
Binomial & Fibonacci Heaps and Amortized Analysis

Main Reference: Chapter 19, Sections 17.1-17.3 and
Chapter 20

• Motivation

• Mergable Heaps: Binomial Heaps

• An Introduction to Amortized Analysis

• Fibonacci Heaps

1

Most of this course deals with how to solve optimiza-
tion problems using efficient algorithms. This section
is different. It focuses on how to improve known algo-
rithms by designing special data structures.

In the course of doing this we will introduce amortized
analysis, a more sophisticated way of analyzing al-
gorithms than just looking at the worst case time of
individual operations.

2

A mergeable (Min) heap is a data structure support-
ing the following operations. (Heaps and nodes are
passed and returned via pointers).

Make-Heap() creates & returns a new empty heap

Insert(H, x) inserts x into H

Minimum(H) returns pointer to smallest key in H

Extract-Min(H) removes minimum item from H and
returns it to caller

Union(H1, H2) merges H1 and H2 into a new heap
(destroying H1, H2 in process)

Decrease-Key(H, x, k) Reduces value of node x in
H to key value k (assumes that old value was not
less than k)

Delete(H, x) Removes node x from H

3

Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)
Make-Heap Θ(1) Θ(1) Θ(1)
Insert Θ(lgn) O(lgn) Θ(1)
Minimum Θ(1) O(lgn) Θ(1)
Extract-Min Θ(lgn) Θ(lgn) O(lgn)
Union Θ(n) O(lgn) Θ(1)
Decrease-Key Θ(lgn) Θ(lgn) Θ(1)
Delete Θ(lgn) Θ(lgn) O(lgn)

Any combination of n Inserts followed by n

Extract-Mins must take at least Ω(n logn) time.
(Why?)

4

Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)
Make-Heap Θ(1) Θ(1) Θ(1)
Insert Θ(lgn) O(lgn) Θ(1)
Minimum Θ(1) O(lgn) Θ(1)
Extract-Min Θ(lgn) Θ(lgn) O(lgn)
Union Θ(n) O(lgn) Θ(1)
Decrease-Key Θ(lgn) Θ(lgn) Θ(1)
Delete Θ(lgn) Θ(lgn) O(lgn)

Dijkstra’s algorithm for solving the single-source short-
est path problem and Prim’s similar algorithm for con-
structing a minimum spanning-tree use

|V | Inserts; |V | Extract-Mins; |E| Decrease-Keys.

We usually learn that these algorithms require
Θ((|E| + |V |) log |V |) time.

The Inserts and Extract-Mins do require Θ(|V | log |V |).
But, by the end of this section, we will see how to de-
sign a data structure where the |E| Decrease-Keys
only use O(|E|) amortized time, leading to a total run-
ning time of only Θ(|V | log |V | + |E|)

5

We will start by introducing binomial heaps, a varia-
tion on standard binary heaps. Binomial heaps use a
standard trick that has proved very successful in the
design of data-structures for dynamic data; Instead of
maintaining one data structure, they maintain a collec-
tion of them. Whenever so much data has been added
that our collection becomes “too large and messy” it
is tided up, (essentially charging the cost to the previ-
ously added data).

Binomial heaps by themselves don’t provide enough
power to improve the running times of Dijkstra’s and
Prim’s algorithms. We therefore introduce amortized
analysis. This is a useful technique that, given a se-
quence of operations, permits sharing the cost of a
single expensive operation with many other cheaper
ones.

We will then use this new way of looking at things to
modify Binomial Heaps into Fibonacci Heaps, which
do have good amortized time bounds.

6

A binomial heap is a collection of heap-ordered
binomial trees so we must start with:

B k−1

B k−1

B k

B 0

B 0 B B B B1 2 3 4

0

4

3

1

2

depth

Definition: A binomial tree Bk is an ordered tree such
that:
(i) B0 is a single node.
(ii) Bk is two Bk−1 trees with the root of the1st being
the leftmost child of the 2nd.

7

B 0 B B B B1 2 3 4

0

4

3

1

2

depth

We need the following simple properties of Bk :

• It contains 2k nodes.

• It has height k.

• It has exactly
(

k
i

)

nodes at depth i.

• The root has degree k. The children of the root,
from left to right, are the roots of
Bk−1, Bk−2, . . . , B1, B0.

• The maximum degree of any node in an n node
binomial tree is log2 n.

8

B k−1

B k

B
B

B
B 0

1
2

k−2

The root has degree k.
The children of the root, from left to right, are roots of
Bk−1, Bk−2, . . . , B1, B0.

9

A Binomial heap H is a set of Binomial trees that sat-
isfies the Binomial heap properties:

• Each binomial tree obeys the min-heap property:
the key of a node is ≥ key of its parent

• For every integer k there is at most one Bk in H.

38

10

12 25 14 29

11 17

1 6

8

head[H]

18

27

10

38

10

12 25 14 29

11 17

1 6

8

head[H]

18

27

In practice, every node will contain a pointer to its:
parent, right sibling, leftmost child

It will also know how many children it has (degree).
Nodes in a sibling list will be sorted by degree.

0

00

0

25
0

0

0
10

12

18

14 29

11 17 38

27

2

1

3

2 1

1

1 6

8

head[H]

p

child

degree

key

sibling

11

Operations on Binomial Heaps

38

10

12 25 14 29

11 17

1 6

8

head[H]

18

27

Make-Heap():
Creating all of the pointers can be done in O(1) time.

Minimum(H):
The minimum must be in some root in the top list.
If there are n nodes in the heap there are at most lgn

roots at the top,
at most one each of degree 0,1,2, . . . , ⌊lgn⌋,
so this can be found in O(lgn) time.

12

Union(H1, H2) is the most sophisticated of the bino-
mial heap operations.

Let Ai (Bi) be unique b. tree of degree i in H1 (H2),
If trees don’t exists, set Ai, Bi = ∅.

Note that two binomial trees Xi and Yi, both of degree
i, can be merged together in O(1) time to create a
binomial tree of degree i + 1.

In the Union(H1, H2) we will create, Ci will be the
unique binomial tree of degree i, if it exists.

Let k = lg(|H1 + |H2|). (limit on size of i).

For i = 0 to k, Ci = ∅.

For i = 0 to k

If all of Ai, Bi, Ci 6= ∅

Link Ai, Bi to form Ci+1.

If exactly two of Ai, Bi, Ci 6= ∅

Link those two together to form Ci+1. Set Ci = ∅.

If exactly one of Ai, Bi, Ci 6= ∅

Set Ci to be that binomial tree.

Link the Ci together to form the merged binomial heap.

13

Let k = lg(|H1 + |H2|). (limit on size of i).

For i = 0 to k, Ci = ∅.

For i = 0 to k

If all of Ai, Bi, Ci 6= ∅

Link Ai, Bi to form Ci+1.

If exactly two of Ai, Bi, Ci 6= ∅

Link those two together to form Ci+1. Set Ci = ∅.

If exactly one of Ai, Bi, Ci 6= ∅

Set Ci to be that binomial tree.

Link the Ci together to form the merged binomial heap.

Let n = |H1 + |H2|.

Every iteration of the for loop runs in O(1) time so the
full algorithm obviously runs in O(k) = O(lgn)time.

In practice one does not have to record the Ai, Bi, Ci

that are ∅. Instead, the algorithm starts with an O(lgn)

merge of the binomial trees, sorted by degree. This is
followed by a linear scan through the merged list, al-
ways linking two trees of the same size.

14

12 18

23

45

55

32

30

24

8

22 48

50

29

31

10

17

6

44

3

3725

7 15

28 33

41

12 18

25

7 3

37 28

41

33

15

23

45

55

32

30

24

8

22 48

50

29

31

10

17

6

44

25

7 3

37 28

41

33

15

23

45

55

32

30

24

8

22 48

50

29

31

10

17

6

44

12

18

15

25

7 3

37 28

41

33

15

23

45

55

32

30

24

8

22 48

50

29

31

10

17

6

44

12

18

28

41

33

15

23

45

55

32

30

24

8

22 48

50

29

31

10

17

6

44

3

37

25

7

12

18

23

45

55

32

30

24

8

22 48

50

29

31

10

17

6

44

28

41

33

15

3

37

25

7

12

18

16

Insert(H, x):
Can be done by first performing an O(1) Make-Heap()
to create H2 and then inserting x into H2 followed by
a O(lgn) Union(H, H2).

Extract-Min(H):
In O(lgn) time find the root x with the minimum value.

Let A be the tree of which x is the root. Let H1 be
the binomial heap remaining when A is removed from
H and H2 be the binomial heap left over when x is
deleted from A.

Both H1 and H2 can be created in O(lgn) time. In
another O(lgn) time do Union(H1, H2). What results
is a binomial heap concatenating all of the items in the
original H except for x.

This entire process took only O(lgn) time.

17

12

18

3

37

25

7

23

45

55

32

30

24

8

22 48

50

29

31

10

17

44

2

12

18

3

37

25

7

23

45

55

32

30

24

8

22 48

50

29

31

10

17

44

2

12

18

3

37

25

7

44 10

17 48

50

29

31 23

45

55

32

30

24

8

22

18

12

18

3

37

25

7

44 10

17 48

50

29

31 23

45

55

32

30

24

8

22

44

12

18

10

17

23

45

55

32

30

24

8

22 48

50

29

31

3

37

25

7

19

Decrease-Key(H, x, k):
This works exactly the same as in the regular binary
heap.
Node x is continuously compared with its parent and,
if it’s smaller, it is swapped upwards.

Since the height of any tree is O(lgn), this takes at
most O(lgn).

In what follows, the key containing a 5 previously con-
tained a 25.

44

12

18

10

17

25

7 37

23

24

22 48

50

29

31

32

3

8

55

30

5

20

44

12

18

10

17

25

7 37

23

24

22 48

50

29

31

32

3

8

55

30

5

44

12

18

10

17

25

7 37

23

24

22 48

50

29

31

32

3

8

55

30

5

44

12

18

10

17

25

7 37

23

24

22 48

50

29

31

32

3

55

30

8

5

21

Delete(H, x):
This can be done by performing the two following op-
erations:

Decrease-Key(H, x,−∞) O(lgn)

Extract-Min(H) O(lgn)

leading to a O(lgn) algorithm.

22

Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)
Make-Heap Θ(1) Θ(1) Θ(1)
Insert Θ(lgn) O(lgn) Θ(1)
Minimum Θ(1) O(lgn) Θ(1)
Extract-Min Θ(lgn) Θ(lgn) O(lgn)
Union Θ(n) O(lgn) Θ(1)
Decrease-Key Θ(lgn) Θ(lgn) Θ(1)
Delete Θ(lgn) Θ(lgn) O(lgn)

We have just seen how to build Binomial heaps with
the claimed time bounds. Essentially, we managed to
substantially decrease the time for Union by slightly
increasing the time for Minimum.

23

