MAX-SAT: Best of Two

We have so far seen two different approaches to approximating MAX-SAT:

- Random MAX-SAT.
$E(W) \geq \frac{O P T}{2}$.
This chose a random truth assignment using a fair coin.
For clause C_{j} with length l_{j}

$$
\operatorname{Pr}\left(C_{j} \text { is satisfied }\right)=1-2^{-l_{j}}
$$

- Randomized Rounding.
$E(W) \geq\left(1-\frac{1}{e}\right) O P T \approx 0.632 \cdot O P T$.
Finds solution $\left(y^{*}, x^{*}\right)$ to relaxed linear program. For clause C_{j} with length l_{j}

$$
\operatorname{Pr}\left(C_{j} \text { is satisfied }\right) \geq\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*}
$$

Notice that Random MAX-SAT is "good" for long clauses while Randomized Rounding is "good" for short clauses. We will now see how to combine the two to get an even better approximation.

The Best of Two algorithm is to run Random MAX-SAT to get assignment x^{1} with weight W_{1} and to also run Randomized Rounding to get assignment x^{2} with weight W_{2}. Then compare W_{1} and W_{2}. If $W_{1}>W_{2}$ return x^{1}, else return x^{2}. Let W be the weight of the returned assignment.

Lemma: $E(W) \geq \frac{3}{4} O P T$.
Proof: We use the fact that

$$
W=\max \left(W_{1}, W_{2}\right) \geq \frac{1}{2} W_{1}+\frac{1}{2} W_{2} .
$$

Therefore

$$
\begin{aligned}
E(W) \geq & E\left(\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right) \\
= & \frac{1}{2} E\left(W_{1}\right)+\frac{1}{2} E\left(W_{2}\right) \\
= & \frac{1}{2} \sum_{j} w_{j} \operatorname{Pr}\left(C_{j} \text { is satisfied by } x^{1}\right) \\
& \quad+\frac{1}{2} \sum_{j} w_{j} \operatorname{Pr}\left(C_{j} \text { is satisfied by } x^{2}\right) \\
\geq & \frac{1}{2} \sum_{j} w_{j}\left(1-2^{-l_{j}}\right) \\
& \quad+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*} \\
= & \sum_{j} w_{j}\left(\frac{1}{2}\left(1-2^{-l_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*}\right)
\end{aligned}
$$

So far we have seen that

$$
E(W) \geq \sum_{j} w_{j}\left(\frac{1}{2}\left(1-2^{-l_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*}\right)
$$

We will now show that, for all j,

$$
\frac{1}{2}\left(1-2^{-l_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{l_{j}}^{*} \geq \frac{3}{4} z_{j}^{*}
$$

This will imply that

$$
E(W) \geq \sum_{j} \frac{3}{4} w_{j} z_{j}^{*} \geq \frac{3}{4} O P T
$$

and we will be done.

We prove this case by case.
If $l_{j}=1$ then $\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.

If $l_{j}=2$ then $\frac{1}{2} \cdot \frac{3}{4}+\frac{1}{2} \cdot \frac{3}{4} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.

If $l_{j} \geq 3$ then
$\frac{1}{2}\left(1-2^{-l_{j}}\right)+\frac{1}{2}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{l_{j}}^{*} \geq \frac{1}{2} \cdot \frac{7}{8}+\frac{1}{2}\left(1-\frac{1}{e}\right) z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.

