Introduction to Randomized Algorithms II

- Conditional Probability and Derandomization
- p-Biased Coins
- Linear Programming and Randomized Rounding

Reference: Williamson, Lecture Notes on Approximation Algorithms 1999
IBM Research Report RC21409, Chapter 5
Can be found at http://legacy.orie.cornell.edu/ dpw/publications.html

Review of Conditional Probabilities and Expectation

The Probability of X conditioned on A is

$$
\operatorname{Pr}(X \mid A)=\frac{\operatorname{Pr}(X \cap A)}{\operatorname{Pr}(A)}
$$

Example: Roll two die and let X and Y be the respective number of dots they show. Then

$$
\begin{aligned}
\operatorname{Pr}(X+Y=9 \mid Y \text { is even }) & =\frac{\operatorname{Pr}(X+Y=9 \text { and } Y \in\{2,4,6\})}{\operatorname{Pr}(Y \in\{2,4,6\})} \\
& =\frac{\operatorname{Pr}((X, Y) \in\{(5,4),(3,6)\})}{1 / 2} \\
& =\frac{2 / 36}{1 / 2}=\frac{1}{9}
\end{aligned}
$$

Some basic formulas are

$$
E(X \mid A)=\sum_{i} i \cdot \operatorname{Pr}(X=i \mid A)
$$

and

$$
E(X)=E(X \mid A) \cdot \operatorname{Pr}(A)+E(X \mid \bar{A}) \cdot \operatorname{Pr}(\bar{A})
$$

where \bar{A} is the event " A does not happen" which has $\operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A)$.

Example: For the dice example above
$E(X+Y \mid Y$ is even $)=\sum_{i} i \cdot \operatorname{Pr}(X+Y=i \mid Y$ is even $)$
and

$$
\begin{aligned}
E(X+Y)=E(X & +Y \mid Y \text { even }) \cdot \operatorname{Pr}(Y \text { even }) \\
& +E(X+Y \mid Y \text { odd }) \cdot \operatorname{Pr}(Y \text { odd }) .
\end{aligned}
$$

Another Example: $C=x_{1} \vee x_{2} \vee \bar{x}_{3}$ and S a "random" truth assignment for the x_{i} as described before.

$$
\begin{aligned}
\operatorname{Pr}\left(C \text { satisfied } \mid x_{1}=F\right) & =\frac{\operatorname{Pr}\left(x_{1} \vee x_{2} \vee \bar{x}_{3} \text { satisfied and } x_{1}=F\right)}{\operatorname{Pr}\left(x_{1}=F\right)} \\
& =\frac{\operatorname{Pr}\left(x_{2} \vee \bar{x}_{3} \text { satisfied and } x_{1}=F\right)}{\operatorname{Pr}\left(x_{1}=F\right)} \\
& =\frac{\operatorname{Pr}\left(x_{2} \vee \bar{x}_{3} \text { satisfied }\right) \cdot \operatorname{Pr}\left(x_{1}=F\right)}{\operatorname{Pr}\left(x_{1}=F\right)} \\
& =\operatorname{Pr}\left(x_{2} \vee \bar{x}_{3} \text { satisfied }\right) \\
& =1-\left(\frac{1}{2}\right)^{2} \\
& =\frac{3}{4} .
\end{aligned}
$$

But

$$
\begin{aligned}
\operatorname{Pr}\left(C \text { satisfied } \mid x_{1}=T\right) & =\frac{\operatorname{Pr}\left(x_{1} \vee x_{2} \vee \bar{x}_{3} \text { satisfied and } x_{1}=T\right)}{\operatorname{Pr}\left(x_{1}=T\right)} \\
& =\frac{\operatorname{Pr}\left(x_{1}=T\right)}{\operatorname{Pr}\left(x_{1}=T\right)} \\
& =1
\end{aligned}
$$

Now let I be an instance of Max Sat, S a "random assignment" and W the weight of this random assignment. Recall that

$$
E(W)=\sum_{j} w_{j} \operatorname{Pr}\left(C_{j} \text { satisfied by } S\right)
$$

The notation $E\left(W \mid x_{1}, x_{2}, \ldots x_{k}\right)$ will mean the expected value of W conditioned on the truth assignment of $x_{1}, x_{2}, \ldots x_{k}$ being given. By linearity of expectation we have
$E\left(W \mid x_{1}, x_{2}, \ldots x_{k}\right)=\sum_{j} w_{j} \operatorname{Pr}\left(C_{j}\right.$ satisfied by $\left.S \mid x_{1}, x_{2}, \ldots x_{k}\right)$
where the probabilities are conditioned on the truth assignment of $x_{1}, x_{2}, \ldots x_{k}$ being given.

Notice that this value can always be calculated in time polynomial in the size of the instance!

Derandomization of the MAX-SAT algorithm

We will now see how to "derandomize" the MAX-SAT algorithm from the last lecture. This will give us a deterministic method for constructing a truth assignment S such that the weight associated with S satisfies $W \geq$ $\frac{O P T}{2}$.

The important fact to notice is that, for all $0<k \leq n$

$$
\left.\begin{array}{rl}
E\left(W \mid x_{1}, x_{2}, \ldots x_{k-1}\right)= & \frac{1}{2} E(
\end{array}\right)
$$

> DeRandomized MAX-SAT
> For $i=1$ to n do
> \quad Calculate $W_{T}=E\left(W \mid x_{1}, x_{2}, \ldots x_{k-1}, x_{k}=T\right)$
> \quad Calculate $W_{F}=E\left(W \mid x_{1}, x_{2}, \ldots x_{k-1}, x_{k}=F\right)$
> if $W_{T} \geq W_{F}$
> \quad set $x_{k}=T$
> \quad else set $x_{k}=F$
> Return variable setting S.

Notice that after setting x_{k} we must have (why?)

$$
E\left(W \mid x_{1}, x_{2}, \ldots x_{k-1}\right) \leq E\left(W \mid x_{1}, x_{2}, \ldots x_{k}\right)
$$

This implies that

$$
\frac{O P T}{2} \leq E(W) \leq E\left(W \mid x_{1}, x_{2}, \ldots x_{n}\right)
$$

so the truth assignment given by this deterministic algorithm is also a $\frac{1}{2}$ approximation of OPT.

MAX-SAT and p-Biased coins

A p-biased coin is one that, for $0 \leq p \leq 1$, has

$$
\operatorname{Pr}(\text { Heads })=p, \quad \operatorname{Pr}(\text { Tails })=1-p .
$$

p-biased random MAX SAT

For $i=1$ to n do
Flip a p-biased coin.

$$
\begin{gathered}
\text { If "heads", set } x_{i}=T \text {. } \\
\text { else set } x_{i}=F \text {. }
\end{gathered}
$$

Return variable setting S.

Lemma: If $p \geq \frac{1}{2}$ and C is a clause that is not of the form "single variable negated" $\left(\bar{x}_{i}\right)$ then

$$
\operatorname{Pr}(C \text { is satisfied by } S) \geq \min \left(p, 1-p^{2}\right)
$$

Proof: Let l be the number of variables in C. If $l=1$ then $C=x_{i}$ for some i and

$$
\operatorname{Pr}(C \text { is satisfied by } S)=\operatorname{Pr}\left(x_{i}=T\right)=p
$$

If $l>1$ let n be the number of variables that appear negated in C. Then $l-n$ is the number that do not appear negated and $\operatorname{Pr}(C$ is satisfied by $S)=1-p^{n}(1-p)^{l-n} \geq 1-p^{l} \geq 1-p^{2}$.

Let $\phi=\frac{\sqrt{5}-1}{2} \approx 0.618$ be the solution in $[0,1]$ to $p=$ $1-p^{2}$.

Lemma: Given an instance of MAX-SAT in which every length 1 clause is not negated let OPT be the optimal solution and W the solution returned by ϕ-biased random MAX SAT. Then

$$
E[W] \geq \phi \cdot O P T
$$

Proof: Set

$$
I_{j}=\left\{\begin{array}{l}
1 \text { if } C_{j} \text { is satisfied by } S \\
0 \text { otherwise }
\end{array}\right.
$$

Then

$$
\begin{aligned}
E[W] & =E\left[\sum_{j} w_{j} I_{j}\right] \\
& =\sum_{j} w_{j} E\left[I_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left(C_{j} \text { is satisfied by } S\right) \\
& \geq \sum_{j} w_{j} \min \left(\phi, 1-\phi^{2}\right) \\
& =\phi \sum_{j} w_{j} \\
& \geq \phi \cdot O P T
\end{aligned}
$$

The result on the previous page can be improved to work for all instances of MAX-SAT, even those that contain length one clauses that are negated variables.
Let I be our instance of MAX-SAT. First suppose that variable x_{i} appears in some length one negated clause, $C_{j}=\bar{x}_{i}$, but does not appear in any length one nonnegated clause as $C_{j^{\prime}}=x_{i}$. We then introduce a new variable u_{i} and replace every \bar{x}_{i} in I by u_{i} and every instance of x_{i} in I by \bar{u}_{i}. We can then solve this new instance of MAX-SAT without worrying about the negated length one clause C_{j} (solutions to the original problem are in one-to-one correspondence to solutions to the new problem).

The only hard case to deal with is when x_{i} appears both as negated clause $C_{j^{\prime}}=\bar{x}_{i}$ and non-negated clause $C_{j}=$ x_{i}.

We may assume that $w_{j} \geq w_{j^{\prime}}$ (why?).
For all i, if \bar{x}_{i} exists as its own clause let $v_{i}=\mathrm{wt}$ of \bar{x}_{i}. Otherwise $v_{i}=0$.
Since a truth assignment can only satisfy one of x_{i} and \bar{x}_{i} we have

$$
O P T \leq \sum_{j} w_{j}-\sum_{i} v_{i}
$$

But then

$$
\begin{aligned}
E[W] & =E\left[\sum_{j} w_{j} I_{j}\right] \\
& =\sum_{j} w_{j} \operatorname{Pr}\left(C_{j} \text { is satisfied by } S\right) \\
& \geq \sum_{j, \forall i, C_{j} \neq \bar{x}_{i}} w_{j} \operatorname{Pr}\left(C_{j} \text { is satisfied by } S\right) \\
& \geq \sum_{j, \forall i, C_{j} \neq \bar{x}_{i}} \phi w_{j} \\
& =\phi \cdot\left(\sum_{j} w_{j}-\sum_{i} v_{i}\right) \\
& \geq \phi \cdot O P T
\end{aligned}
$$

This gives a 0.618 approximation which is much better than the $\frac{1}{2}$ approximation we started with originally.

MAX-SAT and Randomized Rounding

We start by seeing how to restate the MAX-SAT problem. For every clause C_{j} let I_{j}^{+}be the set of indices of variables that are not negated in C_{j} and I_{j}^{-}the set of indices of variables that are negated. For example, when $C_{j}=$ $x_{1} \vee \bar{x}_{2} \vee x_{3} \vee x_{4} \vee \bar{x}_{5}$ then $I_{j}^{+}=\{1,3,4\}$ and $I_{j}^{-}=\{2,5\}$. Now construct the problem:

Maximize $\Sigma_{j} w_{j} z_{j}$
subject to conditions

$$
\begin{aligned}
& \forall j, \Sigma_{i \in \epsilon_{j}^{+}} y_{i}+\Sigma_{i \in I_{j}^{-}}\left(1-y_{i}\right) \geq z_{j} \\
& \forall j, z_{j} \in\{0,1\} \\
& \forall i, y_{i} \in\{0,1\}
\end{aligned}
$$

The idea now is to construct a correspondence between truth assignment S and the values of y_{i} by setting $y_{i}=1$ if and only if $x_{i}=T$ and $y_{i}=0$ iff $x_{i}=F$.

Note that with this assignment S satisfies C_{j} if and only if $\Sigma_{i \in I_{j}^{+}} y_{i}+\Sigma_{i \in I_{j}^{-}}\left(1-y_{i}\right) \geq 1$. For this fixed assignment the objective function $\Sigma_{j} w_{j} z_{j}$ is maximized if we set $z_{j}=$ 1 for every C_{j} that is satisfied (the unsatisfied C_{j} have $z_{j}=0$).
This implies that the objective function $\Sigma_{j} w_{j} z_{j}$ is max-
imized when the y_{i} are assigned values corresponding to a MAX-SAT assignment.

```
Maximize \(\Sigma_{j} w_{j} z_{j}\)
subject to conditions
\(\forall j, \Sigma_{i \in I_{j}^{+}} y_{i}+\Sigma_{i \in I_{j}^{-}}\left(1-y_{i}\right) \geq z_{j}\)
\(\forall j, z_{j} \in\{0,1\}\)
\(\forall i, y_{i} \in\{0,1\}\)
```

How does rewriting the problem help???

The problem as we wrote it is an integer linear program and solving integer linear programs is NP-Hard.
But, if we relax the problem and no longer require the y_{i} and z_{j} to be integers we get a regular linear program. Linear programs can be solved in polynomial time using off-the-shelf software.

```
Relaxed LP
Maximize \(\Sigma_{j} w_{j} z_{j}\)
subject to conditions
\(\forall j, \Sigma_{i \in \leq_{j}^{+}} y_{i}+\Sigma_{i \in I_{j}^{-}}\left(1-y_{i}\right) \geq z_{j}\)
\(\forall j, 0 \leq z_{j} \leq 1\)
\(\forall i, 0 \leq y_{i} \leq 1\)
```

We will use the notation $\left(y^{*}, z^{*}\right)$ to denote the variables in the optimal solution for the relaxed LP. Note that if $z_{L P}=\Sigma_{j} w_{j} z_{j}^{*}$ is the optimum (maximum) calculated in the relaxed linear program and $O P T$ is the optimal solution for MAX-SAT then

$$
z_{L P} \geq O P T
$$

The Randomized-Rounding MAX-SAT algorithm is:

```
Randomized Rounding
Solve the Relaxed Linear Program
    Calculate ( (y*, z*)
for }i=1\mathrm{ to }n\mathrm{ do
    Flip a y yi
    If Heads set }\mp@subsup{x}{i}{}=
        else set }\mp@subsup{x}{i}{}=F\mathrm{ .
```

Lemma: Let W be the weight of the assignment created by Randomized Rounding. Then

$$
E(W) \geq\left(1-\frac{1}{e}\right) O P T
$$

where $1-\frac{1}{e} \approx 0.632$.

The proof of the lemma will need two facts.
The first is that if $a_{i} \geq 0$ then

$$
\forall k,\left(a_{1} a_{2} \ldots a_{k}\right)^{\frac{1}{k}} \leq \frac{1}{k}\left(a_{1}+a_{2}+\ldots+a_{k}\right)
$$

The second fact is that if function $f(x)$ is concave on [l, u],
$\left(f(x)\right.$ is concave on $[l, u]$ if $f^{\prime \prime}(x) \leq 0$ for all $\left.x \in[l, u]\right)$ $f(l) \geq a l+b$, and $f(u) \geq a u+b$ then

$$
\forall x \in[l, u], f(x) \geq a x+b
$$

We will apply this to

$$
f(x)=1-\left(1-\frac{x}{k}\right)^{k}
$$

on $[0,1]$. This $f()$ is concave on $[0,1]$,

$$
f(0)=0, \quad f(1)=1-\left(1-\frac{1}{k}\right)^{k}
$$

so for $x \in\{0,1\}, f(x) \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) x$.
This implies that

$$
\forall x \in[0,1], f(x) \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) x
$$

We start by considering a clause C_{j} that has only all positive variables, e.g., $C_{j}=x_{1} \vee x_{2} \vee \ldots \vee x_{k}$. Since $I_{j}^{-}=\emptyset$ the LP constraint for C_{j} was $\sum_{i=1}^{k} y_{i}^{*} \geq z_{j}^{*}$. From the algorithm $\operatorname{Pr}\left(x_{i}=T\right)=y_{i}^{*}$ so

$$
\begin{aligned}
\operatorname{Pr}\left(C_{j} \text { is satisfied }\right) & =1-\prod_{i=1}^{k}\left(1-y_{i}^{*}\right) \\
& \geq 1-\left(\frac{k-\sum_{i=1}^{k} y_{i}^{*}}{k}\right)^{k} \\
& \geq 1-\left(1-\frac{z_{j}^{*}}{k}\right)^{k} \\
& \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*} .
\end{aligned}
$$

The first inequality comes from the first fact on the previous page, the second from $\sum_{i=1}^{k} y_{i}^{*} \geq z_{j}^{*}$, and the third from the second fact on the previous page.

Now consider a clause C_{j} of the form

$$
C_{j}=x_{1} \vee x_{2} \ldots \vee x_{l} \vee \bar{x}_{l+1} \ldots \vee \bar{x}_{k}
$$

The LP constraint for C_{j} was $\sum_{i=1}^{l} y_{i}^{*}+\sum_{i=l+1}^{k}\left(1-y_{i}^{*}\right) \geq$ z_{j}^{*}.
Now

$$
\begin{aligned}
\operatorname{Pr}\left(C_{j} \text { is satisfied }\right) & =1-\prod_{i=1}^{l}\left(1-y_{i}^{*}\right) \prod_{i=l+1}^{k} y_{i}^{*} \\
& \geq 1-\left(\frac{l-\sum_{i=1}^{l} y_{i}^{*}+\sum_{i=l+1}^{k} y_{i}^{*}}{k}\right)^{k} \\
& \geq 1-\left(1-\frac{z_{j}^{*}}{k}\right)^{k} \\
& \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*}
\end{aligned}
$$

The only new aspect of this derivation is in the second equality. It comes from the fact that

$$
\begin{aligned}
l-\sum_{i=1}^{l} y_{i}^{*}+\sum_{i=l+1}^{k} y_{i}^{*} & =k-\sum_{i=1}^{l} y_{i}^{*}-\sum_{i=l+1}^{k}\left(1-y_{i}^{*}\right) \\
& \leq k-z_{j}^{*}
\end{aligned}
$$

We have actually just proven that if C_{j} is a clause with l_{j} variables then

$$
\operatorname{Pr}\left(C_{j} \text { is satisfied }\right) \geq\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*} .
$$

Thus

$$
\begin{aligned}
E(W) & =\sum_{j} w_{j} \operatorname{Pr}\left(C_{j} \text { is satisfied }\right) \\
& \geq \sum_{j} w_{j}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) z_{j}^{*} \\
& \geq \min _{j}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right) \sum_{j} w_{j} z_{j}^{*} \\
& \geq\left(1-\frac{1}{e}\right) O P T
\end{aligned}
$$

which is what we have been attempting to prove.
We used the facts that $\forall x \geq 0,\left(1-\frac{1}{x}\right)^{x} \leq e^{-1}$ and that $\Sigma_{j} w_{j} z_{j}^{*} \geq O P T$.

