
Primal-Dual Algorithm Examples

We just saw the general primal-dual algorithm schema.

We will now see how to apply it to the

Shortest Path Problem
and the

Max Flow Problem

1

The Shortest Path Problem

Given G = (V, E), let A be its (|V | − 1)× |E| node-
arc incidence matrix (with the row for t erased since it
is redundant). Primal for shortest path problem is

min c′f

Af =











+1
0
...
0











←− Row s

f ≥ 0

Dual is

maxπs

πi − πj ≤ cij ∀(i, j) ∈ E
πi ≷ 0 ∀i
πt = 0

Note that πt = 0 must be added in for consistency; in
this case πt is a constant and not a variable.

2

Dual

maxπs

πi − πj ≤ cij (i, j) ∈ E
πi ≷ 0
πt = 0

J = {(i, j) ∈ E : πi−πj = cij}

D ⇒ RP
Restricted primal (RP)

min ξ =
∑m−1

i=1 xa
i

Af + xa =











+1
0
...
0











fj ≥ 0 for all j
fj = 0 j /∈ J
xa

i ≥ 0

3

Restricted primal (RP)

min ξ =
∑m−1

i=1 xa
i

Af + xa =











+1
0
...
0











fj ≥ 0 for all j
fj = 0 j /∈ J
xa

i ≥ 0

RP ⇒ DRP
DRP

maxw = πs

πi − πj ≤ 0 ∀(i, j) ∈ J

πi ≤ 1

πi ≷ 0

πt = 0

4

Have seen P ⇒ D ⇒ RP ⇒ DRP

Note differences between D and DRP

Dual

maxπs

πi − πj ≤ cij (i, j) ∈ E
πi ≷ 0
πt = 0

J = {(i, j) ∈ E : πi−πj = cij}

DRP

maxw = πs

πi − πj ≤ 0 (i, j) ∈ J

πi ≤ 1

πi ≷ 0

πt = 0

5

DRP

maxw = πs

πi − πj ≤ 0 (i, j) ∈ J

πi ≤ 1

πi ≷ 0

πt = 0

The generic Primal-Dual algorithm solves RP using
simplex and then uses the optimal solution of RP to
derive optimal solution π̄ of DRP. In this case it turns
out to be easy to derive optimal solution to DRP di-
rectly.

First note that if there is a path from s to t using only
edges in J then optimal cost of RP is ξ = 0 (why?)
and we have reached optimality in the original primal
and dual.

We may therefore assume that there is no path from
s to t using only edges in J .

6

DRP

maxw = πs

πi − πj ≤ 0 (i, j) ∈ J

πi ≤ 1

πi ≷ 0

πt = 0

We assume that there is no
path from s to t using only
edges in J . Note that πs ≤ 1.
So, if we can find a feasible so-
lution of DRP with πs = 1 we
have optimality in DRP. Here is
such a solution:

π̄i =











1 If i is reachable from s using arcs in J
0 If t is reachable from i using arcs in J
1 Otherwise

We then set

θ1 = min
arcs(i,j)/∈J

s.t. π̄i−π̄j>0

{cij − (πi − πj)}

π = π + θ1π̄

update J and continue with our new DRP.

Note that we have replaced solving the original
Primal, Shortest Path problem,
with the repeated application of the simpler
DRP, Finding reachable nodes problem.

7

Our algorithm only terminates if there is a path from
s to t in J which we saw implied optimality (shortest
path). So, to prove optimality, suffices to prove that
algorithm terminates.

Technically, the proof for finiteness of generic Primal-
Dual algorithm doesn’t work for this case since it
assumed that we used simplex to solve RP to give
optimal solution to DRP. Since we solved DRP directly
without solving RP, that proof doesn’t apply here.

Finiteness, and therefore optimality, will follow, though,
from two simple observations about DRP.

Lemma: Once edge (i, j) becomes admissible
(enters J) it never leaves J at any later stage.

Lemma: At every iteration of DRP, at least one new
(i, j), the one that defines θ1, becomes admissible.

8

As an example we will see how to find the shortest
s− t path in

1 3

2 4

3

3

2

2

5

1

1

2

s t

e

e
e

e

e

e

e

1

2

4

3 6

5

8

e7

9

0

0 0

0 0

J = φ

D: π

1 1

1 1

1

π=(0, 0, 0, 0, 0) DRP:
Iteration 1

=(1, 1, 1, 1, 1)

θ1=2 for
arc 7e

θ1

J =

D: π

1

1 1

1

πDRP:
Iteration 2

2 2

22

2

=(2, 2, 2, 2, 2)

{7}

0

=(1, 1, 1, 0, 1)

=2 for
arc e6

θ1

J =

D: π

1

1

1

πDRP:

2 0

e

4

4 4

4

0

=1 for
e4 5

=(1, 1, 1, 0, 0)

arcs

Iteration 3
=(4, 4, 4, 2, 4)

{7, 6}

θ1

J =

D: π

1

πDRP:

2 0

4 0

=1 for
e

5

5

5

Iteration 4

{7, 6, 5, 4}

0

0

2

=(1, 0, 0, 0, 0)

arc

=(5, 5, 5, 2, 4)

J =

D: π πDRP:

2 0

4 0

5

5 0

0

Iteration 5

{7, 6, 5, 4, 2}
6 0

=(6, 5, 5, 2, 4) =(0, 0, 0, 0, 0)

10

We will now see that the Primal-dual algorithm is, es-
sentially, a disguised version of Dijkstra’s shortest path
algorithm. For simplicity, assume that all edge costs
are ≥ 0 so we can start with feasible dual π = 0.
An iteration will be one step of solving DRP and up-
dating D.

Let W = {j : t is reachable from j using edges in J}.
When we first start, J = ∅ so W = {t}.

Lemma: Once a node enters W it never leaves W .
Each iteration adds at least one new node to W .

Lemma: The algorithm terminates in < V iterations.

Lemma: Once j enters W , πj never changes.
At any time, all i 6∈W share same value πi.

11

W = {j : t is reachable from j using edges in J}.

Lemma:
When (i′, j′) becomes admissible it satisfies

ci′,j′+ πj′ = min
i 6∈W, j∈W

{ci,j + πj}.

Proof: Let α = πi for all i 6∈ W at start of current
iteration.Then

θ1 = min
arcs(i,j)/∈J

s.t. π̄i−π̄j>0

{cij − (πi − πj)}

= −α + min
i 6∈W, j∈W

{cij + πj}

Lemma:
When (i, j) becomes admissible, i enters W with
πi = ci,j + πj

Proof: π∗ = π + θ1π̄

Then π∗i = πi + (cij − (πi − πj))1 = cij + πj

12

W = {j : t is reachable from j using edges in J}.
We start with J = ∅ and W = {t}.

Each iteration of the algorithm finds
Edge (i, j) that achieves mini 6∈W, j∈W{ci,j + πj}

and then
i) adds the new edge(s) to J

ii) adds i to W with cost πi = ci,j + πj.

But this is exactly the same as running
Dijkstra’s shortest path algorithm
backwards from t.

13

Note what happened.

We started with the primal-dual algorithm
(P ⇒) D ⇒ RP ⇒ DRP .

We then got rid of the explicit linear programming ma-
chinery by interpreting DRP as a combinatorial prob-
lem that could be solved using a combinatorial algo-
rithm, rather than using a linear programming subrou-
tine.

Notice also that even though the generic Simplex Al-
gorithm and Primal-Dual algorithm are not polyno-
mial, the algorithm we ended up with is polynomial!

The above are very typical attributes when using the
primal dual algorithm to design combinatorial algo-
rithms.

14

Max Flow

We will first write Max-Flow in Dual form. We have
already seen that Max-Flow can be written using the
node-arc incidence matrix as

max v

Af + dv = 0

f ≤ b

f ≥ 0

Note that Af + dv ≤ 0 implies a flow deficit at some
node. But this implies a flow surplus at some other
node. So Af +dv ≤ 0 actually implies Af +dv = 0.
Thus, problem above can be rewritten as

max v

Af + dv ≤ 0

f ≤ b

f ≥ 0

which is in form of the Dual of a standard form LP.
15

Dual (D)

max v

Af + dv ≤ 0

f ≤ b

f ≥ 0

DRP

max v

Af + dv ≤ 0 for all rows
f ≤ 0 for rows where f = b in D

−f ≤ 0 for rows where f = 0 in D

f ≤ 1

v ≤ 1

Working through the technical steps we go from D to
DRP . DRP can be interpreted as saying:
Find a path π̄ from s to t that uses

• Saturated Arcs: only in backward direction

• Unused Arcs: Only in forward direction

• Other Arcs: Any direction.

Path π will be indicated by π̄i,j = 1 if (i, j) in the
path, and 0, otherwise.

16

π is exactly an augmenting path in a residual network
of original flow π.

One we find such a path we add as much as much
flow as possible along the residual path by setting

π = π + θ1π̄

where we can work out that θ1 is the bottleneck value
along path π̄.

This is exactly the Ford-Fulkerson augmenting path
algorithm for Max-Flow.

17

