Randomized Rounding and Set Cover

Based on Vazirani: Chapter 14
Last Revision: Nov 25, 2006
Recall the problem. Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ be a set and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be a family of subsets of X such that $X=\cup_{i} F_{i}$.
The Set Cover problem is to find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$ that covers X, i.e., $X=\cup_{F \in \mathcal{C}} F$. In what follows $O P T$ is the size of a minumum set cover.

In this lecture we will see how to use Randomized Rounding to find a "random" subset $\mathcal{C} \in \mathcal{F}$ that has the following properties.

- $\operatorname{Pr}(\mid \mathcal{C}] \geq 4 \ln n \cdot O P T) \leq \frac{1}{2}+o(1)$
- $\operatorname{Pr}(\mathcal{C}$ is not a set cover $) \leq \frac{1}{n}$.

Combining the two gives that
$\operatorname{Pr}([\mid \mathcal{C}] \leq 4 \ln n \cdot O P T]$ and $[\mathcal{C}$ is a set cover $]) \geq \frac{1}{2}+o(1)$.
This implies that by repeating this construction many times and choosing the smallest cover \mathcal{C} constructed, we have probability arbitrarily close to one of not having constructed a $4 \ln n$ approximate cover.

We start by constructing the integer linear program
Minimize $\sum_{i} x_{i}$
subject to conditions

$$
\begin{aligned}
& \forall j, \Sigma_{u_{j} \in F_{i}} x_{i} \geq 1 \\
& \forall i, x_{i} \in\{0,1\}
\end{aligned}
$$

Given a feasible solution x to the linear program define

$$
\mathcal{C}(x)=\left\{F_{i}: x_{i}=1\right\}
$$

The condition $\forall j, \Sigma_{u_{j} \in F_{i}} x_{i} \geq 1$ means that \mathcal{C} is a cover, so every x corresponds to a cover.

Working backwards, given cover \mathcal{C}, we can define $\left.x_{i}(\mathcal{C})\right)=$ 1 if $F_{i} \in \mathcal{C}$ and 0 otherwise. $x(\mathcal{C})$ is a feasible solution. This gives us a one-one correspondence between feasible solutions and set covers.

Since $|\mathcal{C}|=\sum_{i} x_{i}$, minimizing the objective function is equivalent to solving minimal set cover.

The original integer LP was
Minimize $\sum_{i} x_{i}$
subject to conditions
$\forall j, \Sigma_{u_{j} \in F_{i}} x_{i} \geq 1$
$\forall i, x_{i} \in\{0,1\}$

We now relax the problem to a standard LP to find

Minimize $\sum_{i} x_{i}$
subject to conditions
$\forall j, \sum_{u_{j} \in F_{i}} x_{i} \geq 1$
$\forall i, 0 \leq x_{i} \leq 1$
(We can replace the last constraints by $\forall i, 0 \leq x_{i}$; why?)

Randomized Rounding for Set Cover
Solve the Relaxed Linear Program
Calculate (x^{*})
Set $\mathcal{C}=\emptyset$.
for $i=1$ to n do
Flip a x_{i}^{*}-biased coin If Heads put F_{i} into \mathcal{C}.

Note that

$$
E(|\mathcal{C}|)=\sum_{i} x_{i}^{*} \leq O P T
$$

Our major problem is that nothing says that \mathcal{C} must be a set cover.

Lemma: Let $u_{j} \in U$ and \mathcal{C} as constructed by the randomized rounding algorithm. Then

$$
\operatorname{Pr}\left(\mathcal{C} \text { does not cover } u_{j}\right) \leq \frac{1}{e}
$$

Proof: Suppose that u_{j} is contained in k sets of \mathcal{F}. W.L.O.G. we may assume that these are $F_{1}, F_{2}, \ldots, F_{k}$. From the linear program we have that

$$
\sum_{i=1}^{k} x_{i}^{*} \geq 1
$$

and each $x_{i} \leq 1$. Now

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{C} \text { does not cover } u_{j}\right) & =\operatorname{Pr}\left(\text { None of } F_{1}, F_{2}, \ldots, F_{k} \text { are in } \mathcal{C}\right) \\
& =\prod_{i=1}^{k}\left(1-x_{i}^{*}\right) \\
& \leq\left(\frac{k-\sum_{i=1}^{k} x_{i}^{*}}{k}\right)^{k} \\
& \leq\left(1-\frac{1}{k}\right)^{k} \leq \frac{1}{e} .
\end{aligned}
$$

Now Run the Randomized Rounding algorithm
$K=\lceil 2 \ln n\rceil$ times, constructing n collections $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{K}$ and then setting

$$
\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \ldots \cup \mathcal{C}_{K} .
$$

Note that $E(|\mathcal{C}|)=\sum_{i=1}^{K} E\left(\left|\mathcal{C}_{i}\right|\right) \leq\lceil 2 \ln n\rceil O P T$.
Recall Markov's inequality that, for any random variable X and $\alpha>0$,

$$
\operatorname{Pr}(|X| \geq \alpha) \leq \frac{E|X|}{\alpha}
$$

Setting $X=|\mathcal{C}|$ and $\alpha=4 \ln n O P T$ gives

$$
\operatorname{Pr}(|\mathcal{C}| \geq 4 \ln n O P T) \leq \frac{\lceil 2 \ln n\rceil O P T}{4 \ln n O P T}=\frac{1}{2}+o(1) .
$$

Now, for any given j

$$
\operatorname{Pr}\left(\mathcal{C} \text { does not cover } u_{j}\right) \leq\left(\frac{1}{e}\right)^{K} \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}} .
$$

The only way that \mathcal{C} can not be a cover is if one of the u_{j} is not covered by \mathcal{C} so
$\operatorname{Pr}(\mathcal{C}$ is not a set cover $) \leq \sum_{j} \operatorname{Pr}\left(\mathcal{C}\right.$ does not cover $\left.u_{j}\right) \leq n \frac{1}{n^{2}}=\frac{1}{n}$.

