
Primal-Dual Approximation Algorithms

We just saw how the primal-dual schema permits some-
times designing efficient combinatorial algorithms for
solving certain problems. We will now see an example
of how a related technique can sometimes be used to
design efficient approximation algorithms

The major tool that we will use will be the
RELAXED Complementary Slackness conditions

The problem we examine will again be
weighted set-cover.
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Recall that given canonical primal

minimize
n

∑

j=1

cjxj

subject to a′ix ≥ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

the dual is

maximize
m
∑

i=1

biπi

subject to πAj ≤ cj, j = 1, . . . , n

πi ≥ 0, i = 1, . . . , m
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Theorem (Complementary Slackness):
Let x and π respectively be primal and dual feasible
solutions. Then x and π are both optimal if and only if
all of the following conditions are satisfied.

Primal Complementary Slackness conditions

∀1 ≤ j ≤ n : either xj = 0 or π′Aj = cj

Dual Complementary Slackness conditions

∀1 ≤ i ≤ m : either πi = 0 or a′ix = bi
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Theorem (RELAXED Complementary Slackness):
Let x and y respectively be primal and dual fea-
sible solutions. Suppose further that for some
α > 1, x and y satisfy all of
Primal Complementary Slackness conditions

∀1 ≤ j ≤ n : either xj = 0 or πAj = cj

RELAXED Dual C.S. conditions

∀1 ≤ i ≤ m : either πi = 0 or a
′
i
x ≤ αbi

Then
n

∑

j=1

cjxj ≤ α ·
m
∑

i=1

biπi

Proof:

n
∑

j=1

cjxj =

n
∑

j=1

(πAj)xj = πAx =

m
∑

i=1

(

a′
ix

)

πi ≤ α

m
∑

i=1

biπi.

Given such an x, π we immediately know that x is
within α of OPT, the minimum cost optimum solution.
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Recall Weighted Set Cover problem where each set
F has a weight Cost(F) = C(F), and the problem
is to find a Set Cover of C of Minimum Weight,
Cost(C) =

∑

F∈C C(F).

For example X = {1,2,3,4,5,6} and F contains
the subsets

F1 = {1,3,5}; C(F1) = 1
F2 = {2,3,6}; C(F2) = 1
F3 = {2,5,6}; C(F1) = 3
F4 = {2,3,4,6}; C(F1) = 5
F5 = {1,4}; C(F5) = 1

For example C = {F1, F4} is a minimal cardinality so-
lution but not a minimum weight one. C = {F1, F2, F5}

is a minimum weight solution.
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We previously saw that weighted-set-cover is NP-Hard
but developed an Hn approximation algorithm where
n = |X| and Hn =

∑n
i=1

1
i
∼ lnn.

This means that, for every input, our algorithm gener-
ated a cover C such that

Cost(C) ≤ Hn · OPT

where OPT is the cost of the real optimal solution.
Duality theory was used in our proof to lower bound
OPT .

Now let the frequency of element e be

freq(e) = {F ∈ F : e ∈ F}.

Let f = maxe∈U freq(e) be the max number of sets
an element can appear in. We will now use a primal-
dual schema based on the relaxed complementary-
slackness conditions to design a f -approximation al-
gorithm for set-cover.
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While an f -approximation algorithm for set-cover might
not appear interesting, consider following application.

Let G = (V, E) be a graph.
A vertex cover of G is a subset V ′ ⊆ V such that
every edge in E has at least one endpoint in V ′. Find-
ing a mimimum-cardinality vertex cover is an interest-
ing and NP-hard problem. A straightforward general-
iztion of the problem is to assign a cost C(v) to every
v ∈ V and set cost(V ′) =

∑

v∈V ′ c(v). Finding a
min-weight vertex cover is also NP-hard.

Now create a weighed set cover problem with uni-
verse X = E and one set corresponding to each
v ∈ V . For e ∈ E write e = (ex, ey) and set

Fv = {e ∈ E : ex = v or ey = v}, C(Fv) = c(v)

Then V ′ is a vertex cover of G iff ∪v∈V ′{Fv} is a
set cover of X. Furthermore, c(V ′) is equal to the
cost of the associated set-cover.

Finally, note that, since edge e appears in exactly two
sets Fv, f = 2.

So, an f -approximation algorithm for set-cover yields
a 2-approximation algorithm for vertex cover.

7



• Our general approach will be to start with some
primal-infeasible and dual-feasible solution and
to iterate.

• During each iteration we will improve the feasi-
bility of the primal and the optimality of the dual
(always keeping the dual solution feasible).

• At the end we will produce both a feasible-primal
and feasible-dual solution that satisfy the relaxed
complimentary slackness conditions.

• The cost of the dual solution will be a lower bound
on the cost of OPT.

• This will then give an α-approximation algorithm
for the primal problem.
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Recall the set-cover LP formulations:
The integer LP will be

Minimize
∑

F∈F C(F)xF

subject to conditions
∀e ∈ U,

∑

e∈F xF ≥ 1

∀F ∈ F xF ∈ {0,1}

The relaxation of the LP is

Minimize
∑

F∈F C(F)xF

subject to conditions
∀e ∈ U,

∑

e∈F xF ≥ 1

∀F ∈ F , xF ≥ 0

The dual of the relaxed LP is then

Maximize
∑

e∈U ye

subject to conditions
∀F ∈ F ,

∑

e∈F ye ≤ C(F)

∀e ∈ U, ye ≥ 0
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Primal:
Minimize

∑

F∈F C(F)xF

subject to conditions
∀e ∈ U,

∑

e∈F xF ≥ 1

∀F ∈ F , xF ≥ 0

Dual:
Maximize

∑

e∈U ye

subject to conditions
∀F ∈ F ,

∑

e∈F ye ≤ C(F)

∀e ∈ U, ye ≥ 0

Our schema will be to start with all of the
xF = 0, ye = 0, and then iteratively change some of
the xF to 1 while also changing the ye (but keeping y

feasible). Setting xF = 1 means that we put F in the
cover.

At the end we will have constructed feasible solutions
for both the primal and dual that satisfy the relaxed
complementary slackness conditions with α = f .

10



Primal C.S:

∀F ∈ F : xF 6= 0 ⇒
∑

e:e∈F

ye = C(F)

Relaxed Dual C.S:

∀e : ye 6= 0 ⇒
∑

F :e∈F

xF ≤ f · 1 = f

We will say that F is tight if
∑

e:e∈F ye = C(F).

Our rule will be that we
Pick only tight sets for the cover

Note that, by definition, every x is covered at most f

times.

Primal-Dual Set-Cover
1. Set ∀F, xF = 0, ∀e, ye = 0.

2. Until all elements are covered do
Pick an uncovered element e, and increase ye

until some set becomes tight.
Add all newly tight sets to the cover.

by setting xF = 1 for those sets.
3. Output the cover
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In the algorithm an element e is covered at a given
step if, at that time, there is an F in the current cover
s.t. e ∈ F.

Theorem: The algorithm generates a feasible pair x, y

that satisfies the relaxed complementary slackness
conditions. The algorithm is therefore a f -approximation
algorithm.

Proof Sketch: Algorithm starts with feasible y and x

that satisfies the primal complementary slackness con-
ditions with α = f. At every step, changing ye keeps
y feasible and setting the new xF = 1 keeps the pri-
mal c.s. conditions satisfied. At the end, every e is
covered so the primal setting has become a feasible
solution.
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