Introduction to Randomized Algorithms II

e Conditional Probability and Derandomization
e p-Biased Coins

e Linear Programming and Randomized Rounding

Reference: Williamson, Lecture Notes on Approximation Algorithms 1999
IBM Research Report RC21409, Chapter 5

Can be found at http://legacy.orie.cornell.edu/ dpw/publications.html



Review of Conditional Probabilities and Ex-
pectation

The Probability of X conditioned on A is

Pr(XNA)

Pr(X|A) = PrA)

Example: Roll two die and let X and Y be the respective
number of dots they show. Then

Pr(X+Y =9and Y € {2,4,6})

Pr(X+Y =9]|Y iseven) = Pr(Y € {2.4.6})

Pr((X,Y) €{(54),(3,6)})
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Some basic formulas are
E(X|A) :Zi:i-Pr(X:HA)
and
E(X)=E(X|A)-Pr(A)+ E(X|A)- Pr(A)

where A is the event “A does not happen” which has

Pr(A)=1— Pr(A).

Example: For the dice example above
E(X+Y|Yiseven)=>1i-Pr(X+Y =i|Y is even)
and

E(X+Y) = E(X+Y|Y even) - Pr(Y even)
+E(X +Y |Y odd) - Pr(Y odd).



Another Example: C' =z V 29 V T3 and S a “random”
truth assignment for the x; as described before.

Pr(C satisfied | x1 = F)

But

Pr(C satisfied |1 = T)

Pr(xzy V x9 V Ty satisfied and 1 = F)

Pr(x;=F)
Pr(xzy V Z3 satisfied and x1 = F)
Pr(zy = F)
Pr(xzo V T3 satisfied) - Pr(z; = F)
Pr(zy = F)

Pr(zy V T3 satisfied)

-(3)

1

Pr(xiV xy V 23 satisfied and 1 = T)
Pr(z,=1T)




Now let I be an instance of Max Sat, S a “‘random as-
signment” and W the weight of this random assignment.
Recall that

E(W) = > w;Pr(Cj satisfied by S).
J

The notation E(W | z1, xs, . . . ) will mean the expected

value of W conditioned on the truth assignment of x1, 2o, . .

being given. By linearity of expectation we have

EW |z, 29, ...2r) = > w,;Pr(C; satisfied by S| 1, za, . .
J

where the probabilities are conditioned on the truth as-
signment of x1, xo, ... being given.

Notice that this value can always be calculated in time
polynomial in the size of the instance!
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Derandomization of the MAX-SAT algorithm

We will now see how to “derandomize” the MAX-SAT
algorithm from the last lecture. This will give us a de-
terministic method for constructing a truth assignment

S such that the weight associated with S satisfies W >
OPT
5

The important fact to notice is that, for all 0 < £ < n

1
E(W ’ L1,T9, .. .ZCk_l) = 2E<W ’ L1, L2y...Tk—-1, T = T)

1
—|—2E(W | T1,L9,...T—1, T = F)

DeRandomized MAX-SAT
Fort=1ton do
Calculate W = E(W |xy, 29, . .. 21,2 = T)
Calculate Wp = E(W |z, z9, ... x)_1, 2 = F)
it W > Whr
set xp =T
else set . = F

Return variable setting S.

Notice that after setting x; we must have (why?)
E(W ‘ T1,T9, ... LEk_1> S E(W ‘ T1,T9, ... Qik)
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This implies that

OPT
o <EW)< EW|z,29,...2,)

so the truth assignment given by this deterministic algo-
rithm is also a % approximation of OPT.



MAX-SAT and p-Biased coins

A p-biased coin is one that, for 0 < p <1, has
Pr(Heads) = p, Pr(Tails) =1 — p.

p-biased random MAX SAT
For i =1 ton do
Flip a p-biased coin.
If “heads”, set x; =1T.
else set x; = F.

Return variable setting S.

Lemma: If p > % and C'is a clause that is not of the form
“single variable negated” (z;) then

Pr(C is satisfied by S) > min(p,1 — p*).

Proof: Let [ be the number of variables in C.
If ] =1 then C' = z; for some 7 and

Pr(C is satisfied by S) = Pr(x; =T) = p.

If [ > 1 let n be the number of variables that appear
negated in C. Then [ — n is the number that do not
appear negated and

Pr(C is satisfied by S) = 1—p"(1—p)™" > 1—p! > 1—p*.



Let gb ~ (.618 be the solution in [0,1] to p =
1—p°.

Lemma: Given an instance of MAX-SAT in which every
length 1 clause is not negated let OPT be the optimal

solution and W the solution returned by ¢-biased random
MAX SAT. Then

E[W]> ¢ - OPT.

Proof: Set

7 1 if C} is satisfied by S
/ O otherwise

Then
EW] - B[S u)
= ZwiE 1]
_ iwjpr(cj is satisfied by )
> é:wj min(¢, 1 — ¢%)
= é%:wy
> ¢.0PT.



The result on the previous page can be improved to work
for all instances of MAX-SAT, even those that contain
length one clauses that are negated variables.

Let I be our instance of MAX-SAT. First suppose that
variable x; appears in some length one negated clause,
C; = z;, but does not appear in any length one non-
negated clause as Cy = z;. We then introduce a new
variable u; and replace every ; in I by wu; and every
instance of x; in I by u;. We can then solve this new in-
stance of MAX-SAT without worrying about the negated
length one clause C (solutions to the original problem
are in one-to-one correspondence to solutions to the new
problem).
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The only hard case to deal with is when x; appears both
as negated clause Cy = r; and non-negated clause C; =
Z;.

We may assume that w; > w; (why?).

For all 7, if x; exists as its own clause let v; = wt of z;.
Otherwise v; = 0.

Since a truth assignment can only satisfy one of x; and
x; we have

OPT < ij — ZUZ
j i

But then

> w;Pr(Cj is satisfied by .S)
J

> w;Pr(C] is satisfied by S)
j,\V/Z,CJ%:fZ

> Qw;

3,Vi, Cj#L;

¢‘(ij—z.vz‘)
J 1
> ¢-OPT.

1V

1V

This gives a 0.618 approximation which is much better
than the % approximation we started with originally.
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MAX-SAT and Randomized Rounding

We start by seeing how to restate the MAX-SAT problem.
For every clause C let 1 ]* be the set of indices of variables
that are not negated in C; and I the set of indices of
variables that are negated. For example, when C; =
r1VIaVasVa,Vrs then ];_ = {1, 3, 4} and [j_ = {2, 5}
Now construct the problem:

Maximize ¥ w;z;

subject to conditions

V7, Zie[;‘ Yi + Zie[j_(l —Yi) > %
Vj, Zj c {0, 1}

Vi, y; € {O, 1}

The idea now is to construct a correspondence between
truth assignment S and the values of y; by setting
y; = lifand only if x; =T and y; = 0 ift x; = F.

Note that with this assignment S satisfies C; if and only
if ¥, r+Yit T [j—(l — 1;) > 1. For this fixed assignment
the objective function ¥; w;z; is maximized if we set z; =
1 for every C; that is satisfied (the unsatisfied C; have
z; = 0).

This implies that the objective function ¥; w;z; is max-
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imized when the y; are assigned values corresponding to
a MAX-SAT assignment.
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Maximize ¥, w;z;

subject to conditions

V7, Zie[;‘ Yi + Zz’elj_(l —Yi) > %
Vj, Zj c {0, 1}

V1, Y; € {O, 1}

How does rewriting the problem help???

The problem as we wrote it is an integer ltnear program
and solving integer linear programs is NP-Hard.

But, if we relax the problem and no longer require the
y; and z; to be integers we get a regular linear program.
Linear programs can be solved in polynomial time using
off-the-shelf software.

Relaxed LP
Maximize Wz

subject to conditions

V7, Z@'e];r Yi + Zielj_(l - yZ> > Zj
Vj,0< 2 <1

Vi, 0 <y <1

We will use the notation (y*, 2*) to denote the variables
in the optimal solution for the relaxed LP. Note that if

zrp = Yjwjz; is the optimum (maximum) calculated

in the relaxed linear program and OPT is the optimal
solution for MAX-SAT then

ZLP Z OPT.
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The Randomized-Rounding MAX-SAT algorithm is:

Randomized Rounding
Solve the Relaxed Linear Program
Calculate (y*, z*)
for i =1ton do
Flip a y;-biased coin
If Heads set x; =T
else set x; = F.

Lemma: Let W be the weight of the assignment created
by Randomized Rounding. Then

BEW) > (1 _ 1) OPT

€

where 1 — L ~ 0.632.

(&
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The proof of the lemma will need two facts.
The first is that if ¢; > 0 then

1 1
vk, (alag...ak)’lC §k(a1+a2+...+ak).

The second fact is that if function f(x) is concave on
[, ul,

(f(x) is concave on [I,u] if f"(z) <0 for all z € [I,u])
f(l) > al+0b, and f(u) > au+ b then

Vo € [l u], f(x) > ax + 0.

We will apply this to
x

o113
on [0, 1]. This f() is concave on [0, 1],

0 =0 sm=1-(1-1),

k
N
so for z € {0,1}, f(z) > (1 — (1 — k) )33
This implies that

vz € [0,1], f(z) > (1 - (1 - ;)k) ..



We start by considering a clause C; that has only all
positive variables, e.g., C; = x; V 22 V ... V . Since
I = () the LP constraint for C; was sF oyl > 2%
From the algorithm Pr(z; =T) = y; so

k
Pr(Cj issatisfied) = 1 —[] (1 —v;)
i=1
N
> 1 k=i, 9,
— k
N
Z.
> 1 - 1—j)
>1-(1-2
k
>

1 %
The first inequality comes from the first fact on the pre-

vious page, the second from ¥ , ¥ > z7, and the third
from the second fact on the previous page.
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Now consider a clause C; of the form
Cj =21 VZr...VX;VZi41...V T

The LP constraint for C; was ©!_, yf + 58, (1 —yF) >

*
Zj.

Now

l k
Pr(C;issatisfied) = 1 =11 (1 —vy) II v/

i=1 i=l+1
* * k

> 1 [ =Sy + S0 Y
- k

N

2
> 1-— 1—9)
> 1=

> (1— (1—]1{)17 2

The only new aspect of this derivation is in the second
equality. It comes from the fact that

l k l k
I=>yi+ Xy =k=—YXy — X (1-y)
=1 i=[+1 1=1 1=l+1
< k—zj.
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We have actually just proven that if C; is a clause with
[; variables then

l.
1 J
Pr(C; is satisfied) > (1 — (1 - ) ) z7.

Thus
E(W) = Y w;Pr(C} is satisfied)
J

1\
e

Z ij(l—(l—
j L

1\"
> min[1-(1-7) |z

> (1-2)opr

€

which is what we have been attempting to prove.

xXr
We used the facts that Vo > 0, <1 — i) < e~ and that
5; wjz;-‘ > OPT.
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