MAX-SAT: Best of Two

We have so far seen two different approaches to approximating MAX-SAT:

• Random MAX-SAT. $E(W) \ge \frac{OPT}{2}$. This chose a random truth assignment using a fair coin. For clause C_j with length l_j

$$Pr(C_j \text{ is satisfied}) = 1 - 2^{-l_j}.$$

• Randomized Rounding. $E(W) \ge \left(1 - \frac{1}{e}\right) OPT \approx 0.632 \cdot OPT.$ Finds solution (y^*, x^*) to relaxed linear program. For clause C_j with length l_j

$$Pr(C_j \text{ is satisfied}) \ge \left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right) z_j^*.$$

Notice that *Random MAX-SAT* is "good" for long clauses while *Randomized Rounding* is "good" for short clauses. We will now see how to combine the two to get an even better approximation. The Best of Two algorithm is to run Random MAX-SAT to get assignment x^1 with weight W_1 and to also run Randomized Rounding to get assignment x^2 with weight W_2 . Then compare W_1 and W_2 . If $W_1 > W_2$ return x^1 , else return x^2 . Let W be the weight of the returned assignment.

<u>Lemma:</u> $E(W) \ge \frac{3}{4}OPT.$

 $\underline{\operatorname{Proof:}}$ We use the fact that

$$W = \max(W_1, W_2) \ge \frac{1}{2}W_1 + \frac{1}{2}W_2.$$

Therefore

$$\begin{split} E(W) &\geq E\left(\frac{1}{2}W_{1} + \frac{1}{2}W_{2}\right) \\ &= \frac{1}{2}E(W_{1}) + \frac{1}{2}E(W_{2}) \\ &= \frac{1}{2}\sum_{j}w_{j}Pr(C_{j} \text{ is satisfied by } x^{1}) \\ &\quad + \frac{1}{2}\sum_{j}w_{j}Pr(C_{j} \text{ is satisfied by } x^{2}) \\ &\geq \frac{1}{2}\sum_{j}w_{j}\left(1 - 2^{-l_{j}}\right) \\ &\quad + \frac{1}{2}\sum_{j}w_{j}\left(1 - \left(1 - \frac{1}{l_{j}}\right)^{l_{j}}\right)z_{j}^{*} \\ &= \sum_{j}w_{j}\left(\frac{1}{2}\left(1 - 2^{-l_{j}}\right) + \frac{1}{2}\left(1 - \left(1 - \frac{1}{l_{j}}\right)^{l_{j}}\right)z_{j}^{*} \end{split}$$

So far we have seen that

$$E(W) \ge \sum_{j} w_{j} \left(\frac{1}{2} \left(1 - 2^{-l_{j}} \right) + \frac{1}{2} \left(1 - \left(1 - \frac{1}{l_{j}} \right)^{l_{j}} \right) z_{j}^{*} \right).$$

We will now show that, for all j,

$$\frac{1}{2}\left(1-2^{-l_j}\right) + \frac{1}{2}\left(1-\left(1-\frac{1}{l_j}\right)^{l_j}\right)z_{l_j}^* \ge \frac{3}{4}z_j^*.$$

This will imply that

$$E(W) \ge \sum_{j} \frac{3}{4} w_j z_j^* \ge \frac{3}{4} OPT$$

and we will be done.

We prove this case by case. If $l_j = 1$ then $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2}z_j^* \ge \frac{3}{4}z_j^*$. If $l_j = 2$ then $\frac{1}{2} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{3}{4}z_j^* \ge \frac{3}{4}z_j^*$. If $l_j \ge 3$ then $\frac{1}{2}(1 - 2^{-l_j}) + \frac{1}{2}\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j}\right)z_{l_j}^* \ge \frac{1}{2} \cdot \frac{7}{8} + \frac{1}{2}\left(1 - \frac{1}{e}\right)z_j^* \ge \frac{3}{4}z_j^*$.