(n) time to compute T and R.

– Report-Optimal-Locations takes O(n) time to report the optimal locations for
opening restaurants along the Highway.

Therefore, the overall running time is O(n).
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