COMP572—Combinatorial Optimization

- Instructor: Mordecai Golin (golin@cs.ust.hk)
- TA: Xia Jian (piper@cs.ust.hk)
- Meeting Times: Tuesday/Thursday 13:30-14:50
- Marking Scheme:
 3/4 Homework Assignments + a programming project
- Textbook:

Combinatorial optimization: algorithms and complexity Christos H. Papadimitriou, Kenneth Steiglitz Englewood Cliffs, N.J.: Prentice Hall, c1982

Reference Book:

Introduction to algorithms (2nd ed)
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein Imprint Cambridge, Mass.: MIT Press; Boston: McGraw-Hill, c2001 and many others

Course Requirements

- Linear Algebra
 Vector spaces, bases, matrices, determinants
- A class in the Design and Analysis of Algorithms (COMP271) Graph Algorithms, Data Structure Analysis, O() Notation, Dynamic programming, NP Completeness, etc..

In particular, for new students:

If you were told that you have to take COMP271 and have not been waived out of the requirement then you should **NOT** take this class.

What is this course?

- How to solve optimization problems exactly as opposed to heuristically, e.g, simulated annealing, genetic algorithms
- Algorithmically Oriented Some of this material is taught in optimization departments from a different perspective.
- The types of problems we will look at arise everywhere,
 e.g., database, networking, chip design, logistics, graphics, etc.
- This is a basic technique course.
 We will specifically NOT look at individual applications.
- This is an introductory PG course.
 It is NOT intended to teach cutting edge research techniques.
 It is designed to teach the old techniques upon which cutting-edge techniques are based.

Tentative Syllabus

- Network Flow (CLRS book)
- Binomial Heaps (CLRS book)
- Linear Programming and related topics (PS book)
 (50% of the class)
- Matchings (PS book)
- Matroids (PS book)
- Dynamic Programming Speedups (possible advanced topic)
- Introduction to Approximation Algorithms (possible advanced topic)

Two Typical Problems

Let G = (V, E) be a weighted graph V are the vertices; E are the edges For $e \in E$, w(E) is the weight of e. The weight of edge-set $E' \subseteq E$ is $w(E') = \sum_{e \in E'} w(e)$.

A tree is an acyclic connected graph containing all V. A Hamiltonian Cycle is a simple cycle containing all V.

- Minimum Spanning Tree:
 - Find minimum-weight tree among all trees in G. Polynomially time solvable ($|\mathbf{E}| \log |\mathbf{V}|$) e.g., Kruskal's Algorithm and Prim's algorithm.
- The Travelling Salesman problem: Find minimum-weight H.C. among all H.C. in G NP-Hard, so polynomial-time solution is unlikely.