Introduction to Randomized Algorithms

Motwani and Raghavan Randomized Algorithms p. 103
Williamson, Lecture Notes on Approximation Algorithms 1998
IBM Research Report RC21409, pp 46-47
Can be found at http://legacy.orie.cornell.edu/dpw/publications.html

Quick Review of Probability Theory

A random variable is a real number that is the outcome of a random event. For example, X can be the number of spots showing after throwing a die.
The expectation of X is

$$
E[X]=\sum_{i} i \cdot \operatorname{Pr}(X=i)=\int \alpha f_{X}(\alpha) d \alpha ;
$$

The first equation is used if X is discrete (the sum is over all possible values of X); the second if X is continuous ($f_{X}(\alpha)$ is the density function of X).

Some basic facts.

- If X and Y are any two random variables then

$$
E[X+Y]=E[X]+E[Y] .
$$

- If c is any number then $E[c X]=c E[X]$.
- If X and Y are independent then

$$
E[X Y]=E[X] \cdot E[Y] .
$$

Example 1: Throw two dice. Let X and Y be the respective number of spots showing on each of them.

$$
E[X]=E[Y]=\sum_{i=1}^{6} i \operatorname{Pr}(X=i)=\sum_{i=1}^{6} \frac{i}{6}=\frac{7}{2}
$$

Therefore the expected sum of the two dice's spots is

$$
E[X+Y]=E[X]+E[Y]=\frac{7}{2}+\frac{7}{2}=7
$$

Since X and Y are independent

$$
E[X Y]=E[X] \cdot E[Y]=\frac{7}{2} \cdot \frac{7}{2}=\frac{49}{4}
$$

Example 2: Now define

$$
A=\left\{\begin{array}{l}
1 \\
X
\end{array} \text { is even } \quad B= \begin{cases}0 & X \text { is even } \\
1 & X \text { is odd odd }\end{cases}\right.
$$

Calculation shows that $E[A]=E[B]=\frac{1}{2}$, $A+B=1$ and $A B=0$.

Notice

$$
E[A+B]=1=\frac{1}{2}+\frac{1}{2}=E[A]+E[B]
$$

but

$$
E[A B]=0 \neq \frac{1}{4}=\frac{1}{2} \cdot \frac{1}{2}=E[A] \cdot E[B] .
$$

This is because A and B are not independent.

Indicator Random Variables

Let W be some of event. The indicator random variable of W is the function

$$
I_{W}= \begin{cases}1 & \text { if } W \text { happens } \\ 0 & \text { if } W \text { does not happen }\end{cases}
$$

For example. Suppose we throw a die and let X be the number of spots that show. W could be the event " X is even". Then

$$
I_{W}= \begin{cases}1 & X \text { is even } \\ 0 & X \text { is odd }\end{cases}
$$

and I_{W} is the random variable A defined on the previous page. The important fact about indicator random variables is

$$
E\left[I_{W}\right]=\operatorname{Pr}(W \text { happens }) .
$$

Example: Suppose n people all having the same style coat go to the same party. When they leave the party they take the first coat they see that looks like their coat. What is the expected number of people that get their own coat back?

Let W_{i} be the event that person i gets their own coat back. Since every person is equally likely to get person i 's coat $\operatorname{Pr}\left(W_{i}\right)=\frac{1}{n}$.
Now let

$$
X=\text { No. of people who get their own coat }=\sum_{i=1}^{n} I_{W_{i}} \text {. }
$$

Then

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} I_{W_{i}}\right] \\
& =\sum_{i=1}^{n} E\left[I_{W_{i}}\right] \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(W_{i}\right)=\sum_{i=1}^{n} \frac{1}{n}=1 .
\end{aligned}
$$

So the expected number of people who get their own coat back is 1 .

Example:
Let $G=(V, E)$ be a graph with $V=\{1, \ldots, n\}$. Now pick a subset $S \subseteq V$ at random using the following procedure.

$$
S=\emptyset
$$

For $i=1$ to n do
Flip a fair coin. If "heads", set $S=S \cup\{i\}$.

What is the expected number of edges in the cut $\delta(S)=(S, V-S)=\{(u, v): u \in S, v \in V-S\}$?

Define

$$
I_{i, j}= \begin{cases}1 & \text { if } i \in S \text { and } j \notin S \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
X=\sum_{1 \leq i, j \leq n, i \neq j} I_{i, j}=\delta(S) .
$$

Note that

$$
E\left[I_{i, j}\right]=\operatorname{Pr}(i \in S \text { and } j \notin S)=\frac{1}{4}
$$

so

$$
E[\delta(S)]=\sum_{1 \leq i, j \leq n, i \neq j} E\left[I_{i, j}\right]=\sum_{1 \leq i, j \leq n, i \neq j} \frac{1}{4}=\frac{n(n-1)}{4} .
$$

A Randomized Approximation Algorithm for Max Cut

Recall the max-cut problem. We are given a weighted graph $G=(V, E)$ and want to find a cut $S \subseteq V$ with maximum value $\delta(S)$. The value of a cut was defined to be

$$
\delta(S)=\sum_{(u, v): u \in S, v \in V-S} w(u, v)
$$

The value of an optimal cut is defined to be $O P T$.
Choose a random cut as defined previously:

$$
S=\emptyset
$$

For $i=1$ to n do
Flip a fair coin. If "heads", set $S=S \cup\{i\}$.
Lemma: $E[\delta(S)] \geq \frac{O P T}{2}$.
Proof: Let $I_{i, j}$ be defined on the previous page. Then

$$
\delta(S)=\sum_{1 \leq i, j \leq n, i \neq j} w(i, j) I_{i, j}
$$

Therefore

$$
\begin{aligned}
E[\delta(S)] & =E\left[\sum_{1 \leq i, j \leq n, i \neq j} w(i, j) I_{i, j}\right] \\
& =\sum_{1 \leq i, j \leq n, i \neq j} w(i, j) E\left[I_{i, j}\right] \\
& =\frac{1}{4} \sum_{1 \leq i, j \leq n, i \neq j} w(i, j) \\
& =\frac{1}{2} \sum_{1 \leq i<j \leq n} w(i, j) \geq \frac{1}{2} O P T .
\end{aligned}
$$

The MAX SAT problem

Let $x_{1}, x_{2}, \ldots, x_{n}$ be BOOLEAN variables. These variables are set to be either TRUE (T) or FALSE (F). A variable x_{i} is T if and only if its negation \bar{x}_{i} is F and vice-versa.

A clause is the conjunction of random variables and their negations, e.g., $x_{1} \vee \bar{x}_{3} \vee x_{4}$.
Given a truth assignment for the $x_{1}, x_{2}, \ldots, x_{n}$ a clause is satisfied if at least one of its elements is T. For example, $x_{1} \vee \bar{x}_{3} \vee x_{4}$ is satisfied if $x_{1}=T, x_{3}=F$ or $x_{4}=T$.

Given n boolean variables, m clauses $C_{i}, i=1, \ldots, m$ over those variables and a weight $w_{i} \geq 0$ for each clause the MAX SAT problem is to find a truth assignment for the variables that maximizes the total weight of the clauses satisfied. This problem is NP hard.

Random MAX SAT

For $i=1$ to n do
Flip a fair coin.
If "heads", set $x_{i}=T$.
else set $x_{i}=F$.

Lemma: Let $O P T$ be the weight of the optimal assignment and W the weight of the random assignment. Then

$$
E[W] \geq \frac{O P T}{2}
$$

Proof: Set

$$
I_{j}= \begin{cases}1 & \text { if } C_{j} \text { is satisfied } \\ 0 & \text { otherwise }\end{cases}
$$

Let l_{j} be the number of variables in C_{j}. Then

$$
\begin{aligned}
E[W] & =E\left[\sum_{j} w_{j} I_{j}\right] \\
& =\sum_{j} w_{j} E\left[I_{j}\right] \\
& =\sum_{j} \operatorname{Pr}\left(C_{j} \text { is satisfied }\right) \\
& =\sum_{j} w_{j}\left(1-2^{-l_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j} w_{j} \\
& \geq \frac{1}{2} O P T
\end{aligned}
$$

An Aside

MAX E3SAT is the version of MAX SAT in which every clause C_{j} has exactly three variables in it, i.e. $\forall j, l_{j}=3$.

A theorem due to Hastad says that if there is an approximation algorithm that always returns a solution to the Max E3SAT that is $>\frac{7}{8} O P T$ then $P=N P$.
Note that the simple algorithm on the previous page actually returns an assignment whose expectation is $\geq \frac{7}{8} O P T$ when $\forall j, l_{j}=3$. Thus, in some sense, it is a best possible approximation algorithm for MAX E3SAT.

