
Introduction to Randomized Algorithms II

• Conditional Probability and Derandomization

• p-Biased Coins

• Linear Programming and Randomized Rounding

Reference: Williamson, Lecture Notes on Approximation Algorithms 1999

IBM Research Report RC21409, Chapter 5

Can be found at http://legacy.orie.cornell.edu/ dpw/publications.html

1

Review of Conditional Probabilities and Ex-

pectation

The Probability of X conditioned on A is

Pr(X |A) =
Pr(X ∩ A)

Pr(A)
.

Example: Roll two die and let X and Y be the respective

number of dots they show. Then

Pr(X + Y = 9 |Y is even) =
Pr(X + Y = 9 and Y ∈ {2, 4, 6})

Pr(Y ∈ {2, 4, 6})
=

Pr((X, Y) ∈ {(5, 4), (3, 6)})

1/2

=
2/36

1/2
=

1

9
.

2

Some basic formulas are

E(X |A) =
∑

i
i · Pr(X = i |A)

and

E(X) = E(X |A) · Pr(A) + E(X | Ā) · Pr(Ā)

where Ā is the event “A does not happen” which has

Pr(Ā) = 1 − Pr(A).

Example: For the dice example above

E(X + Y |Y is even) =
∑

i
i ·Pr(X + Y = i |Y is even)

and

E(X + Y) = E(X + Y |Y even) · Pr(Y even)

+E(X + Y |Y odd) · Pr(Y odd).

3

Another Example: C = x1 ∨ x2 ∨ x̄3 and S a “random”

truth assignment for the xi as described before.

Pr(C satisfied |x1 = F) =
Pr(x1 ∨ x2 ∨ x̄3 satisfied and x1 = F)

Pr(x1 = F)

=
Pr(x2 ∨ x̄3 satisfied and x1 = F)

Pr(x1 = F)

=
Pr(x2 ∨ x̄3 satisfied) · Pr(x1 = F)

Pr(x1 = F)
= Pr(x2 ∨ x̄3 satisfied)

= 1 −




1

2





2

=
3

4
.

But

Pr(C satisfied |x1 = T) =
Pr(x1 ∨ x2 ∨ x̄3 satisfied and x1 = T)

Pr(x1 = T)

=
Pr(x1 = T)

Pr(x1 = T)
= 1.

4

Now let I be an instance of Max Sat, S a “random as-

signment” and W the weight of this random assignment.

Recall that

E(W) =
∑

j
wjPr(Cj satisfied by S).

The notation E(W |x1, x2, . . . xk) will mean the expected

value of W conditioned on the truth assignment of x1, x2, . . . xk

being given. By linearity of expectation we have

E(W |x1, x2, . . . xk) =
∑

j
wjPr(Cj satisfied by S |x1, x2, . . . xk)

where the probabilities are conditioned on the truth as-

signment of x1, x2, . . . xk being given.

Notice that this value can always be calculated in time

polynomial in the size of the instance!

5

Derandomization of the MAX-SAT algorithm

We will now see how to “derandomize” the MAX-SAT

algorithm from the last lecture. This will give us a de-

terministic method for constructing a truth assignment

S such that the weight associated with S satisfies W ≥
OPT

2
.

The important fact to notice is that, for all 0 < k ≤ n

E(W |x1, x2, . . . xk−1) =
1

2
E(W |x1, x2, . . . xk−1, xk = T)

+
1

2
E(W |x1, x2, . . . xk−1, xk = F)

DeRandomized MAX-SAT

For i = 1 to n do

Calculate WT = E(W |x1, x2, . . . xk−1, xk = T)

Calculate WF = E(W |x1, x2, . . . xk−1, xk = F)

if WT ≥ WF

set xk = T

else set xk = F

Return variable setting S.

Notice that after setting xk we must have (why?)

E(W |x1, x2, . . . xk−1) ≤ E(W |x1, x2, . . . xk).

6

This implies that

OPT

2
≤ E(W) ≤ E(W |x1, x2, . . . xn)

so the truth assignment given by this deterministic algo-

rithm is also a 1

2
approximation of OPT.

7

MAX-SAT and p-Biased coins

A p-biased coin is one that, for 0 ≤ p ≤ 1, has

Pr(Heads) = p, Pr(Tails) = 1 − p.

p-biased random MAX SAT

For i = 1 to n do

Flip a p-biased coin.

If “heads”, set xi = T.

else set xi = F.

Return variable setting S.

Lemma: If p ≥ 1

2
and C is a clause that is not of the form

“single variable negated” (x̄i) then

Pr(C is satisfied by S) ≥ min(p, 1 − p2).

Proof: Let l be the number of variables in C.

If l = 1 then C = xi for some i and

Pr(C is satisfied by S) = Pr(xi = T) = p.

If l > 1 let n be the number of variables that appear

negated in C. Then l − n is the number that do not

appear negated and

Pr(C is satisfied by S) = 1−pn(1−p)l−n ≥ 1−pl ≥ 1−p2.

8

Let φ =
√

5−1

2
≈ 0.618 be the solution in [0, 1] to p =

1 − p2.

Lemma: Given an instance of MAX-SAT in which every

length 1 clause is not negated let OPT be the optimal

solution and W the solution returned by φ-biased random

MAX SAT. Then

E[W] ≥ φ · OPT.

Proof: Set

Ij =











1 if Cj is satisfied by S

0 otherwise
.

Then

E[W] = E







∑

j
wjIj







=
∑

j
wjE[Ij]

=
∑

j
wjPr(Cj is satisfied by S)

≥ ∑

j
wj min(φ, 1 − φ2)

= φ
∑

j
wj

≥ φ · OPT.

9

The result on the previous page can be improved to work

for all instances of MAX-SAT, even those that contain

length one clauses that are negated variables.

Let I be our instance of MAX-SAT. First suppose that

variable xi appears in some length one negated clause,

Cj = x̄i, but does not appear in any length one non-

negated clause as Cj′ = xi. We then introduce a new

variable ui and replace every x̄i in I by ui and every

instance of xi in I by ūi. We can then solve this new in-

stance of MAX-SAT without worrying about the negated

length one clause Cj (solutions to the original problem

are in one-to-one correspondence to solutions to the new

problem).

10

The only hard case to deal with is when xi appears both

as negated clause Cj′ = x̄i and non-negated clause Cj =

xi.

We may assume that wj ≥ wj′ (why?).

For all i, if x̄i exists as its own clause let vi = wt of x̄i.

Otherwise vi = 0.

Since a truth assignment can only satisfy one of xi and

x̄i we have

OPT ≤ ∑

j
wj −

∑

i
vi.

But then

E[W] = E







∑

j
wjIj







=
∑

j
wjPr(Cj is satisfied by S)

≥ ∑

j,∀i, Cj 6=x̄i

wjPr(Cj is satisfied by S)

≥ ∑

j,∀i, Cj 6=x̄i

φwj

= φ ·






∑

j
wj −

∑

i
vi







≥ φ · OPT.

This gives a 0.618 approximation which is much better

than the 1

2
approximation we started with originally.

11

MAX-SAT and Randomized Rounding

We start by seeing how to restate the MAX-SAT problem.

For every clause Cj let I+
j be the set of indices of variables

that are not negated in Cj and I−j the set of indices of

variables that are negated. For example, when Cj =

x1∨x̄2∨x3∨x4∨x̄5 then I+
j = {1, 3, 4} and I−j = {2, 5}.

Now construct the problem:

Maximize
∑

j wjzj

subject to conditions

∀j,
∑

i∈I+
j

yi +
∑

i∈I−j
(1 − yi) ≥ zj

∀j, zj ∈ {0, 1}
∀i, yi ∈ {0, 1}

The idea now is to construct a correspondence between

truth assignment S and the values of yi by setting

yi = 1 if and only if xi = T and yi = 0 iff xi = F.

Note that with this assignment S satisfies Cj if and only

if
∑

i∈I+
j

yi +
∑

i∈I−j
(1− yi) ≥ 1. For this fixed assignment

the objective function
∑

j wjzj is maximized if we set zj =

1 for every Cj that is satisfied (the unsatisfied Cj have

zj = 0).

This implies that the objective function
∑

j wjzj is max-

12

imized when the yi are assigned values corresponding to

a MAX-SAT assignment.

13

Maximize
∑

j wjzj

subject to conditions

∀j,
∑

i∈I+
j

yi +
∑

i∈I−j
(1 − yi) ≥ zj

∀j, zj ∈ {0, 1}
∀i, yi ∈ {0, 1}

How does rewriting the problem help???

The problem as we wrote it is an integer linear program

and solving integer linear programs is NP-Hard.

But, if we relax the problem and no longer require the

yi and zj to be integers we get a regular linear program.

Linear programs can be solved in polynomial time using

off-the-shelf software.

Relaxed LP

Maximize
∑

j wjzj

subject to conditions

∀j,
∑

i∈I+
j

yi +
∑

i∈I−j
(1 − yi) ≥ zj

∀j, 0 ≤ zj ≤ 1

∀i, 0 ≤ yi ≤ 1

We will use the notation (y∗, z∗) to denote the variables

in the optimal solution for the relaxed LP. Note that if

zLP =
∑

j wjz
∗
j is the optimum (maximum) calculated

in the relaxed linear program and OPT is the optimal

solution for MAX-SAT then

zLP ≥ OPT.

14

The Randomized-Rounding MAX-SAT algorithm is:

Randomized Rounding

Solve the Relaxed Linear Program

Calculate (y∗, z∗)
for i = 1 to n do

Flip a y∗i -biased coin

If Heads set xi = T

else set xi = F.

Lemma: Let W be the weight of the assignment created

by Randomized Rounding. Then

E(W) ≥


1 − 1

e



OPT

where 1 − 1

e ≈ 0.632.

15

The proof of the lemma will need two facts.

The first is that if ai ≥ 0 then

∀k, (a1a2 . . . ak)
1
k ≤ 1

k
(a1 + a2 + . . . + ak) .

The second fact is that if function f(x) is concave on

[l, u],

(f(x) is concave on [l, u] if f ′′(x) ≤ 0 for all x ∈ [l, u])

f(l) ≥ al + b, and f(u) ≥ au + b then

∀x ∈ [l, u], f(x) ≥ ax + b.

We will apply this to

f(x) = 1 −
(

1 − x

k

)k

on [0, 1]. This f() is concave on [0, 1],

f(0) = 0, f(1) = 1 −


1 − 1

k





k

,

so for x ∈ {0, 1}, f(x) ≥
(

1 −
(

1 − 1

k

)k
)

x.

This implies that

∀x ∈ [0, 1], f(x) ≥




1 −


1 − 1

k





k




 x.

16

We start by considering a clause Cj that has only all

positive variables, e.g., Cj = x1 ∨ x2 ∨ . . . ∨ xk. Since

I−j = ∅ the LP constraint for Cj was
∑k

i=1 y∗i ≥ z∗j .
From the algorithm Pr(xi = T) = y∗i so

Pr(Cj is satisfied) = 1 −
k
∏

i=1

(1 − y∗i)

≥ 1 −






k − ∑k
i=1 y∗i

k







k

≥ 1 −


1 − z∗j
k





k

≥




1 −


1 − 1

k





k




 z∗j .

The first inequality comes from the first fact on the pre-

vious page, the second from
∑k

i=1 y∗i ≥ z∗j , and the third

from the second fact on the previous page.

17

Now consider a clause Cj of the form

Cj = x1 ∨ x2 . . . ∨ xl ∨ x̄l+1 . . . ∨ x̄k.

The LP constraint for Cj was
∑l

i=1 y∗i +
∑k

i=l+1(1− y∗i) ≥
z∗j .
Now

Pr(Cj is satisfied) = 1 −
l
∏

i=1

(1 − y∗i)
k
∏

i=l+1

y∗i

≥ 1 −






l − ∑l
i=1 y∗i +

∑k
i=l+1 y∗i

k







k

≥ 1 −


1 − z∗j
k





k

≥




1 −


1 − 1

k





k




 z∗j .

The only new aspect of this derivation is in the second

equality. It comes from the fact that

l −
l
∑

i=1

y∗i +
k
∑

i=l+1

y∗i = k −
l
∑

i=1

y∗i −
k
∑

i=l+1

(1 − y∗i)

≤ k − z∗j .

18

We have actually just proven that if Cj is a clause with

lj variables then

Pr(Cj is satisfied) ≥








1 −




1 − 1

lj







lj








z∗j .

Thus

E(W) =
∑

j
wjPr(Cj is satisfied)

≥ ∑

j
wj









1 −




1 − 1

lj







lj








z∗j

≥ min
j









1 −




1 − 1

lj







lj








∑

j
wjz

∗
j

≥


1 − 1

e



OPT

which is what we have been attempting to prove.

We used the facts that ∀x ≥ 0,
(

1 − 1

x

)x ≤ e−1 and that
∑

j wjz
∗
j ≥ OPT.

19

