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Many Optimization problems can be written in the form

min c′x Cost/Objective
a′ix = bi i ∈ M Constraint
a′ix ≥ bi i ∈ M̄ Constraint
xj ≥ 0 j ∈ N Constraint
xj ≶ 0 j ∈ N̄ Constraint

where
x ∈ Rn and b are n × 1 column matrices (vectors)
and the a′i are m 1 × n row matrices (vectors).
Often assume that the b, ai are integers (or rational).

An x ∈ Rn that satisfies the constraints is a
feasible solution.

The problem is to find the minimal cost of a feasible
solution.

Such a problem is known as a Linear Program.
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One of the first problems ever formulated in this fash-
ion was the diet problem; how to minimize the cost
of a diet that contains a sufficient amount of each of
m nutrients that can be constructed from an available
supply of n different foods.

ai,j = amount of ith nutrient in a unit of the jth food
i = 1, . . . , m, j = 1, . . . , n

ri = yearly requirement of ith nutrient
i = 1, . . . , m

xj = yearly consumption of the jth food (in units)
j = 1, . . . , n

cj = cost per unit of the jth food
j = 1, . . . , n

Consider the ai,j as entries in matrix A and ri, xj as
entries in column vectors r, x and cj as entries in a
row vector. Then the problem can be rewritten as

min c′x

Ax ≥ r

x ≥ 0
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There are actually three different accepted ways of
writing LPs:

• General Form (Ex. Max-Flow)

min c′x

a′ix = bi i ∈ M

a′ix ≥ bi i ∈ M̄

xj ≥ 0 j ∈ N

xj ≶ 0 j ∈ N̄

• Canonical Form (Ex. Diet-Problem)

min c′x

Ax ≥ b

x ≥ 0

• Standard Form

min c′x

Ax = b

x ≥ 0

4



General Form Canonical Form Standard Form

min c′x

a′
ix = bi, i ∈ M

a′
ix ≥ bi, i ∈ M̄

xj ≥ 0, j ∈ N

xj ≶ 0, j ∈ N̄

min c′x

Ax ≥ b

x ≥ 0

min c′x

Ax = b

x ≥ 0

Theorem: The General, Canonical and Standard Forms
are all equivalent to each other.

Different forms are useful for different problem formu-
lations and proving different theorems.

Proof: Problems in SF and CF are already in GF.

We must therefore show
(a) GF ⇒ CF:
(b) GF ⇒ SF:
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General Form Canonical Form Standard Form

min c′x

a′
ix = bi, i ∈ M

a′
ix ≥ bi, i ∈ M̄

xj ≥ 0, j ∈ N

xj ≶ 0, j ∈ N̄

min c′x

Ax ≥ b

x ≥ 0

min c′x

Ax = b

x ≥ 0

GF ⇒ CF:
We must eliminate unconstrained variables and equal-
ities.

Variables:
Replace xj s.t. xj ≶ 0 with two new variables

x
+
j , x−j s.t. x

+
j , x−j ≥ 0 and xj = x

+
j − x−j .

More specifically, remove xj and constraint xj ≶ 0,

add two variables x
+
j , x−j and conditions x

+
j ≥ 0,

x−j ≥ 0. Every occurrence ai,jxj in an inequality is

replaced by ai,jx
+
j − ai,jx

−
j .

Equalities: Any equality
∑n

j=1 ai,jxj = bi

can be replaced by two inequalities
∑n

j=1 ai,jxj ≥ bi and
∑n

j=1(−ai,j)xj ≥ −bi.
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General Form Canonical Form Standard Form

min c′x

a′
ix = bi, i ∈ M

a′
ix ≥ bi, i ∈ M̄

xj ≥ 0, j ∈ N

xj ≶ 0, j ∈ N̄

min c′x

Ax ≥ b

x ≥ 0

min c′x

Ax = b

x ≥ 0

GF ⇒ SF:
We must eliminate unconstrained variables and in-
equalities.

Unconstrained variables are eliminated as before,
i.e., xj replaced by x

+
j , x−j .

Inequalities:
Given inequality

∑n
j=1 ai,jxj ≥ bi in GF

introduce new surplus variable si and equation
∑n

j=1 ai,jxj − si = bi, si ≥ 0.

Note: If we ever have inequality of form
∑n

j=1 ai,jxj ≤ bi

we can introduce new slack variable si and equation

∑n
j=1 ai,jxj + si = bi, si ≥ 0.
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Basic Feasible Solutions

min c′x

Ax = b

x ≥ 0
Assume we are given an LP in standard

form , where A is an m×n matrix with m ≤ n. We will
also make an assumption (shown unnecessary later)

Assumption 1: A has rank m, i.e., there are m linearly
independent Aj columns in A.

A Basis of A is a linearly independent collection
B = {Aj1, . . . , Ajm}. Alternatively, B can be thought
of as an m × m nonsingular matrix B = [Aji].

The Basic Solution corresponding to B is x ∈ Rn s.t.
xj = 0 for Aj 6∈ B

xjk
= the kth component of B−1b, k = 1, . . . , m.

x ∈ Rn is a basic feasible solution if it is a
basic solution and a feasible solution.
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min 2x2 + x4 + 5x7

x1 + x2 + x3 + x4 = 4
x1 + x5 = 2

x3 + x6 = 3
3x2 + x3 + x7 = 6

x1, x2, x3, x4, x5, x6, x7 ≥ 0

Example 1:
B = {A4, A5, A6, A7}.
B = I.
Corresponding basic solution is

x = (0,0,0,4,2,3,6).

This x is feasible.

Example 2:
B′ = {A2, A5, A6, A7}.
Corresponding basic solution is

x′ = (0,4,0,0,2,3,−6).

This x′ is not feasible.
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Basic Feasible Solutions will be interesting to us
since we will later be able to show that there exists
an optimal solution which is a basic feasible solu-
tion.

Since a basic solution corresponds to a set of m lin-
early independent columns this transforms our con-
tinuous optimization problem (with an infinite number
of solutions) into a combinatorial optimization problem
(with a finite number of solutions).

A finite algorithm would then be to simply look at all
(

n
m

)

subsets of m columns, calculate the correspond-
ing basic solutions and check if they are feasible. Ex-
amine all basic feasible solutions in this fashion and
return the one with minimum cost.
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We will also see that a linear program corresponds to
a polytope with basic feasible solutions corresponding
to vertices.

The simplex method will permit us to solve the LP by
starting at some vertex (BFS) and then walking from
vertex to vertex on edges of the polytope, always im-
proving the cost of the current solution. When the
solution can no longer be improved by walking along
some edge leaving the current vertex, we will be at an
optimal solution.

The next few classes will be devoted to deriving all of
the above.
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Lemma: Let x = (x1, . . . , xn) be a basic solution.
Then

|xj| ≤ m!αm−1β

where

α = max
i,j

{|aij|} and β = max
j=1,...,m

{|bj|}

Proof: If xj is not basic then xj = 0.

If xj is basic then it is the appropriate entry in B−1b.

Each element in B−1 is the determinent of a
(m−1)×(m−1) submatrix of B, divided by det(B).

The entries in B−1 are all ≤ (m − 1)!αm−1 and
|det(B)| ≥ 1.

Since xj is the sum of m entries in B−1 multiplied by
entries in b, the lemma follows.
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Lemma: Let x be a BFS of

Ax = b

x ≥ 0

corresponding to basis B. Then there exists cost vec-
tor c such that x is the unique optimal solution of the
LP

min c′x

Ax = b

x ≥ 0
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Recall
Assumption 1: A has rank m, i.e., there are m linearly
independent Aj columns in A.

We now add (again we will remove this later)
Assumption 2: The set F of feasible points is not
empty.

Theorem: Under assumptions 1 and 2 at least one
BFS exists.

Proof: Assume, in contradiction, that no BFS exists.
Let x ∈ F be a solution with t non-zero components.
We assume that x is solution with largest number of
zero components. WLOG

x1, . . . , xt > 0, and xt+1, . . . xn = 0.

The first t columns of A then satisfy

A1x1 + · · · + Atxt = b.
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Theorem: Under assumptions 1 and 2 at least one
BFS exists.

Proof: (cont) A1x1 + · · · + Atxt = b.

Let r be the rank of these t columns.
r > 0 since if r = 0, then BFS x = 0 in F.

Therefore (after possible row reordering) the matrix










a11 a12 . . . a1r

a21 a22 . . . a2r
... ... . . . ...

ar1 ar2 · · · arr











is nonsingular.This permits solving x1, . . . , xr in terms
of xr+1, . . . xt. That is

xj = βj +
t

∑

i=r+1

αijxi, j = 1, . . . , r

Note. This implies r < t, since, otherwise, x is a BFS. (Why?)
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Proof: (cont)
A1x1 + · · · + Atxt = b, and
xj = βj +

∑t
i=r+1 αijxi, j = 1, . . . , r

Now let

θ = min{xr+1, θ1}

where

θ1 = min
αr+1,i>0

{

xi

αr+1,i

, i = 1, . . . , r

}

Construct new feasible solution

x̂j =











xj − θ if j = r + 1

xj if j > r + 1

βj +
∑t

i=r+1 αijx̂i if j < r + 1

Then, for j ≤ r, x̂j = xj − αr+1,jθ.

If θ = xr+1 then x̂r+1 = 0;

If θ = θ1 =
xk

αr+1,k
for some k ≤ r, then x̂k = 0.

So x̂ is a feasible solution with one more zero compo-
nent than x, contradiction.
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So far we have made 2 assumptions. we now add a
third (which we will also be able to get rid of later).

Assumption 1:
A has rank m, i.e., there are m linearly independent
Aj columns in A.

Assumption 2:
The set F of feasible points is not empty.

Assumption 3:
The set of real numbers {c′x : x ∈ F} is bounded
from below.
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We can now prove

Theorem:
Let Assumptions 1-3 hold for the LP

min c′x

Ax = b

x ≥ 0

Then the following LP is equivalent, in the sense that
it has the same optimal value of its cost function:

min c′x

Ax = b

x ≥ 0

x ≤ M

where

M = (m + 1)!αmβ

α = max{|aij|, |cj|}

β = max{|bi|, |z|}

and z is the greatest lower bound of the set
{c′x : Ax = b, x ≥ 0}.
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The Geometry of Linear Programs

We will now see how LPs correspond to polytopes and
BFSs to vertices of the polytopes. This requires re-
viewing some basic linear algebra.

• Consider vector space Rd. A (linear) subspace
S of Rd is a subset of Rd closed under vector
addition and scalar multiplication.

• Equivalently, S is the set of points satisfying linear
equations
S = {x ∈ Rd : aj,1x1 + · · ·+ aj,dxd = 0, j = 1, . . . , m}

• dim(S), the dimension of S, is the maximum num-
ber of linearly independent vectors in S.

dim(S) = d − rank([aij])
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• An affine subspace A is a linear subspace S

translated by u ∈ S;

A = {u + s : s ∈ S}.

• dim(A) = dim(S)

• Equivalently, A is set of points satisfying
A = {x ∈ Rd : aj,1x1 + · · ·+ aj,dxd = bj, j = 1, . . . , m}

• The dimension of any subset of Rd is smallest
dimension of any affine subspace containing set,
e.g., line segments have dimension 1.
Any set of k ≤ d + 1 points has
dimension ≤ k − 1.

• If A is an m× d matrix then dimension of feasible
set defined by LP

Ax = b and x ≥ 0

is at most d − m.
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An affine subspace of dimension d − 1 is called a
hyperplane. Equivalently, a hyperplane is a set of
points satisfying

a1x1 + a2x2 + · · · + adxd = b

where not all ai = 0. A hyperplane defines two
(closed) halfspaces:

a1x1 + a2x2 + · · · + adxd ≥ b

a1x1 + a2x2 + · · · + adxd ≤ b

A halfspace is convex. Since the intersection of con-
vex sets is also convex, the intersection of halfspaces
is also convex. The intersection of a finite number of
halfspaces is called a (convex) polytope.

We will only be interested in polytopes in which all
vector entries are nonnegative. By convention, d of
the defining halfspaces will always be
xj ≥ 0, j = 1, . . . , d.

21



(2, 0, 0)

(2, 0, 2)

(2, 2, 0)(0, 2, 0)

(0, 0, 0)

(0, 1, 3)

(0, 0, 3) (1, 0, 3)

x

x

x

1

2

3

x1 + x2 + x3 ≤ 4
x1 ≤ 2

x3 ≤ 3
3x2 + x3 ≤ 6

x1 ≥ 0
x2 ≥ 0

x3 ≥ 0
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Let P be a polytope of dimension d and HS a half-
space defined by hyperplane H. If the intersection
f = P ∩ HS ⊂ H then
f is a face of P.

H is the supporting hyperplane defining f .

In particular.
A facet is a face of dimension d − 1.
A vertex is a face of dimension zero (a point).
An edge is a face of one dimension (a line segment).
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Some observations:

The hyperplane defining a facet corresponds to a defin-
ing halfspace of the polytope. The converse is not
true. Some defining halfspaces are redundant and
can be discarded without changing the polytope.

An edge always connects two vertices.
Not every two vertices are connected by an edge.

Theorem:
(a) Every convex polytope is the convex hull of its ver-
tices.
(b) If V is a finite set of points then CH(V ) is a con-
vex polytope P. The set of vertices of P is a subset of
V.
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A polytope P can therefore be thought of in 3 ways:

1) As the convex hull of a finite set of points.

2) As the intersection of many halfspaces, as long as
the intersection is bounded.

3) An algebraic version of the above: let
Ax = b, x ≥ 0

define the feasible region F of some LP.
Assume A is an m × n matrix of rank m.
We may then assume (why?)

xi = bi −
n−m
∑

j=1

ai,j xj, i = n − m + 1, . . . , n.

This is the same as

bi −
∑n−m

j=1 ai,j xj ≥ 0, i = n − m + 1, . . . , n

xj ≥ 0, j = 1, . . . , n − m

so F is a polytope in Rn−m defined by the intersec-
tion of n halfspaces.
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3) (cont). We just saw that if A is a m× n matrix then
feasible region of

Ax = b, x ≥ 0

is a polytope in Rn−m defined by the intersection of
n halfspaces.

Now assume the converse, that P is a convex poly-
tope in Rn−m defined by the intersection of n halfs-
paces.

hi,1x1+· · ·+hi,n−mxn−m+gi ≤ 0, i = 1, . . . , n.

By our convention we may assume that first n − m

equations are:

xi ≥ 0, i = 1, . . . , n − m

Introducing m slack variables xn−m+1, . . . , xn gives

Ax = b, x ≥ 0

where bi = −gi, m × n matrix A = [H|I] and x ∈

Rn.

So a polytope can be viewed as the feasible region of
some LP.
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Theorem:
let P be a convex polytope,
F = {x : Ax = b, x ≥ 0},
the corresponding feasible set of an LP and
x̂ = (x1, . . . , xn−m) ∈ P .
Then the following three statements are equivalent:

a) The point x̂ is a vertex of P.

b) If x̂ = λx̂′+(1−λ)x̂′′ with x̂′, x̂′′ ∈ P , 0 < λ < 1,
then x̂ = x̂′ = x̂′′

c) The corresponding vector x ∈ F is a BFS of F .

Note: Given two different vertices u, u′, their corresponding bases

B,B′ must be different. But, two different bases B,B′ could cor-

respond to the same vertex. If this happens, the corresponding

BFS has more than m − n zeros. Such a BFS is called degen-

erate.
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Finiteness of Linear programming

Theorem:
(a) There is an optimal BFS in any instance of LP.

(b) Furthermore, if q BFSs are optimal, their convex
combinations are also optimal.

Proof:
This is equivalent to proving there is an optimal vertex
of P and that if q vertices are optimal, so is any convex
combination of them.

Let d be the objective function, i.e., cost is d′x. Note
that P is closed so d′x attains its minimum in P .

To prove (a) let x0 be an optimal point and x1, . . . xN

the vertices of P . Then

x0 =
N
∑

i=1

αixi, where
N
∑

i=1

αi = 1, αi ≥ 0

Let j be the vertex with lowest cost. Then

d′x0 = d′
N
∑

i=1

αixi ≥ d′xj

N
∑

i=1

αi = d′xj

so xj is optimal.

28



Theorem:
(a) There is an optimal BFS in any instance of LP.

(b) Furthermore, if q BFSs are optimal, their convex
combinations are also optimal.

Proof: (cont)
To prove (b) assume that vertices xj1, . . . , xjq are op-
timal and let y =

∑q
i=1 αixji be some convex com-

bination of the vertices, i.e.,
∑N

i=1 αi = 1, αi ≥ 0.
Then

d′y =
q

∑

i=1

αixji =
q

∑

i=1

αi(d
′xji) = d′xj1

and we are finished.

29



As discussed earlier we have just shown that there
always exists an optimal solution which is a basic
feasible solution.

Since a basic solution corresponds to a set of m lin-
early independent columns this transforms our con-
tinuous optimization problem (with an infinite number
of solutions) into a combinatorial optimization problem
(with a finite number of solutions).

A finite algorithm would then be to simply look at all
(

n
m

)

subsets of m columns, calculate the correspond-
ing basic solutions and check if they are feasible. Ex-
amine all basic feasible solutions in this fashion and
return the one with minimum cost.

In the next section we will develop the simplex algo-
rithm, a more efficient way of walking through the ba-
sic feasible solutions (vertices), one that always im-
proves cost (and usually doesn’t have to look at all of
the BFSs before finding the optimal).
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