In this addendum we prove the Lemma given in the class notes on page 13.

Lemma: Let $S \subseteq X$ and $T = N_{\ell}(S) \neq Y$. Set

$$\alpha_{\ell} = \min_{x \in S} \{\ell(x) + \ell(y) - w(x, y)\}$$

and

$$\ell'(v) = \begin{cases} \ell(v) - \alpha_{\ell} & \text{if } v \in S \\ \ell(v) + \alpha_{\ell} & \text{if } v \in T \\ \ell(v) & \text{otherwise} \end{cases}$$

Then ℓ' is a feasible labeling and

- (i) If $(x, y) \in E_{\ell}$ for $x \in S, y \in T$ then $(x, y) \in E_{\ell'}$.
- (ii) If $(x, y) \in E_{\ell}$ for $x \notin S, y \notin T$ then $(x, y) \in E_{\ell'}$.
- (iii) There is some edge $(x,y) \in E_{\ell'}$ for $x \in S, y \notin T$

Proof.: By definition $\forall x \in X, y \in Y$ we have $\ell(x) + \ell(y) \geq w(x, y)$. Furthermore, if $(x, y) \in E_{\ell}$ then $\ell(x) + \ell(y) = w(x, y)$.

There are four types of edges (x, y): For each type of edge we need to show that the feasible labelling condition $\ell'(x) + \ell'(y) \ge w(x,y)$ holds. We also need to show that (i) (ii) and (iii) are correct.

- 1. $x \in S, y \in T$: Then $\ell'(x) + \ell'(y) = \ell(x) - \alpha + \ell(y) + \alpha = \ell(x) + \ell(y)$. So $\ell'(x) + \ell'(y) \ge w(x,y)$ and if $(x, y) \in E_{\ell}$ then $(x, y) \in E_{\ell'}$.
- 2. $x \notin S, y \notin T$: Then $\ell'(x) + \ell'(y) = \ell(x) + \ell(y)$ so, as in the previous case, $\ell'(x) + \ell'(y) \ge$ w(x,y) and if $(x,y) \in E_{\ell}$ then $(x,y) \in E_{\ell'}$.
- 3. $x \notin S, y \in T$: $\ell'(x) + \ell'(y) = \ell(x) + \alpha + \ell(y)$ so $\ell'(x) + \ell'(y) \ge w(x, y)$
- 4. $x \in S, y \notin T$:

First note that, by the definition of the problem $(x, y) \notin E_{\ell}$.

Thus
$$\alpha_{\ell} = \min_{x \in S, y \notin T} \{ \ell(x) + \ell(y) - w(x, y) \} > 0.$$

This implies
$$\ell'(x) + \ell'(y) - w(x,y) = \ell(x) + \ell(y) - \alpha - w(x,y) \ge 0$$
 so $\ell'(x) + \ell'(y) \ge w(x,y)$.

Let
$$x' \notin S, y' \in T$$
 such that $\ell(x') + \ell(y') - w(x, y) = \alpha$. Then (x', y') is in $E_{\ell'}$.

We point out that in the running of the Hungarian algorithm we always have the property that edges in M are either in (S, T) or S, T (this can be proven by induction) so, when we upgrade E_{ℓ} to $E_{\ell'}$ in step 3, our matching M in E_{ℓ} remains a matching of $E_{\ell'}$.