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Quick Review of Probability Theory

A random variable is a real number that is the outcome

of a random event. For example, X can be the number

of spots showing after throwing a die.

The expectation of X is

E[X ] =
∑

i
i · Pr(X = i) =

∫

αfX(α)dα;

The first equation is used if X is discrete (the sum is over

all possible values of X); the second if X is continuous

(fX(α) is the density function of X).

Some basic facts.

• If X and Y are any two random variables then

E[X + Y ] = E[X ] + E[Y ].

• If c is any number then E[cX ] = cE[X ].

• If X and Y are independent then

E[XY ] = E[X ] · E[Y ].

2



Example 1: Throw two dice. Let X and Y be the respec-

tive number of spots showing on each of them.

E[X ] = E[Y ] =
6

∑

i=1
iPr(X = i) =

6
∑

i=1

i

6
=

7

2
.

Therefore the expected sum of the two dice’s spots is

E[X + Y ] = E[X ] + E[Y ] =
7

2
+

7

2
= 7.

Since X and Y are independent

E[XY ] = E[X ] · E[Y ] =
7

2
·
7

2
=

49
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Example 2: Now define

A =











1 X is even

0 X is odd
, B =











0 X is even

1 X is odd

Calculation shows that E[A] = E[B] = 1
2,

A + B = 1 and AB = 0.

Notice

E[A + B] = 1 =
1

2
+

1

2
= E[A] + E[B]

but

E[AB] = 0 6=
1

4
=

1

2
·
1

2
= E[A] · E[B].

This is because A and B are not independent.
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Indicator Random Variables

Let W be some of event. The indicator random variable

of W is the function

IW =











1 if W happens

0 if W does not happen

For example. Suppose we throw a die and let X be the

number of spots that show. W could be the event “X is

even”. Then

IW =











1 X is even

0 X is odd

and IW is the random variable A defined on the previ-

ous page. The important fact about indicator random

variables is

E[IW ] = Pr(W happens).
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Example: Suppose n people all having the same style

coat go to the same party. When they leave the party

they take the first coat they see that looks like their coat.

What is the expected number of people that get their

own coat back?

Let Wi be the event that person i gets their own coat

back. Since every person is equally likely to get person

i’s coat Pr(Wi) = 1
n
.

Now let

X = No. of people who get their own coat =
n

∑

i=1
IWi

.

Then

E[X ] = E





n
∑

i=1
IWi





=
n

∑

i=1
E [IWi

]

=
n

∑

i=1
Pr(Wi) =

n
∑

i=1

1

n
= 1.

So the expected number of people who get their own coat

back is 1.
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Example:

Let G = (V, E) be a graph with V = {1, . . . , n}. Now

pick a subset S ⊆ V at random using the following

procedure.

S = ∅.
For i = 1 to n do

Flip a fair coin. If “heads”, set S = S∪{i}.

What is the expected number of edges in the cut

δ(S) = (S, V − S) = {(u, v) : u ∈ S, v ∈ V − S}?

Define

Ii,j =











1 if i ∈ S and j 6∈ S

0 otherwise
.

Then

X =
∑

1≤i,j≤n, i 6=j
Ii,j = δ(S).

Note that

E [Ii,j] = Pr(i ∈ S and j 6∈ S) =
1

4
so

E[δ(S)] =
∑

1≤i,j≤n, i 6=j
E [Ii,j] =

∑

1≤i,j≤n, i 6=j

1

4
=

n(n − 1)

4
.
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A Randomized Approximation Algorithm

for Max Cut

Recall the max-cut problem. We are given a weighted

graph G = (V, E) and want to find a cut S ⊆ V with

maximum value δ(S). The value of a cut was defined to

be

δ(S) =
∑

(u,v) : u∈S,v∈V −S

w(u, v).

The value of an optimal cut is defined to be OPT.

Choose a random cut as defined previously:
S = ∅.
For i = 1 to n do

Flip a fair coin. If “heads”, set S = S∪{i}.

Lemma: E[δ(S)] ≥ OPT
2 .

Proof: Let Ii,j be defined on the previous page. Then

δ(S) =
∑

1≤i,j≤n, i 6=j
w(i, j)Ii,j.

Therefore

E[δ(S)] = E







∑

1≤i,j≤n, i 6=j
w(i, j)Ii,j







=
∑

1≤i,j≤n, i 6=j
w(i, j)E [Ii,j]

=
1

4

∑

1≤i,j≤n, i 6=j
w(i, j)

=
1

2

∑

1≤i<j≤n
w(i, j) ≥

1

2
OPT.
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The MAX SAT problem

Let x1, x2, . . . , xn be BOOLEAN variables. These vari-

ables are set to be either TRUE (T) or FALSE (F). A

variable xi is T if and only if its negation x̄i is F and

vice-versa.

A clause is the conjunction of random variables and their

negations, e.g., x1 ∨ x̄3 ∨ x4.

Given a truth assignment for the x1, x2, . . . , xn a clause

is satisfied if at least one of its elements is T. For example,

x1 ∨ x̄3 ∨ x4 is satisfied if x1 = T, x3 = F or x4 = T.

Given n boolean variables, m clauses Ci, i = 1, . . . , m

over those variables and a weight wi ≥ 0 for each clause

the MAX SAT problem is to find a truth assignment

for the variables that maximizes the total weight of the

clauses satisfied. This problem is NP hard.
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Random MAX SAT

For i = 1 to n do

Flip a fair coin.

If “heads”, set xi = T.

else set xi = F.

Lemma: Let OPT be the weight of the optimal assign-

ment and W the weight of the random assignment. Then

E[W ] ≥
OPT

2
.

Proof: Set

Ij =











1 if Cj is satisfied

0 otherwise
.

Let lj be the number of variables in Cj. Then

E[W ] = E







∑

j
wjIj







=
∑

j
wjE[Ij]

=
∑

j
Pr(Cj is satisfied)

=
∑

j
wj

(

1 − 2−lj
)

≥
1

2

∑

j
wj

≥
1

2
OPT
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An Aside

MAX E3SAT is the version of MAX SAT in which every

clause Cj has exactly three variables in it, i.e. ∀j, lj = 3.

A theorem due to Hastad says that if there is an approx-

imation algorithm that always returns a solution to the

Max E3SAT that is > 7
8OPT then P = NP.

Note that the simple algorithm on the previous page actu-

ally returns an assignment whose expectation is ≥ 7
8OPT

when ∀j, lj = 3. Thus, in some sense, it is a best possible

approximation algorithm for MAX E3SAT.
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